Introduction to NLP
Data-Driven Dependency Parsing

Prof. Reut Tsarfaty
Bar Ilan University
Dependency Trees: Introduction

- The purpose of Syntactic Structures:
 - Encode *Predicate Argument* Structures
 - *Who Does What to Whom?* (When, Where, Why...)

- Properties of Dependency Structures:
 - Defined as (labeled) binary relations between words
 - Reflect a long linguistic (European) tradition
 - Explicitly represent *Argument Structure*
Dependency Trees: Formal Definition

- A labeled dependency tree is a labeled directed tree T:
 - a set V of nodes, labeled with words (including ROOT)
 - a set A of arcs, labeled with dependency types
 - a linear precedence order $<$ on V

- Notation:
 - Arc $\langle v_1, v_2 \rangle$ connects head v_1 with dep v_2
 - Arc $\langle v_1, l, v_2 \rangle$ connects head v_1 with dep v_2 with label $l \in L$
 - A node v_0 (ROOT) serves as a unique root of the tree

![Dependency Tree Diagram]
Properties of Dependency Trees

A dependency T tree is:

- **connected:**
 For every node i there is a node j such that $i \to j$ or $j \to i$

- **acyclic:**
 If $i \to j$ then not $j \to^* i$

- **single head:**
 If $i \to j$ then not $k \to j$ for any $k \neq i$

- **projective:**
 If $i \to j$ then $i \to^* k$ for any k such that $i < k < j$
Non-Projective Dependency Trees

Figure 1: A projective dependency graph.

Figure 2: Non-projective dependency graph.
Non-Projective Dependency Trees

Many parsing algorithms are restricted to projective dependency trees.

Is this a problem?

Statistics from CoNLL-X Shared Task 2006

- NPD = Non-projective dependencies
- NPS = Non-projective sentences

<table>
<thead>
<tr>
<th>Language</th>
<th>% NPD</th>
<th>% NPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>5.4</td>
<td>36.4</td>
</tr>
<tr>
<td>German</td>
<td>2.3</td>
<td>27.8</td>
</tr>
<tr>
<td>Czech</td>
<td>1.9</td>
<td>23.2</td>
</tr>
<tr>
<td>Slovene</td>
<td>1.9</td>
<td>22.2</td>
</tr>
<tr>
<td>Portuguese</td>
<td>1.3</td>
<td>18.9</td>
</tr>
<tr>
<td>Danish</td>
<td>1.0</td>
<td>15.6</td>
</tr>
</tbody>
</table>

We will (mostly) focus on projective dependencies.
Draw the Lexical and Functional Dependency Trees for:

- The cat sat on the mat.
- The cat is on the mat.
- The cat is currently sitting on the mat.
- The cat, which I met, is sitting on the mat.
- The dog and the cat sat on the big and fluffy mat.
Do Try This At Home!

Draw the Lexical and Functional Dependency Trees for:

- The cat sat on the mat.
- The cat is on the mat.
- The cat is currently sitting on the mat.
- The cat, which I met, is sitting on the mat.
- The dog and the cat sat on the big and fluffy mat.

Sample Answers are on the website!
Our Plan:

Last time:
- Two kinds of formal syntactic representations
- Formally clean, complementary traits
- Theoretically (somewhat) compromised

This class:
- Models and Algorithms for
 - Phrase-Structure Parsing
 - **Dependency Parsing**
- Evaluation Metrics
Models for Dependency Parsing

The Parsing Objective:

\[y^* = \arg\max_{y \in \text{GEN}(x)} \text{Score}(y) \]

The Modeling Choices:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Dependency Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>?</td>
</tr>
<tr>
<td>Search</td>
<td>?</td>
</tr>
<tr>
<td>Train</td>
<td>?</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Generative vs. Discriminative Modeling

From a Probabilistic to a Discriminative Model:

\[t^* = \arg\max_{t \in \{t \mid Y(t) = x\}} P(t) \]

\[= \arg\max_{t \in \{t \mid Y(t) = x\}} \prod_{r \in t} P(r)^{\text{count}(r \in t)} \]

\[= \arg\max_{t \in \{t \mid Y(t) = x\}} -\log(\prod_{r \in t} P(r)^{\text{count}(r \in t)}) \]

\[= \arg\max_{t \in \{t \mid Y(t) = x\}} \sum_{r \in t} -\log P(r) \times \text{count}(r \in t) \]

\[= \arg\max_{t \in \{t \mid Y(t) = x\}} \sum_{f} \theta_f \times \text{count}(f) \]

\[= \arg\max_{t \in \{t \mid Y(t) = x\}} w^T \Phi(t) \]
Today: Introduction to Dependency Parsing

The Objective Function:

\[y^* = \arg\max_{y \in \text{GEN}(x)} w^T \Phi(x, y) \]

The Modeling Choices:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Dependency Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>?</td>
</tr>
<tr>
<td>Search</td>
<td>?</td>
</tr>
<tr>
<td>Train</td>
<td>?</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Today: Introduction to Dependency Parsing

The Objective Function:

\[y^* = \text{argmax}_{y \in \text{GEN}(x)} \mathbf{w}^T \Phi(x, y) \]

The Modeling Choices:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Dependency Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>?</td>
</tr>
<tr>
<td>Search</td>
<td>?</td>
</tr>
<tr>
<td>Train</td>
<td>?</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Today: Introduction to Dependency Parsing

The Objective Function:

\[y^* = \underset{y \in \text{GEN}(x)}{\text{argmax}} \ w^T \phi(x, y) \]

The Modeling Choices:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Dependency Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>?</td>
</tr>
<tr>
<td>Search</td>
<td>?</td>
</tr>
<tr>
<td>Train</td>
<td>?</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Today: Introduction to Dependency Parsing

The Objective Function:

\[y^* = \arg\max_{y \in GEN(x)} \{ w^T \phi(y) \} \]

The Modeling Choices:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Dependency Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>?</td>
</tr>
<tr>
<td>Search</td>
<td>?</td>
</tr>
<tr>
<td>Train</td>
<td>?</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Our Modeling Tasks:

\[t = \arg\max_{t \in GEN(x)} w^T \Phi(t) \]

- **GEN**: How do we generate all \(t \)?
- **argmax**: How do we search through all \(t \)?
- **\(\Phi \)**: How do we featurize \(\Phi(t) \)?
- **\(w \)**: How do we learn the weights \(w \)?
A Note on Evaluation Metrics

- **Unlabeled Attachment Scores (UAS)**
 The percentage of identical arcs from the total number or arcs in the tree
 \[UAS = \frac{A_{\text{intersect}(i,j)}}{n} \]

- **Labeled Attachment Scores (LAS)**
 The percentage of identical arcs with identical labels from the total number or arcs in the tree
 \[LAS = \frac{A_{\text{intersect}(i,l,j)}}{n} \]

- **Root Accuracy**
 The percentage of sentences with correct root dependency

- **Exact Match**
 The percentage of sentences with parses identical to gold
Modeling Methods

- **Conversion-Based**
 - Convert Phrase-Structure to Dependency Trees

- **Grammar-Based**
 - Generative methods based on PCFGs

- **Graph-Based**
 - Globally Optimised, Restricted features

- **Transition-Based**
 - Locally Optimal, Unrestricted features

- **Neural-Based**
Modeling Methods (1)

- **Conversion-Based**: Convert PS trees Using a Head Table
- Grammar-Based
- Graph-Based
- Transition-Based
Conversion-Based: Convert PS trees Using a Head Table

VP	→	VBD VBN MD VBZ VB VBG VBP VP
NP	←	NN NX JJR CD JJ JJS RB
ADJP	←	NNS QP NN ADVP JJ VBN VBG
ADVP	→	RB RBR RBS FW ADVP TO CD JJR
S	←	VP S SBAR ADJP UCP NP
SQ	←	VBZ VBD VBP VB MD PRD VP SQ
SBAR	←	S SQ SINV SBAR FRAG IN DT
Modeling Methods (2)

- Conversion-Based
 - Grammar-Based
 - Graph-Based
 - Transition-Based
Grammar-Based Dependency Parsing

The Basic Idea

- Treat bi-lexical dependencies as constituents
- Decode using chart based algorithm (e.g., CKY)
- Learn using standard MLE methods
- Evaluate over the set of resulting dependencies as usual
Grammar-Based Dependency Parsing

The Basic Idea
- Treat bi-lexical dependencies as constituents
- Decode using chart based algorithm (e.g., CKY)
- Learn using standard MLE methods
- Evaluate over the set of resulting dependencies as usual

Relevant Studies
- Original version: [Hays 1964]
- Link Grammar: [Sleator and Temperley 1991]
- Earley-style left-corner: [Lombardo and Lesmo 1996]

http://cs.jhu.edu/~jason/papers/eisner.coling96.pdf
The Objective Function:

\[t^* = \arg\max_{t \in \text{GEN}(x)} P(t) \]

The Modeling Choices:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Dependency Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>PCFG</td>
</tr>
<tr>
<td>Decoder</td>
<td>Adapted CKY</td>
</tr>
<tr>
<td>Trainer</td>
<td>Smoothed MLE</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Modeling Methods (3)

✓ Conversion-Based
✓ Grammar-Based
▶ Graph-Based
▶ Transition-Based
Graph-Based Dependency Parsing

The Basic Idea

- Define a global Arc-Factored model
- Treat the search as an MST problem
- Treat the learning as a classification problem
- Evaluate over the set of gold dependencies as usual
Graph-Based Dependency Parsing

The Basic Idea

- Define a global Arc-Factored model
- Treat the search as an MST problem
- Treat the learning as a classification problem
- Evaluate over the set of gold dependencies as usual
Step 1: Defining the Arc Factored Model

\[t^* = \arg \max_{t \in \text{GEN}(V)} \Phi(t) = \arg \max_{t \in \text{GEN}(V)} \sum_{(i \rightarrow j) \in t} \phi_{\text{arc}}(i \rightarrow j) \]
Graph-Based Dependency Parsing

Step 2: Defining Feature Templates

- **ϕ_i** (had, OBJ, effect)
- **w_i**
- **unihead**
- **unidep**
- **uniheadpos**
- **unideppos**
- **bigram**
- **bigrampos**
- **bigramlabel**
- **bigramposlabel**
- **inbetween**
Graph-Based Dependency Parsing

Step 2: Defining Feature Templates

<table>
<thead>
<tr>
<th>Name</th>
<th>$\phi_i(\text{had,OBJ, effect})$</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigram head</td>
<td>“had”</td>
<td>w_{unihead}</td>
</tr>
<tr>
<td>Unigram dep</td>
<td>“effect”</td>
<td>w_{unidep}</td>
</tr>
<tr>
<td>Unigram head pos</td>
<td>VB</td>
<td>$w_{\text{uniheadpos}}$</td>
</tr>
<tr>
<td>Unigram dep pos</td>
<td>NN</td>
<td>w_{unidepos}</td>
</tr>
<tr>
<td>Bigram head-dep</td>
<td>“had-effect”</td>
<td>w_{bigram}</td>
</tr>
<tr>
<td>Bigram headpos-depos</td>
<td>VB-NN</td>
<td>$w_{\text{bigrampos}}$</td>
</tr>
<tr>
<td>Labeled Bigram head-dep</td>
<td>“had-OBJ-effect”</td>
<td>$w_{\text{bigramlabel}}$</td>
</tr>
<tr>
<td>Labeled Bigram headpos-depos</td>
<td>VB-obj-NN</td>
<td>$w_{\text{bigramposlabel}}$</td>
</tr>
<tr>
<td>In-Between pos</td>
<td>VB-IN-NN</td>
<td>$w_{\text{inbetween}}$</td>
</tr>
</tbody>
</table>
Step 3: Online Learning

Perceptron

1. \(w \leftarrow 0 \)
2. for \(t = 1 \ldots T, i = 1 \ldots N \) do
3. \(z_i = \arg \max_{y \in \mathcal{Y}} g(y; x_i, w) \)
4. \(\text{gold} \leftarrow \sum \{a | y_i(a) = 1\} \phi(x_i, a) \)
5. \(\text{best} \leftarrow \sum \{a | z_i(a) = 1\} \phi(x_i, a) \)
6. \(w \leftarrow w + \text{gold} - \text{best} \)
7. return \(w \)
Step 3: Online Learning

Perceptron

▶ Theory:
- If possible, will learn to separate the correct structure from the incorrect structures
- I.e. find \(w \) that assigns higher scores to \(y_i \) then any \(y \in \mathcal{Y} \)

▶ Practice:
- Training requires many inferences
- Computing feature values is time consuming
- Averaged Perceptron variant preferred
Graph-Based Dependency Parsing

Step 4: Finding the Max-Spanning Tree

The Chu-Liu-Edmonds Algorithm

Runtime complexity: $O(n^2)$
Graph-Based Dependency Parsing

Step 3: Online Learning
Perceptron/MIRA (Margin Infused Relaxed Algorithm)

Step 4: Max-Spanning Tree Decoding
The Chu-Liu-Edmonds Algorithm (CLE)

http://repository.upenn.edu/cgi/viewcontent.cgi?action=1056&context=cis_reports
Graph-Based Dependency Parsing

The Objective Function:

\[t^* = \arg\max_{\{t|\in GEN(x)\}} \sum_{a\in arcs(t)} w^T \Phi(a) \]

The Modeling Choices:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Dependency Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Graph-Based</td>
</tr>
<tr>
<td></td>
<td>Arc-Factored</td>
</tr>
<tr>
<td>Decoder</td>
<td>MST/CLE (O(n^2))</td>
</tr>
<tr>
<td>Trainer</td>
<td>Perceptron/MIRA</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Modeling Methods (4)

✓ Conversion-Based
✓ Grammar-Based
✓ Graph-Based
► Transition-Based
Transition-Based Dependency Parsing

The Basic Idea

- Define a transition system
- Define an Oracle Algorithm for Decoding
- Approximate the Oracle Algorithm via Learning
- Evaluate over Dependency Arcs as Usual

http://stp.lingfil.uu.se/~nivre/docs/BeyondMaltParser.pdf
Transition-Based Dependency Parsing

Defining Configurations
A parser **Configuration** is a triplet \(c = (S, Q, A) \), where

- \(S = \) a stack \([..., w_i]_S\) of partially processed nodes
- \(Q = \) a queue \([w_j, ...]_Q\) of remaining input nodes
- \(A = \) a set of labeled arcs \((w_i, l, w_j)\)

Initialization:
- \(c_0 = ([w_0]_S, [w_1, ..., w_n]_Q, \{\}) \)

 Note: \(w_0 = \text{ROOT} \)

Termination:
- \(c_t = ([w_0]_S, [], _Q, A) \)
Transition-Based Dependency Parsing

Defining Transitions

▶ **Shift:**
\[
([...]_s, [w_i, ...]_q, A) \rightarrow ([..., w_i]_s, [...]_q, A)
\]

▶ **Arc-Left(\(l\)):**
\[
([..., w_i, w_j]_s, Q, A) \rightarrow ([..., w_j]_s, Q, A \cup (w_j, l, w_i))
\]

▶ **Arc-Right(\(l\)):**
\[
([..., w_i, w_j]_s, Q, A) \rightarrow ([..., w_i]_s, Q, A \cup (w_i, l, w_j))
\]
Transition-Based Dependency Parsing

Demo Deck
Transition-Based Dependency Parsing

Deterministic Parsing

Given an oracle O that correctly predicts the next transition $O(c)$, parsing is deterministic:

$$\text{PARSE}(w_1, ..., w_n)$$

1. $c \leftarrow ([w_0]_S, [w_1, ..., w_n]_Q)$
2. while $Q_c \neq []$ or $|S_c| = 1$
3. $t \leftarrow O(c)$
4. $c \leftarrow t(c)$
5. return $T = (w_0, w_1, ..., w_n, A_c)$
Transition-Based Dependency Parsing

Data-Driven Parsing

We approximate the Oracle O using a Classifier $\text{Predict}(c)$ that predicts the next transition using Features of c, $\text{feats}(c)$.

PARSE(w_1, \ldots, w_n)
1. $c \leftarrow ([w_0]_S, [w_1, \ldots, w_n]_Q,)$
2. while $Q_c \neq []$ or $|S_c| = 1$
3. $t \leftarrow \text{Predict}(w, \text{feats}(c))$
4. $c \leftarrow t(c)$
5. return $T = (w_0, w_1, \ldots, w_n, A_c)$
Transition-Based Dependency Parsing

Feature Engineering

\[\text{[ROOT, had, little, effect]}_s \ [\text{on, financial, markets, .}]_q \]

\[\text{ROOT Economic news had little effect on financial markets .} \]
Transition-Based Dependency Parsing

Feature Engineering

\[
\text{[ROOT, had, little, effect]}_S \ [\text{on, financial, markets, .}]_Q
\]

<table>
<thead>
<tr>
<th>name</th>
<th>feature</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>S[0] word</td>
<td>effect</td>
<td>(w_1)</td>
</tr>
<tr>
<td>S[0] pos</td>
<td>NN</td>
<td>(w_2)</td>
</tr>
<tr>
<td>S[1] word</td>
<td>little</td>
<td>(w_3)</td>
</tr>
<tr>
<td>S[1] pos</td>
<td>JJ</td>
<td>(w_4)</td>
</tr>
<tr>
<td>Q[0] word</td>
<td>on</td>
<td>(w_5)</td>
</tr>
<tr>
<td>Q[0] pos</td>
<td>P</td>
<td>(w_6)</td>
</tr>
<tr>
<td>Q[1] word</td>
<td>financial</td>
<td>(w_7)</td>
</tr>
<tr>
<td>Q[1] pos</td>
<td>JJ</td>
<td>(w_8)</td>
</tr>
<tr>
<td>Root(A) word</td>
<td>had</td>
<td>(w_9)</td>
</tr>
<tr>
<td>Root(A) POS</td>
<td>VB</td>
<td>(w_{10})</td>
</tr>
<tr>
<td>s[0]-S[1]</td>
<td>effect (\rightarrow) little</td>
<td>(w_{11})</td>
</tr>
<tr>
<td>s[1]-S[0]</td>
<td>little (\rightarrow) effect</td>
<td>(w_{12})</td>
</tr>
</tbody>
</table>
An Oracle O can be approximated by a (linear) classifier:

$$\text{Predict}(t) = \arg \max_t w \Phi(c, t)$$

History-Based Features $\Phi(c, t)$
- Features over input words relative to S and Q
- Features over the (partial) dependency tree defined by A
- Features over the (partial) transition sequence so far

Learning w from Treebank Data
- Reconstruct Oracle sequence for each sentence
- Construct training data set $D = \{ (c, t) | O(c) = t \}$
- Maximize accuracy of local predictions $O(c) = t$
Transition-Based Dependency Parsing

Online Learning
Online learning, Perceptron

Training data: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{\mathcal{T}}$

1. $w = 0$
2. for $n : 1..N$
3. for $t : 1..T$
4. Let $y' = \arg \max_y w \cdot f(x_t, y)$
5. if $y' \neq y_t$
6. $w = w + f(x_t, y_t) - f(x_t, y')$
7. return w

Step 4: Greedy Decoding
Greedy: At each step, select the maximum scoring transition.
Reflections on Dependency Parsing

The Objective Function:

\[t^* = \arg\max_{t \in GEN(x)} w^T \Phi(t) \]

The Modeling Choices:

<table>
<thead>
<tr>
<th></th>
<th>MALTParser</th>
<th>MSTParser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Dependency Trees</td>
<td>Dependency Trees</td>
</tr>
<tr>
<td>Model</td>
<td>Discriminative</td>
<td>Discriminative</td>
</tr>
<tr>
<td></td>
<td>Transition-Based</td>
<td>Graph-Based MST</td>
</tr>
<tr>
<td>Decoder</td>
<td>Greedy Linear</td>
<td>Exhaustive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polynomial</td>
</tr>
<tr>
<td>Trainer</td>
<td>Online/Perceptron</td>
<td>Online/MIRA</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Attachment Scores</td>
<td>Attachment Scores</td>
</tr>
</tbody>
</table>
Reflections on Dependency Parsing

- CoNLL 2006 shared task [Buchholz and Marsi 2006]
 - *MaltParser* [Nivre et al. 2006] – deterministic, local learning
 - *MSTParser* [McDonald et al. 2006] – exact, global learning
 - Same average parsing accuracy over 13 languages
 - **High**: English and similar. **Low**: Morphologically rich

- Comparative error analysis [McDonald and Nivre 2007]:
 - *MaltParser* more accurate on short dependencies and disambiguation of core grammatical functions
 - *MSTParser* more accurate on long dependencies and dependencies near the root of the tree

- Hypothesized explanation for the results:
 - *MALT*: Rich features counteracted by error propagation
 - *MST*: Local features miss contextual information
 - Voting/Stacking: improves results for both
Recent Advances in Dependency Parsing

- Graph-based:
 - Larger factors instead of single arcs
- Transition-Based:
 - Beam Search instead of Linear Greedy Search
- Neural-Based:
 - Reuse and Revise Existing Architectures, OR
 - Use NMT Sequence-to-sequence with Attention
Recent Advances: Neural-Network Models (1)

The Basic Claim: Both graph based and transition-based models benefit from the move to Neural Networks.

► Same overall approach and algorithm as before, but:
 → Replace linear classifier with non-linear to MLP.
 → Use pre-trained word embeddings.
 → Replace feature-extractor with Bi-LSTM.

► Further explorations:
 → Semi-supervised learning.
 → Multi-task learning

► Remaining Challenges:
 → Out-of-domain parsing (e.g. twitter)
 → Parsing Morphologically-Rich Languages (e.g. Hebrew)
The Basic Idea: Pretend that both the sentence and the tree are sequences and use an NMT model to translate one to the other

The cat sleeps on the mat

((The cat) (sleeps (on (the mat))))

More on Neural Models for sequences in DL4TEXT.
Summarising Dependency Parsing

- Dependency trees as labeled bi-lexical dependencies
 - Data-Driven parsing trained over Dependency Treebanks

- Varied Methods:
 - Conversion-Based (Rules)
 - Grammar-Based (Probabilistic)
 - Graph-Based (Linear, Globally Optimized)
 - Transition-Based (Linear, Locally Optimized)

- Neural Network models work the same but:
 - Non-linear objective *eg.* MLP
 - Better word-representations *eg.* Word Embeddings
 - Better (automatic) feature-extraction *eg.* BiLSTM
Summarising Dependency Parsing

- Dependency trees as labeled bi-lexical dependencies
 - Data-Driven parsing trained over Dependency Treebanks

- Varied Methods:
 - Conversion-Based (Rules)
 - Grammar-Based (Probabilistic)
 - Graph-Based (Linear, Globally Optimized)
 - Transition-Based (Linear, Locally Optimized)

- Neural Network models work the same but:
 - Non-linear objective *eg.* MLP
 - Better word-representations *eg.* Word Embeddings
 - Better (automatic) feature-extraction *eg.* BiLSTM

- English is “solved” — What about other languages?
 - Stanford CoreNLP https://corenlp.run
 - The UD Initiative: https://universaldependencies.org/
 - UDPipe: http://lindat.mff.cuni.cz/services/udpipe/
 - ONLP: nlp.biu.ac.il/~rtsarfaty/onlp/hebrew/
NLP@BIU: Where We’re At

So Far

✓ Part 1: Introduction (classes 1-2)
✓ Part 2: Words/Sequences (classes 3-4)
✓ Part 3: Sentences/Trees (classes 5-6)
→ Part 4: Meanings (Prof. Ido Dagan, starting class 7)

To Be Continued...