A Brief Introduction to Bayesian Inference

Mark Johnson

CG168 notes
A brief review of *discrete* probability theory

- Ω is the set of all *elementary events* (c.f. interpretations in logic)
- If $\omega \in \Omega$, then $P(\omega)$ is the probability of event ω
 - $P(\omega) \geq 0$
 - $\sum_{\omega \in \Omega} P(\omega) = 1$
- A *random variable* X is a function from Ω to some set of values \mathcal{X}
 - If \mathcal{X} is countable then X is a *discrete* random variable
 - If \mathcal{X} is continuous then X is a *continuous* random variable
- If x is a possible value for X, then

\[
P(X = x) = \sum_{\substack{\omega \in \Omega \\ X(\omega) = x}} P(\omega)
\]
Independence and conditional distributions

• Two RVs X and Y are *independent* iff $P(X, Y) = P(X)P(Y)$

• The *conditional distribution* of Y given X is:

\[
P(Y|X) = \frac{P(Y, X)}{P(X)}
\]

so X and Y are independent iff $P(Y|X) = P(Y)$ (here and below I assume strictly positive distributions)

• We can decompose the joint distribution of a sequence of RVs into a product of conditionals:

\[
P(X_1, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1) \ldots P(X_n|X_{n-1}, \ldots, X_1)
\]

i.e., the probability of generating X_1, \ldots, X_n “at once” is the same as generating them one at a time if each X_i is conditioned on the X_1, \ldots, X_{i-1} that preceded it
Conditional distributions

- It's always possible to factor any distribution over \(X = (X_1, \ldots, X_n) \) into a product of conditionals

\[
P(X) = \prod_{i=1}^{n} P(X_i | X_1, \ldots, X_{i-1})
\]

- But in many interesting cases, \(X_i \) depends only on a subset of \(X_1, \ldots, X_{i-1} \), i.e.,

\[
P(X) = \prod_{i} P(X_i | X_{\text{Pa}(i)})
\]

where \(\text{Pa}(i) \subseteq \{1, \ldots, i - 1\} \) and \(X_S = \{X_j : j \in S\} \)

- \(X \) and \(Y \) are \textit{conditionally independent} given \(Z \) iff

\[
P(X, Y | Z) = P(X | Z) \ P(Y | Z)
\]

or equivalently,

\[
P(X | Y, Z) = P(X | Z)
\]

- Note: the "parents" \(\text{Pa}(i) \) of \(X_i \) depend on the order in which the variables are enumerated!
Bayes nets

- A Bayes net is a graphical depiction of a factorization of a probability distribution into products of conditional distributions

\[P(X) = \prod_i P(X_i|X_{Pa(i)}) \]

- A Bayes net has a node for each variable \(X_i \) and an arc from \(X_j \) to \(X_i \) iff \(j \in Pa(i) \)
Bayes rule

- Bayes theorem:

\[P(Y|X) = \frac{P(X|Y) \ P(Y)}{P(X)} \]

- Bayes inversion: swap direction of arcs in Bayes net

- Interpreted as a recipe for “belief updating”:

\[P(\text{Hypothesis}|\text{Data}) \propto P(\text{Data}|\text{Hypothesis}) \ P(\text{Hypothesis}) \]

- The normalizing constant (which you have to divide Likelihood times Prior by) is:

\[P(\text{Data}) = \sum_{\text{Hypothesis'}} P(\text{Data}|\text{Hypothesis'}) \ P(\text{Hypothesis'}) \]

which is the probability of generating the data under any hypothesis
Iterated Bayesian belief updating

• Suppose the data consists of 2 components $D = (D_1, D_2)$, and $P(H)$ is our prior over hypotheses H

$$P(H|D_1, D_2) \propto P(D_1, D_2|H) \cdot P(H)$$
$$\propto P(D_2|H, D_1) \cdot P(H|D_1)$$

• This means the following are equivalent:
 ▷ update the prior $P(H)$ treating (D_1, D_2) as a single observation
 ▷ update the prior $P(H)$ wrt the first observation D_1 producing posterior $P(H|D_1) \propto P(D_1|H) \cdot P(H)$, which serves as the prior for the second observation D_2
Incremental Bayesian belief updating

- Consider a “two-part” data set \((d_1, d_2)\). We show posterior obtained by Bayesian belief updating on \((d_1, d_2)\) together is same as posterior obtained by updating on \(d_1\) and then updating on \(d_2\).
- Bayesian belief updating on both \((d_1, d_2)\) using prior \(P(H)\)

\[
P(H|d_1, d_2) \propto P(d_1, d_2|H)P(H) = P(d_1, d_2, H)
\]

- Incremental Bayesian belief updating
 - Bayesian belief updating on \(d_1\) using prior \(P(H)\)

\[
P(H|d_1) \propto P(d_1|H)P(H) = P(d_1, H)
\]
 - Bayesian belief updating on \(d_2\) using prior \(P(H|d_1)\)

\[
P(H|d_1, d_2) \propto P(d_2|H, d_1)P(H|d_1)
\]

\[
\propto P(d_2|H, d_1)P(H, d_1)
\]

\[
= P(d_2, d_1, H)
\]
“Distributed according to” notation

• A probability distribution F is a non-negative function from some set \mathcal{X} whose values sum (integrate) to 1

• A random variable X is distributed according to a distribution F, or more simply, X has distribution F, written $X \sim F$, iff:

$$P(X = x) = F(x) \text{ for all } x$$

(This is for discrete RVs).

• You’ll sometimes see the notion

$$X \mid Y \sim F$$

which means “X is generated conditional on Y with distribution F” (where F usually depends on Y)
Outline

Dirichlet priors for categorical and multinomial distributions

Comparing discrete and continuous hypotheses
Continuous hypothesis spaces

- Bayes rule is the same when H ranges over a continuous space except that $P(H)$ and $P(H|D)$ are continuous functions of H

\[
\frac{P(H|D)}{P(H)} \propto \frac{P(D|H)}{P(H)}
\]

- The normalizing constant is:

\[
P(D) = \int P(D|H') P(H') \, dH'
\]

- Some of the approaches you can take:
 - Monte Carlo sampling procedures (which we’ll talk about later)
 - Choose $P(H)$ so that $P(H|D)$ is easy to calculate
 ⇒ use a prior conjugate to the likelihood
Categorical distributions

- A *categorical distribution* has a finite set of outcomes 1, \ldots, m.
- A categorical distribution is parameterized by a vector \(\theta = (\theta_1, \ldots, \theta_m) \), where \(P(X = j|\theta) = \theta_j \) (so \(\sum_{j=1}^{m} \theta_j = 1 \))
 - Example: An \(m \)-sided die, where \(\theta_j = \text{prob. of face } j \)
- Suppose \(X = (X_1, \ldots, X_n) \) and each \(X_i|\theta \sim \text{CATEGORICAL(}\theta) \). Then:

\[
P(X|\theta) = \prod_{i=1}^{n} \text{CATEGORICAL}(X_i; \theta) = \prod_{j=1}^{m} \theta_j^{N_j}
\]

where \(N_j \) is the number of times \(j \) occurs in \(X \).
- Goal of next few slides: compute \(P(\theta|X) \)
Multinomial distributions

• Suppose \(X_i \sim \text{CATEGORICAL}(\theta) \) for \(i = 1, \ldots, n \), and \(N_j \) is the number of times \(j \) occurs in \(X \)
• Then \(N|n, \theta \sim \text{MULTI}(\theta, n) \), and

\[
P(N|n, \theta) = \frac{n!}{\prod_{j=1}^{m} N_j!} \prod_{j=1}^{m} \theta_j^{N_j}
\]

where \(n! / \prod_{j=1}^{m} N_j! \) is the number of sequences of values with occurrence counts \(N \)
• The vector \(N \) is known as a \textit{sufficient statistic} for \(\theta \) because it supplies as much information about \(\theta \) as the original sequence \(X \) does.

Dirichlet distributions

- **Dirichlet distributions** are probability distributions over multinomial parameter vectors
 - called **Beta distributions** when \(m = 2 \)
- Parameterized by a vector \(\alpha = (\alpha_1, \ldots, \alpha_m) \) where \(\alpha_j > 0 \) that determines the shape of the distribution

\[
\text{DIR}(\theta; \alpha) = \frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_j^{\alpha_j-1}
\]

\[
C(\alpha) = \int \prod_{j=1}^{m} \theta_j^{\alpha_j-1} \, d\theta = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^{m} \alpha_j)}
\]

- \(\Gamma \) is a generalization of the factorial function
- \(\Gamma(k) = (k - 1)! \) for positive integer \(k \)
- \(\Gamma(x) = (x - 1)\Gamma(x - 1) \) for all \(x \)
Plots of the Dirichlet distribution

\[\text{DIR}(\theta; \alpha) = \frac{\Gamma(\sum_{j=1}^{m} \alpha_j)}{\prod_{j=1}^{m} \Gamma(\alpha_j)} \prod_{j=1}^{m} \theta_j^{\alpha_j - 1} \]
Plots of the Dirichlet distribution (2)

\[
\text{DIR}(\theta; \alpha) = \frac{\Gamma(\sum_{j=1}^{m} \alpha_j)}{\prod_{j=1}^{m} \Gamma(\alpha_j)} \prod_{j=1}^{m} \theta_j^{\alpha_j-1}
\]
Plots of the Dirichlet distribution (3)

\[\text{DIR}(\theta; \alpha) = \frac{\Gamma(\sum_{j=1}^{m} \alpha_j)}{\prod_{j=1}^{m} \Gamma(\alpha_j)} \prod_{j=1}^{m} \theta_j^{\alpha_j-1} \]

\(\alpha = (1, 1) \)
\(\alpha = (0.5, 0.5) \)
\(\alpha = (0.1, 0.1) \)
\(\alpha = (0.1, 1) \)
\(\alpha = (0.1, 2) \)
Dirichlet distributions as priors for θ

- Generative model:

\[
\begin{align*}
\theta & \mid \alpha \sim \text{DIR}(\alpha) \\
X_i & \mid \theta \sim \text{CATEGORICAL}(\theta), \quad i = 1, \ldots, n
\end{align*}
\]

- We can depict this as a Bayes net using *plates*, which indicate replication.
Inference for θ with Dirichlet priors

- Data $X = (X_1, \ldots, X_n)$ generated i.i.d. from $\text{CATEGORICAL} (\theta)$
- Prior is $\text{DIR}(\alpha)$. By Bayes Rule, posterior is:

$$P(\theta | X) \propto P(X | \theta) P(\theta)$$

$$\propto \left(\prod_{j=1}^{m} \theta_j^{N_j} \right) \left(\prod_{j=1}^{m} \theta_j^{\alpha_j-1} \right)$$

$$= \prod_{j=1}^{m} \theta_j^{N_j + \alpha_j - 1}, \text{ so}$$

$$P(\theta | X) = \text{DIR}(N + \alpha)$$

- So if prior is Dirichlet with parameters α, posterior is Dirichlet with parameters $N + \alpha$

\Rightarrow can regard Dirichlet parameters α as “pseudo-counts” from “pseudo-data”
Point estimates from Bayesian posteriors

- A “true” Bayesian prefers to use the full $P(H|D)$, but sometimes we have to choose a “best” hypothesis.
- The **Maximum a posteriori** (MAP) or *posterior mode* is

$$\hat{H} = \arg\max_H P(H|D) = \arg\max_H P(D|H)P(H)$$

- The *expected value* $E_P[X]$ of X under distribution P is:

$$E_P[X] = \int x P(X = x) \, dx$$

The expected value is a kind of average, weighted by $P(X)$. The *expected value* $E[\theta]$ of θ is an estimate of θ.
The posterior mode of a Dirichlet

- The *Maximum a posteriori* (MAP) or *posterior mode* is:

 \[\hat{H} = \arg \max_H P(H|D) = \arg \max_H P(D|H) P(H) \]

- For Dirichlets with parameters \(\alpha \), the MAP estimate is:

 \[\hat{\theta}_j = \frac{\alpha_j - 1}{\sum_{j'=1}^m (\alpha_{j'} - 1)} \]

 so if the posterior is \(\text{DIR}(N + \alpha) \), the MAP estimate for \(\theta \) is:

 \[\hat{\theta}_j = \frac{N_j + \alpha_j - 1}{n + \sum_{j'=1}^m (\alpha_{j'} - 1)} \]

- If \(\alpha = 1 \) then \(\hat{\theta}_j = N_j / n \), which is also the *maximum likelihood estimate* (MLE) for \(\theta \)
The expected value of θ for a Dirichlet

- The *expected value* $E_P[X]$ of X under distribution P is:

$$E_P[X] = \int x P(X = x) \, dx$$

- For Dirichlets with parameters α, the expected value of θ_j is:

$$E_{\text{DIR}}(\alpha)[\theta_j] = \frac{\alpha_j}{\sum_{j'=1}^{m} \alpha_{j'}}$$

- Thus if the posterior is $\text{DIR}(N + \alpha)$, the expected value of θ_j is:

$$E_{\text{DIR}}(N + \alpha)[\theta_j] = \frac{N_j + \alpha_j}{n + \sum_{j'=1}^{m} \alpha_{j'}}$$

- $E[\theta]$ *smooths* or *regularizes* the MLE by adding pseudo-counts α to N
Sampling from a Dirichlet

\[\theta \mid \alpha \sim \text{DIR}(\alpha) \iff P(\theta \mid \alpha) = \frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j} - 1}, \text{ where:} \]

\[C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_{j})}{\Gamma(\sum_{j=1}^{m} \alpha_{j})} \]

- There are several algorithms for producing samples from \(\text{DIR}(\alpha) \). A simple one relies on the following result:
- If \(V_k \sim \text{GAMMA}(\alpha_k) \) and \(\theta_k = V_k / (\sum_{k'=1}^{m} V_{k'}) \), then \(\theta \sim \text{DIR}(\alpha) \)
- This leads to the following algorithm for producing a sample \(\theta \) from \(\text{DIR}(\alpha) \)
 - Sample \(v_k \) from \(\text{GAMMA}(\alpha_k) \) for \(k = 1, \ldots, m \)
 - Set \(\theta_k = v_k / (\sum_{k'=1}^{m} v_{k'}) \)
Conjugate priors

- If prior is $\text{DIR}(\alpha)$ and likelihood is i.i.d. $\text{CATEGORICAL}(\theta)$, then posterior is $\text{DIR}(N + \alpha)$
 \Rightarrow prior parameters α specify “pseudo-observations”

- A class \mathcal{C} of prior distributions $P(H)$ is \textit{conjugate} to a class of likelihood functions $P(D|H)$ iff the posterior $P(H|D)$ is also a member of \mathcal{C}

- In general, conjugate priors encode “pseudo-observations”
 - the difference between prior $P(H)$ and posterior $P(H|D)$ are the observations in D
 - but $P(H|D)$ belongs to same family as $P(H)$, and can serve as prior for inferences about more data D'
 \Rightarrow must be possible to encode observations D using parameters of prior

- In general, the likelihood functions that have conjugate priors belong to the \textit{exponential family}
Outline

Dirichlet priors for categorical and multinomial distributions

Comparing discrete and continuous hypotheses
Categorical and continuous hypotheses about coin flips

- Data: A sequence of coin flips $X = (X_1, \ldots, X_n)$
- Hypothesis h_1: X is generated from a fair coin, i.e., $\theta_H = 0.5$
- Hypothesis h_2: X is generated from a biased coin with unknown bias, i.e., $\theta_H \sim \text{DIR}(\alpha)$

\[P(H|X) = P(X|H) P(H) \]

- Assume $P(h_1) = P(h_2) = 0.5$
- $P(X|h_1) = 2^{-n}$, but what is $P(X|h_2)$?
- $P(X|h_2)$ is the probability of generating θ from $\text{DIR}(\alpha)$ and then generating X from $\text{CATEGORICAL}(\theta)$. But we don’t care about the value of θ, so we marginalize or integrate out θ

\[P(X|\alpha, h_2) = \int P(X, \theta|\alpha) d\theta \]
Posterior with Dirichlet priors

\[\begin{align*}
\theta & \mid \alpha \sim \text{DIR}(\alpha) \\
X_i & \mid \theta \sim \text{CATEGORICAL}(\theta), \ i = 1, \ldots, n
\end{align*} \]

- **Integrate out** \(\theta \) to calculate posterior probability of \(X \)

\[
P(X|\alpha) = \int P(X, \theta|\alpha) \, d\theta = \int P(X|\theta) P(\theta|\alpha) \, d\theta
\]

\[
= \int \left(\prod_{j=1}^{m} \theta_j^{N_j} \right) \left(\frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_j^{\alpha_j-1} \right) \, d\theta
\]

\[
= \frac{1}{C(\alpha)} \int \prod_{j=1}^{m} \theta_j^{N_j+\alpha_j-1} \, d\theta
\]

\[
= \frac{C(N + \alpha)}{C(\alpha)}, \text{ where } C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^{m} \alpha_j)}
\]

- **Collapsed Gibbs samplers** and the **Chinese Restaurant Process** rely on this result
Posteriors under h_1 and h_2
Understanding the posterior

\[
P(X|\alpha) = \frac{C(N + \alpha)}{C(\alpha)} \quad \text{where} \quad C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\alpha_\cdot)} \quad \text{and} \quad \alpha_\cdot = \sum_{j=1}^{m} \alpha_j
\]

\[
P(X|\alpha) = \left(\frac{\prod_{j=1}^{m} \Gamma(N_j + \alpha_j)}{\Gamma(n + \alpha_\cdot)} \right) \left(\frac{\Gamma(\alpha_\cdot)}{\prod_{j=1}^{m} \Gamma(\alpha_j)} \right)
\]

\[
= \left(\prod_{j=1}^{m} \frac{\Gamma(N_j + \alpha_j)}{\Gamma(\alpha_j)} \right) \left(\frac{\Gamma(\alpha_\cdot)}{\Gamma(n + \alpha_\cdot)} \right)
\]

\[
= \alpha_1 \times \frac{\alpha_1 + 1}{\alpha_\cdot + 1} \times \ldots \times \frac{\alpha_1 + N_1 - 1}{\alpha_\cdot + N_1 - 1} \times \frac{\alpha_2}{\alpha_\cdot + N_1} \times \frac{\alpha_2 + 1}{\alpha_\cdot + N_1 + 1} \times \ldots \times \frac{\alpha_2 + N_2 - 1}{\alpha_\cdot + N_1 + N_2 - 1} \times \ldots \times \frac{\alpha_m}{\alpha_\cdot + n - N_m - 1} \times \frac{\alpha_m + 1}{\alpha_\cdot + n - N_m} \times \ldots \times \frac{\alpha_m + N_m - 1}{\alpha_\cdot + n - 1}
\]
Exchangability

- The individual X_i in a Dirichlet-multinomial distribution $P(X|\alpha) = C(N + \alpha)/C(\alpha)$ are not independent
 - the probability of X_i depends on X_1, \ldots, X_{i-1}

$$P(X_n = k|X_1, \ldots, X_{n-1}, \alpha) = \frac{P(X_1, \ldots, X_n|\alpha)}{P(X_1, \ldots, X_{n-1}|\alpha)} = \frac{\alpha_k + N_k(X_1, \ldots, X_{n-1})}{\alpha \cdot n - 1}$$

- but X_1, \ldots, X_n are exchangable
 - $P(X|\alpha)$ depends only on N
 \Rightarrow doesn’t depend on the order in which the X occur

- A distribution over a sequence of random variables is exchangable iff the probability of all permutations of the random variables are equal
Summary so far

• Bayesian inference can compare models of different complexity (assuming we can calculate posterior probability)
 ▶ Hypothesis \(h_1 \) has no free parameters
 ▶ Hypothesis \(h_2 \) has one free parameter \(\theta_H \)

• Bayesian Occam’s Razor: “A more complex hypothesis is only preferred if its greater complexity consistently provides a better account of the data”

• But: \(h_1 \) makes every sequence equally likely. \(h_2 \) seems to dislike \(\theta_H \approx 0.5 \)

What’s going on here?
Posteriors with $n = 10, \alpha = 10$

\[P(N_{H}, N_{T} = 10 - N_{H} | \alpha = 10, h) \]

Diagram showing the probability distribution $P(N_{H}, N_{T} = 10 - N_{H} | \alpha = 10, h)$ for different values of N_{H}.

Graph labels:
- $h = h_{1}$ (red line)
- $h = h_{2}$ (green line)
Posteriors with $n = 20, \alpha = 1$

\[P(N_H, N_T = 20 - N_H | \alpha = 1, \beta) \]
Dirichlet-Multinomial distributions

- Only one sequence of 10 heads out of 10 coin flips
- but 252 different sequences of 5 heads out of 10 coin flips
- Each particular sequence of 5 heads out of 10 flips is unlikely, but there are so many of them that *the group is very likely*
- The number of ways of picking N outcomes out of n trials is:

$$\frac{n!}{\prod_{j=1}^{m} N_j!}$$

- The probability of observing N given θ is:

$$P(N|\theta) = \frac{n}{\prod_{j=1}^{m} N_j!} \prod_{j=1}^{m} \theta_j^{N_j}$$

- The probability of observing N given α is:

$$P(N|\alpha) = \frac{n}{\prod_{j=1}^{m} N_j!} \frac{C(N + \alpha)}{C(\alpha)}$$
Dirichlet-multinomial posteriors with $n = 10, \alpha = 1$
Dirichlet-multinomial posteriors with $n = 10$, varying α

$$\theta = 0.5$$
$$\alpha = 1$$
$$\alpha = 5$$
$$\alpha = (8, 2)$$
$$\alpha = 0.2$$
$$\alpha = 0.1$$
Dirichlet-multinomial posteriors with \(n = 20 \), varying \(\alpha \)
Dirichlet-multinomial posteriors with $n = 50$, varying α
Entropy vs. “rich get richer”

- Notation: If $X = (X_1, \ldots, X_n)$, then $X_{-j} = (X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_n)$

$$P(X_n = k|\alpha, X_{-n}) = \frac{N_k(X_{-n}) + \alpha_k}{\alpha + n - 1}$$

- The probability of generating an outcome is proportional to the number of times it has been seen before (including prior)

 \Rightarrow Next outcome is most likely to be most frequently generated previous outcome \Rightarrow **sparse outcomes**

- But there are far fewer sparse outcomes than non-sparse outcomes \Rightarrow entropy “prefers” non-sparse outcomes

- If $\alpha > 1$ then most likely outcomes are not sparse i.e., entropy is stronger than prior

- If $\alpha < 1$ then most likely outcomes are sparse i.e., prior is stronger than entropy