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Abstract. A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering prop-
erty as those having bounded continuous images in the Baire space. We give a similar characteriza-
tion for spaces X which have the Hurewicz property hereditarily.

We proceed to consider the class of Arhangel’skiı̆ α1 spaces, for which every sheaf at a point can
be amalgamated in a natural way. Let Cp(X) denote the space of continuous real-valued functions
on X with the topology of pointwise convergence. Our main result is that Cp(X) is an α1 space if,
and only if, each Borel image of X in the Baire space is bounded. Using this characterization, we
solve a variety of problems posed in the literature concerning spaces of continuous functions.
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1. Introduction

We are mainly concerned with spaces X which are (homeomorphic to) sets of irrational
numbers, and we recommend adopting this restriction for clarity. Our results (and proofs)
apply to all topological spaces X in which each open set is a union of countably many
clopen sets, and the spaces considered are assumed to have this property.1

Fix a topological space X. Let A ,B be families of covers of X. The space X may or
may not have the following property [35].

Ufin(A ,B): Whenever U1,U2, . . . ∈ A and none contains a finite subcover, there exist
finite sets Fn ⊆ Un, n ∈ N, such that {

⋃
Fn : n ∈ N} ∈ B.

Let O denote the collection of all countable open covers of X.2 A cover U of X is point-
cofinite if U is infinite and each x ∈ X is a member of all but finitely many members
of U .3 Let 0 denote the collection of all open point-cofinite covers of X. Motivated by
studies of Menger [26], Hurewicz [19] introduced the Hurewicz property Ufin(O, 0).

Hurewicz [19] essentially obtained the following combinatorial characterization of
Ufin(O, 0) (see Recław [29]). For f, g ∈ NN, f ≤∗ g means f (n) ≤ g(n) for all but
finitely many n. A subset Y of NN is bounded if there is g ∈ NN such that f ≤∗ g for all
f ∈ Y .

Theorem 1 (Hurewicz). X satisfies Ufin(O, 0) if, and only if, every continuous image
of X in NN is bounded.

This characterization has found numerous applications—see [38, 24, 41] and references
therein. We give a similar characterization for hereditarily Hurewicz spaces, that is,
spaces X such that each subspace of X satisfies Ufin(O, 0).

The property of being hereditarily Hurewicz was studied in, e.g., [15, 28, 27]. Rubin
introduced a property of subsets of R such that the existence of a set with this property is
equivalent to the possibility of a certain construction of boolean algebras [31]. Miller [27]
proved that the Rubin spaces are exactly the hereditarily Hurewicz spaces.

The property of being hereditarily Hurewicz also manifests itself as follows: A set
X ⊆ R is a σ ′ space [32] if for each Fσ set E, there is an Fσ set F such that E ∩ F = ∅
and X ⊆ E ∪ F . This property was effectively used in studies of generalized metric
spaces [13]. Recently, Sakai proved that X is a σ ′ space if, and only if, X is hereditarily
Hurewicz (Theorem 6 below).

There exist additional classes of hereditarily Hurewicz spaces in the literature. We
describe some of them.

A topological space is Fréchet if each point in the closure of a subset of the space
is a limit of a convergent sequence of points from that subset. The following concepts,

1 Every perfectly normal space (open sets are Fσ ) with upper inductive dimension 0 (disjoint
closed sets can be separated by a clopen set) has the required property. Thus, the spaces considered
in the references also have the required property.

2 If X is Lindelöf, we can consider arbitrary open covers of X.
3 Traditionally, point-cofinite covers were called γ -covers [17].
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due to Arhangel’skiı̆ [1, 2], are important in determining when a product of Fréchet
spaces is Fréchet. Let Y be a general topological space (not necessarily Lindelöf or zero-
dimensional). A sheaf at a point y ∈ Y is a family of sequences, each converging to y. To
avoid trivialities, we consider only sequences of distinct elements. We say that a countable
set A converges to y if some (equivalently, each) bijective enumeration of A converges
to y. The space Y is an α1 space if for each y ∈ Y , each countable sheaf {An : n ∈ N} at y
can be amalgamated as follows: There are cofinite subsets Bn ⊆ An, n ∈ N, such that the
set B =

⋃
n Bn converges to y. The references dealing with α1 spaces are too numerous

to be listed here; see [40] and the references therein for a partial list.
Fix a space X. Denote by Cp(X) the family of all continuous real-valued functions

on X, viewed as a subspace of the Tychonoff product RX. A sequence of results by
Bukovský–Recław–Repický [10], Recław [30], Sakai [33], and Bukovský–Haleš [9], cul-
minated in the result that if Cp(X) is an α1 space, then X is hereditarily Hurewicz. Our
main result is that if Cp(X) is an α1 space, then each Borel image of X in NN is bounded.
It is easy to see that the converse implication also holds, and we obtain a powerful char-
acterization of spaces X such that Cp(X) is an α1 space.

Historically, the realization that if Cp(X) is an α1 space then X is hereditarily Hu-
rewicz goes through QN spaces [10]: Let Y be a metric space. A function f : X → Y

is a quasi-normal limit of functions fn : X → Y if there are positive reals εn, n ∈ N,
converging to 0 such that for each x ∈ X, d(fn(x), f (x)) < εn for all but finitely many n.
A topological space X is a QN space if whenever 0 is a pointwise limit of a sequence of
continuous real-valued functions on X, then 0 is a quasi-normal limit of that sequence.
QN spaces are studied in, e.g., [10, 30, 36, 28, 11, 33, 9]. In [33, 9] it was shown that X is
a QN space if, and only if, Cp(X) is an α1 space. Thus, QN spaces are also characterized
by having bounded Borel images in NN.

We use our main theorem to show that quite a few additional properties studied in
the literature are equivalent to having bounded Borel images in NN, and consequently
solve a variety of problems posed in the literature. To make the paper self-contained and
accessible to a wide audience, we supply proofs for all needed results. Often, our proofs
of known results are slightly simpler than those available in the literature.

2. A characterization of hereditarily Hurewicz spaces

Let N = N ∪ {∞} be the one-point compactification of N, and endow NN
with the Ty-

chonoff product topology. An element f ∈ NN
is eventually finite if there is m such that

f (n) < ∞ for each n ≥ m. Let EF be the subspace of NN
consisting of all eventually

finite elements of NN
. The relation ≤∗ extends to EF in the natural way.

Theorem 2. X is hereditarily Ufin(O, 0) if, and only if, every continuous image of X in
EF is bounded.
Proof. (⇒) Assume that 9 : X → EF is continuous. For each n, define the following
(Gδ) subset of 9[X]:

Gn = {f ∈ 9[X] : (∀m ≥ n) f (m) <∞}.
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Let T n : Gn → NN be the shift transformation defined by T n(f )(m) = f (m + n) for
all m.

For each n, Xn = 9−1[Gn] ⊆ X, and therefore Xn satisfies Ufin(O, 0). By Theo-
rem 1, T n[9[Xn]] = T n[Gn] is a bounded subset of NN. Thus, Gn is a bounded subset
of EF, and therefore so is 9[X] =

⋃
nGn.

(⇐) First, note that Hurewicz’s Theorem 1 and our assumption on X imply that X
satisfies Ufin(O, 0).

Lemma 3. If each Gδ subset of X satisfies Ufin(O, 0), then X is hereditarily Ufin(O, 0).

Proof. Let Y ⊆ X. Assume that Un, n ∈ N, are covers of Y by open subsets of X, which
do not contain finite subcovers. Each Un is an open cover of G =

⋂
n

⋃
Un ⊇ Y , and

has no finite subcover of G. As G is a Gδ subset of X, it satisfies Ufin(O, 0). Thus, there
are finite Fn ⊆ Un, n ∈ N, such that {

⋃
Fn : n ∈ N} is a point-cofinite cover of G, and

therefore of Y . ut

Assume that G is a Gδ subset of X.

Lemma 4 (Sakai [33]). For eachGδ subsetG ofX, there is an open point-cofinite cover
{Un : n ∈ N} of X such that G =

⋂
n Un.

Proof. We have Gc
=
⋃
n Cn with each Cn closed. If A is closed and B is open, then

B is a union of countably many disjoint clopen sets, and therefore A ∩ B is a union of
countably many disjoint closed sets. Thus, each of the disjoint sets Cn \(C1∪· · ·∪Cn−1),
n ∈ N, is a union of countably many disjoint closed sets. Hence, Gc

=
⋃
n C̃n where the

sets C̃n are closed and disjoint, and thereforeG =
⋂
n C̃

c
n, where {C̃c

n : n ∈ N} is an open
point-cofinite cover of X. ut

So, let {Un : n ∈ N} be an open point-cofinite cover of X such that G =
⋂
n Un. For

each n, let Un =
⋃
m C

n
m, a union of disjoint clopen sets. Define 9 : X→ EF by

9(x)(n) =

{
m, m ∈ N, x ∈ Cnm,
∞, x /∈ Un.

As {Un : n ∈ N} is a point-cofinite cover of X, 9(x) is eventually finite for each x ∈ X.
9 is continuous: A basic open set in EF has the form

∏
n Vn such that there are finite

I0, I1 ⊆ N and elements mn, n ∈ I0 ∪ I1, for which: For each n ∈ I0, Vn = {mn}, for
each n ∈ I1, Vn = {mn, mn + 1, . . .} ∪ {∞}, and for each n /∈ I0 ∪ I1, Vn = N ∪ {∞}.
Now,

9−1
[∏
n∈N

Vn

]
=

⋂
n∈I0

Cnmn ∩
⋂
n∈I1

(
X \

( ⋃
k<mn

Cnk

))
is open.

Thus, 9[X] is bounded by some g ∈ NN. Now,

G = {x ∈ X : (∀n) 9(x)(n) <∞} = 9−1[{f ∈ NN : f ≤∗ g}].

The set {f ∈ NN : f ≤∗ g} is an Fσ subset of EF. Indeed, let {gn : n ∈ N} enumerate
all elements of NN which are eventually equal to g. Then {f ∈ NN : f ≤∗ g} =
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⋃
n{f ∈ EF : f ≤ gn}. Thus, G is an Fσ subset of X. As Ufin(O, 0) is hereditary for

closed subsets and preserved by countable unions, G satisfies Ufin(O, 0). ut

Recall that a topological spaceX is a σ space if eachGδ subset ofX is an Fσ subset ofX.
The proof of Theorem 2 actually shows that (2)⇒(3), (2)⇒(1), (3)⇒(4), and (4)⇒(2)
in the following theorem (and therefore establishes it).

Theorem 5. The following are equivalent:

(1) X is hereditarily Ufin(O, 0).
(2) Each Gδ subset of X satisfies Ufin(O, 0).
(3) Every continuous image of X in EF is bounded.
(4) X satisfies Ufin(O, 0) and is a σ space. ut

The implication (1)⇒(4) in Theorem 5 was first proved by Fremlin and Miller [15].
The implication (4)⇒(1) can be alternatively deduced from Theorem 3.12 of [11] and
Corollary 10 of [8]. An additional equivalent formulation was discovered by Sakai. Recall
the definition of σ ′ space from the introduction (page 354).

Theorem 6 (Sakai). Let X ⊆ R. Then X is a σ ′ space if, and only if, X is hereditarily
Ufin(O, 0).

Proof. This follows from Theorem 5.7 of [22]: X satisfies Ufin(O, 0) if, and only if, for
each Gδ set G ⊆ R containing X, there is an Fσ set F ⊆ R such that X ⊆ F ⊆ G.

(⇒) As being a σ ′ space is hereditary, it suffices to show that X satisfies Ufin(O, 0).
Indeed, for each Gδ set G ⊆ R containing X, let E = R \G, and take an Fσ set F ⊆ R
disjoint from E such that X ⊆ E ∪ F . Then X ⊆ F ⊆ G.

(⇐) Let E ⊆ R be Fσ . As X \ E satisfies Ufin(O, 0) and is a subset of the Gδ set
R \ E, there is an Fσ set F ⊆ R such that X \ E ⊆ F ⊆ R \ E. Then E ∩ F = ∅ and
X ⊆ E ∪ F . ut

To indicate the potential usefulness of Theorem 2, we use it to give slightly more direct
proofs of two known theorems. Recall the definition of QN spaces from the introduction
(page 355).

Theorem 7 (Recław [30]). If X is a QN space, then X is hereditarily Ufin(O, 0).

Proof. Let Y ⊆ EF be a continuous image of X. Then Y is a QN space. By Theorem 2,
it suffices to show that Y is bounded. For each n, and each y ∈ Y , define

fn(y) =
1

min y−1(n)
,

using the natural conventions that min ∅ = ∞ and 1/∞ = 0. Then limn fn(y) = 0 for all
y ∈ Y . As Y is a QN space, there are positive εn, n ∈ N, dominating this convergence.
For each k, let

Yk = {y ∈ Y : (∀n ≥ k) fn(y) < εn}.

Then Y =
⋃
k Yk . We will show that each Yk is bounded.
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Fix k. Take an increasing g ∈ NN such that g(1) = k and for each n, εm < 1/n for all
m ≥ g(n). Then Yk is bounded by g: Let y ∈ Yk . Fix n such that y(n) <∞. If y(n) ≤ k,
then y(n) ≤ g(1) ≤ g(n). Otherwise, y(n) > k, and since y ∈ Yk , fy(n)(y) < εy(n).
Thus,

1
n
≤

1
min y−1(y(n))

= fy(n)(y) < εy(n),

and therefore y(n) cannot be greater than g(n). ut

Theorem 8 (Recław [30]). If X is a QN space, then X is a σ space.

Proof. Apply Theorems 5 and 7. ut

The following sections give a deeper reason for the last two theorems.

3. Bounded Borel images

Our main goal in this section is to establish the equivalence in the following Theorem 9.
The implication (2)⇒(1) in this theorem is Proposition 9 of Scheepers [36]. The im-
plication (1)⇒(2) is the more difficult one, and will be proved in a sequence of related
results.

Theorem 9. The following are equivalent:

(1) Cp(X) is an α1 space.
(2) Each Borel image of X in NN is bounded.

Proof. (2)⇒(1) Consider a sheaf {An : n ∈ N} at f ∈ Cp(X). For each n, enumerate
An = {f

n
m : m ∈ N} bijectively. Define a Borel function 9 : X→ NN by

9(x)(n) = min{k : (∀m ≥ k) |f nm(x)− f (x)| ≤ 1/n}.

Let g ∈ NN bound 9[X], and take the amalgamation B =
⋃
n{f

n
m : m ≥ g(n)}. Then B

converges to f .
(1)⇒(2) Assume that Cp(X) is an α1 space. Then the subspace Cp(X, {0, 1}) of

Cp(X), consisting of all continuous functions f : X → {0, 1}, is an α1 space.4 Each
element of Cp(X, {0, 1}) has the form χU , the characteristic function of a clopen set
U ⊆ X. Immediately from the definition, a sequence χUn of elements of Cp(X, {0, 1})
converges pointwise to the constant function 1 if, and only if, {Un : n ∈ N} is a clopen
point-cofinite cover of X. This gives the following, which is due to Bukovský–Haleš (cf.
[9, Theorem 17]), and independently Sakai (cf. [33, Theorem 3.7]).

Lemma 10. The following are equivalent:

(1) Cp(X, {0, 1}) is an α1 space.
(2) For each family {Un : n ∈ N} of pairwise disjoint clopen point-cofinite covers of X,

there are cofinite Vn ⊆ Un, n ∈ N, such that
⋃
n Vn is a point-cofinite cover ofX. ut

4 In fact, by the methods of Gerlits–Nagy [18], the converse implication also holds. This fact will
not be used in our proof.
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A function f with domain X is a discrete limit of functions fn, n ∈ N, if for each x ∈ X,
fn(x) = f (x) for all but finitely many n.

Each bijectively enumerated family U = {Un : n ∈ N} of subsets of a set X induces a
Marczewski map U : X→ P(N) defined by

U(x) = {n ∈ N : x ∈ Un}

for each x ∈ X. The main step in our proof is the following.

Lemma 11. Assume that Cp(X, {0, 1}) is an α1 space, and U = {Un : n ∈ N} is a
bijectively enumerated family of open subsets of X. Then the Marczewski map U : X →
P(N) is a discrete limit of continuous functions.

Proof. First, consider the case where for each n, Un is not clopen.
For each n, write Un as a union

⋃
m C

n
m of nonempty disjoint clopen sets. We may

assume that the partitions are disjoint: Inductively, for each n = 2, 3, . . . , consider the
elements Cnm, m ∈ N, of the nth partition. For each m, if Cnm appears in the partition
of Uk for some k < n, merge (in the nth partition) Cnm with some other element of the
nth partition. Continue in this manner until the nth partition is disjoint from all previous
partitions.

Thus, the families Un = {(Cnm)c : m ∈ N} are disjoint clopen point-cofinite covers
of X. By Lemma 10, there are kn, n ∈ N, and subsets Vn = {(Cnm)c : m ≥ kn} ⊆ Un,
n ∈ N, such that

⋃
n Vn is a point-cofinite cover of X. In other words,

V =
{ ∞⋂
m=kn

(Cnm)
c : n ∈ N

}
is a point-cofinite cover of X.

For each n,m, let

Unm =

max{m,kn}⋃
i=1

Cni .

For each m, define 9m : X→ P(N) by

9m(x) = {n : x ∈ Unm}.

As eachUnm is clopen,9m is continuous. It remains to prove that, viewed as a Marczewski
map, U is a discrete limit of the maps 9m, m ∈ N.

Fix x ∈ X. Let N be such that x ∈
⋂
∞

m=kn
(Cnm)

c for all n ≥ N . For each n < N with
x ∈ Un, let mn be such that x ∈ Unmn . Set M = max{mn : n < N}.

Fix m ≥ M . We show that x ∈ Unm if, and only if, x ∈ Un. One direction follows
from Unm ⊆ Un. To prove the other direction, assume that x ∈ Un, and consider the
two possible cases: If n < N , then x ∈ Unm because m ≥ M ≥ mn, and we are done.
Thus, assume that n ≥ N . Then x ∈

⋂
∞

i=kn
(Cni )

c. As x ∈ Un =
⋃
m C

n
m, it follows that

x ∈
⋃kn−1
i=1 Cni ⊆ U

n
m.

Thus, for each x ∈ X there is M such that 9m(x) = U(x) for all m ≥ M . This
completes the proof in the case that no Un is clopen.
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For the remaining case, let I ⊆ N be the set of all n such that Un is not clopen. The
previous case shows that UI = {Un : n ∈ I }, viewed as a Marczewski function from X to
P(I), is a discrete limit of continuous functions 9m : X→ P(I).

For each m, define 8m : X→ P(N) by

8m(x) = {n : (n ∈ I and n ∈ 9m(x)) or (n /∈ I and x ∈ Un)}.

Then U is a discrete limit of the continuous functions 8m, m ∈ N. ut

As X satisfies item (2) of Lemma 10, it satisfies Ufin(O, 0): Refine each given cover to a
clopen cover, turn it to a clopen point-cofinite cover by taking finite unions, and make the
point-cofinite covers disjoint.

Assume that U is a countable family of open subsets of X. By Lemma 11, the Mar-
czewski map U : X→ P(N) is a discrete limit of continuous functions 9n.

Clearly, every discrete limit is a quasi-normal limit. The proof of [10, Theorem 4.8]
actually establishes the following.

Lemma 12. Assume that P is a property of topological spaces, which is preserved by
taking closed subsets, continuous images and countable unions. If X has the property P
and 9 : X → Y is a quasi-normal limit of continuous functions into a metric space Y ,
then 9[X] has the property P .

Proof. Let9n, n ∈ N, be continuous functions as in the premise of the lemma, and let εn,
n ∈ N, be as in the definition of quasi-normal convergence. For each k,

Xk = {x ∈ X : (∀n,m ≥ k) d(9n(x), 9m(x)) ≤ εn + εm}

is a closed subset of X, and the functions 9n converge to 9 uniformly on Xk . Thus, 9 is
continuous on Xk , and therefore 9[Xk] has the property P .

Now, X =
⋃
k Xk , and therefore 9[X] =

⋃
k 9[Xk] has the property P . ut

It follows that for each countable family U of open subsets ofX, U[X] satisfies Ufin(O, 0).
Let F,B denote the families of all countable closed and all countable Borel covers

of X, respectively. Similarly, let F0,B0 denote the families of all countable closed and
all Borel point-cofinite covers of X. Following is a striking result of Bukovský, Recław,
and Repický [10]. In their terminology, it tells that the family of closed subsets of X is
weakly distributive if, and only if, so is the family of Borel subsets of X. In the language
of selection principles, this result has the following compact form.

Lemma 13 (Bukovský–Recław–Repický [10]). Ufin(F,F0) = Ufin(B,B0).

Proof. Assume that X satisfies Ufin(F,F0). We first show that X is a σ space [10, Theo-
rem 5.2].

Assume thatG =
⋂
n Un where for each n, Un ⊇ Un+1 are open subsets of X. Write,

for each n,
Un =

⋃
m∈N

Cnm,

where for each m, Cnm ⊆ C
n
m+1 are closed subsets of X. We may assume that the closed



Hurewicz and sheaf amalgamations 361

cover {Cnm∪(X\Un) : m ∈ N} ofX has no finite subcover.5 AsX satisfies Ufin(F,F0) and
each given cover is monotone, there are mn, n ∈ N, such that {Cnmn ∪ (X \ Un) : n ∈ N}
is a closed point-cofinite cover of X. For each k define

Zk =

∞⋂
n=k

Cnmn .

Then each Zk is a closed subset of X, and G =
⋃
k Zk is Fσ . This shows that X is a σ

space.
Now, assume that Un ∈ B, n ∈ N. Then for each n, each element of Un is Fσ and can

therefore be replaced by countably many closed sets. Applying Ufin(F,F0) to the thus
modified covers, we obtain a cover in F0 . For each n, extend each of the finitely many
chosen elements of the nth cover to an Fσ set from the original cover Un, to obtain an
element of B0 chosen in accordance with the definition of Ufin(B,B0).6 ut

Lemma 14. The following are equivalent:
(1) X satisfies Ufin(B,B0).
(2) For each countable family U of open subsets of X, U[X] satisfies Ufin(O, 0).
(3) For each countable family C of closed subsets of X, C[X] satisfies Ufin(O, 0).
Proof. (2)⇔(3) Use the auto-homeomorphism of P(N) defined by mapping a set to its
complement.

(1)⇒(2) The Marczewski map U : X → P(N) is Borel. It is easy to see that
Ufin(B,B0) is preserved by Borel images [39]. Thus, U[X] satisfies Ufin(B,B0), and
in particular Ufin(O, 0).

(3)⇒(1) By Lemma 13, it suffices to show that X satisfies Ufin(F,F0). For each C =
{Cn : n ∈ N} ∈ F which does not contain a finite subcover, {

⋃
m≤n Cm : n ∈ N} ∈ F0 .

Thus, Ufin(F,F0) = Ufin(F0,F0),7 and we prove the latter property.
Let Cn = {Cnm : m ∈ N}, n ∈ N, be bijectively enumerated closed point-cofinite

covers of X which do not contain finite subcovers. We may assume that these covers are
pairwise disjoint [35].

Let C =
⋃
n Cn, and consider the Marczewski map C : X→ P(N× N) defined by

C(x) = {(n,m) : x ∈ Cnm}

for all x ∈ X. For each (n,m), O(n,m) = {A ⊆ N×N : (n,m) ∈ A} is an open subset of
P(N×N), and for each n, Un = {O(n,m) : m ∈ N} is an open cover of C[X] which does
not contain a finite subcover. As C[X] satisfies Ufin(O, 0), there are kn, n ∈ N, such that
{
⋃
m<kn

O(n,m) : n ∈ N} is a point-cofinite cover of C[X]. Then {
⋃
m<kn

Cnm : n ∈ N} is a
point-cofinite cover ofX (it is infinite becauseX does not appear there as an element).8 ut

5 If there are infinitely many n for which there is some mn with Cnmn = Un, then G =
⋂
n C

n
mn

is closed and we are done. Otherwise, we can ignore finitely many n and assume that there are no
n,m such that Cnm = Un contains G.

6 This argument, in more general form, appears in [11, Theorem 2.1].
7 This statement holds in a more general form [22].
8 The argument is standard: For each finite family of proper subsets of X, there is a finite subset

of X not contained in any member of this family.
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By Lemma 14, X satisfies Ufin(B,B0). It remains to observe the following. For the
reader’s convenience, we reproduce the proof of the implication needed in the present
proof.

Lemma 15 (Bartoszyński–Scheepers [4]). X satisfies Ufin(B,B0) if, and only if, each
Borel image of X in NN is bounded.

Proof. (⇒) Assume that Y ⊆ NN is a Borel image of X. Then Y satisfies Ufin(B,B0).
By taking the image of Y under the continuous mapping f (n) 7→ f (1) + · · · + f (n)
defined on NN , we may assume that all elements in Y are nondecreasing.

We first consider the uninteresting case: There is an infinite I ⊆ N such that for each
n ∈ I , Fn = {f (n) : f ∈ Y } is finite. For each n, let m ∈ I be minimal such that n ≤ m,
and define g(n) = maxFm. Then Y is bounded by g.

Thus, assume that there is N such that for each n ≥ N , {f (n) : f ∈ Y } is infinite.
For all n,m, consider the open set Unm = {f ∈ Y : f (n) ≤ m}. Then for each n ≥ N ,
Un = {Unm : m ∈ N} is an open point-cofinite cover of Y . Apply Ufin(B,B0) to obtain for
each n ≥ N a finite set Fn ⊆ N such that {

⋃
m∈Fn

Unm : n ∈ N} is a point-cofinite cover
of Y . Define g ∈ NN by g(n) = maxFn for each n ≥ N (and arbitrary for n < N ). Then
Y is bounded by g. ut

This completes the proof of Theorem 9. ut

Remark 16. Let A ⊆∗ B mean that A \ B is finite. A semifilter is a family F of infinite
subsets of N such that for each A ∈ F and each B ⊆ N with A ⊆∗ B, we have B ∈ F .
In [43] it is proved that if in item (2) of Lemma 14 we replace U[X] with the semifilter it
generates, then we obtain a characterization of Ufin(O, 0). Lemma 14 shows that moving
to the generated semifilter is essential to obtain this result, since Ufin(B,B0) is strictly
stronger than Ufin(O, 0).

4. Applications

4.1. QN spaces

We begin with a straightforward proof of one implication in the following theorem (which
answers in the affirmative Problem 2 of Scheepers [36]). Because of the importance of
this result, we also supply a proof for the other implication.

Theorem 17 (Sakai [33], Bukovský–Haleš [9]). X is a QN space if, and only if, Cp(X)
is an α1 space.

Proof. (⇐) This is Theorem 4 of [36]. Using Theorem 9 this becomes straightforward:
Assume that Cp(X) is an α1 space. Given fn, n ∈ N, converging pointwise to 0, define a
Borel function 9 : X→ NN by

9(x)(n) = min{k : (∀m ≥ k) |fm(x)| < 1/n}.

By Theorem 9, 9[X] is bounded by some g ∈ NN. For each x ∈ X and all but finitely
many n, |fm(x)| < 1/n for each m ≥ g(n). For each n and each m with g(n) ≤ m <

g(n+ 1), take εm = 1/n.
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(⇒) Assume that X is a QN space, and {An : n ∈ N} is a countable sheaf at f ∈
Cp(X). We may assume that f is the constant zero function, and that the image of each
member of each An is contained in the unit interval [0, 1].

For each n, enumerate An = {f nm : m ∈ N} bijectively. For each m, define gm ∈
Cp(X) by

gm(x) = sup{f nm(x)/n : n ∈ N}
for all x ∈ X. Then {gm : m ∈ N} converges pointwise to the zero function. As X is a QN
space, there are positive εm, m ∈ N, converging to 0, such that X is the increasing union
of the sets

Xn = {x ∈ X : (∀m ≥ n) gm(x) ≤ εm}.

For each n, choosemn such that nεm ≤ 1/n for allm ≥ mn. We claim that the amalgama-
tion B =

⋃
n{f

n
m : m ≥ mn} converges pointwise to the zero function. Indeed, fix x ∈ X

and a positive ε. Take N such that x belongs to XN (and thus to all Xk with k ≥ N ) and
such that 1/N ≤ ε. For each n ≥ N and each m ≥ mn,

f nm(x) ≤ n · gm(x) ≤ nεm ≤ 1/n ≤ ε.

And for each n < N , there are only finitely many m such that f nm(x) > ε. Thus, for all
but finitely many f ∈ B, f (x) ≤ ε. ut

A beautiful direct (but tricky) proof for (⇐) of Theorem 17 was recently discovered by
Bukovský [7].

Theorems 9 and 17 solve in the affirmative Problem 22 from [9].

Corollary 18. X is a QN space if, and only if, each Borel image of X in NN is bounded.
ut

Theorem 19 (Recław [30]). The QN property is hereditary.

Proof. The property of having bounded Borel images in NN is hereditary. ut

Answering Question 5.8 of Shakhmatov [40] (attributed to Scheepers), Sakai [33] and
independently Bukovský–Haleš [9] gave a characterization of the QN property in terms
of covering properties of X. Their characterization uses the new Kočinac α1 selection
principle [25]. Theorem 15 and Corollary 18 give a new characterization in terms of
the classical Hurewicz selection principle: Ufin(B,B0). This selection hypothesis can be
stated in a more elegant manner. For families of covers A ,B of X, define

S1(A ,B): Whenever U1,U2, . . . ∈ A , there exist elements Un ∈ Un, n ∈ N, such that
{Un : n ∈ N} ∈ B.

Then Ufin(B,B0) = S1(B0,B0) [39]. By Lemma 13, also Ufin(F,F0) = S1(F0,F0).
(This can also be proved directly.) We obtain the following new characterizations.

Corollary 20. The following are equivalent:

(1) Cp(X) is an α1 space.
(2) X is a QN space.
(3) X satisfies S1(F0,F0).
(4) X satisfies S1(B0,B0). ut
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4.2. Convergent sequences of Borel functions

Let Bp(X) be the space of all Borel real-valued functions on X, with the topology of
pointwise convergence. We obtain the surprising result that if Cp(X) is an α1 space, then
so is Bp(X). This is not provably the case for Arhangel’skiı̆’s properties α2, α3, and α4.
A topological space Y is an α2 space if it satisfies S1(0y, 0y) for each y ∈ Y , where 0y is
the family of all sequences converging to y. For the definitions of α3 and α4, see e.g. [36].

Corollary 21. The following are equivalent:

(1) Each Borel image of X in NN is bounded.
(2) Cp(X) is an α1 space.
(3) Bp(X) is an α1 space.
(4) Bp(X) is an α2 space.
(5) Bp(X) is an α3 space.
(6) Bp(X) is an α4 space.

Proof. (1)⇒(3) This is proved verbatim as the proof of (2)⇒(1) in Theorem 9.
(3)⇒(2) is evident.
(2)⇒(1) is due to the above mentioned result of Scheepers, and the equivalence of

being a QN space and (1).
(4)⇔(5)⇔(6) is proved as in Gerlits–Nagy [18] or Scheepers [36] (in fact, the Borel

case is easier).
(3)⇒(4) is evident.
(4)⇒(1) It suffices to show that X satisfies S1(B0,B0). Given Un ∈ B0 , n ∈ N,

we find that for each n, An = {χU : U ∈ Un} ⊆ Bp(X) converges pointwise to 0.
Applying α2, let Un ∈ Un, n ∈ N, be such that χUn converges pointwise to 0. Then
{Un : n ∈ N} is a point-cofinite cover of X. ut

4.3. Almost continuous functions

A function f : X → Y is almost continuous [3] if for each nonempty A ⊆ X, the re-
striction of f to A has a point of continuity. ACp(X) is the space of all almost continuous
real-valued functions on X, with the topology of pointwise convergence [5].

If X and Y are Tychonoff and f : X→ Y is almost continuous, then for each A ⊆ X
the set of points of continuity of the restriction of f to A is open dense in A [5]. Each
function with the latter property is Borel [42]. Thus, Cp(X) ⊆ ACp(X) ⊆ Bp(X).

Corollary 22. ACp(X) is an α1 space if, and only if, Cp(X) is an α1 space.

4.4. wQN spaces and the Scheepers Conjecture

X is a wQN space [10] if each sequence of continuous real-valued functions on X con-
verging pointwise to zero has a subsequence converging to zero quasi-normally.

Two fundamental problems concerning wQN spaces appear in the literature: In [36,
p. 269], [9, Problem 23], and [6, Problems 10.3–10.4], we are asked whether, consistently,
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every wQN space is a QN space. The Scheepers Conjecture [37] asserts that X is a wQN
space if, and only if,X satisfies S1(0, 0). It is still open whether the Scheepers Conjecture
is provable. A striking result of Dow gives a positive answer to the first problem, and a
consistently positive answer to the second.

Theorem 23 (Dow [14]). In the Laver model, each α2 space is an α1 space.

Let C0 denote the family of all clopen point-cofinite covers of X. Clearly, S1(0, 0) im-
plies S1(C0,C0).

Corollary 24. In the Laver model:
(1) S1(B0,B0) = S1(C0,C0).
(2) X is a wQN space if, and only if, X is a QN space.
(3) The Scheepers Conjecture holds.
In particular, these assertions are (simultaneously) consistent.
Proof. (1) Using the correspondence described just before Lemma 10, we find thatCp(X)
is an α2 space if, and only if,X satisfies S1(C0,C0). Thus, ifX satisfies S1(C0,C0), then
by Dow’s Theorem 23, Cp(X) is an α1 space. By Theorem 9, X satisfies S1(B0,B0).

(2) Assume that X is a wQN space. Then Cp(X) is an α2 space [34]. By Dow’s
Theorem 23, Cp(X) is an α1 space. By Theorem 17, X is a QN space.

(3) S1(0, 0) implies (in ZFC) being a wQN space [37]. Now, back in the Laver model,
assume that X is a wQN space. By (2), X is a QN space. By Corollary 20, X satisfies
S1(B0,B0), and in particular S1(0, 0). ut

Remark 25. In [33, 9] it is shown that X is a wQN space if, and only if, X satisfies
S1(C0,C0). Using this, (2) and (3) follow immediately from Corollary 24(1).

4.5. QN spaces and M spaces

X is a QN space [11] if each real-valued function (not necessarily continuous) onX which
is a pointwise limit of a sequence of continuous functions, is in fact a quasi-normal limit
of those functions.

The following result is immediate from Theorem 9 and [11, Theorem 5.10(9)]. For
completeness, we give a simple, direct proof.

Theorem 26. The following are equivalent:
(1) X is a QN space.
(2) X is a QN space.
(3) Each sequence of Borel functions converging pointwise to 0, converges to 0 quasi-

normally.
(4) Each sequence of Borel functions converging pointwise to any function converges

quasi-normally to this function.
Proof. (1)⇒(2) is immediate.

(2)⇒(3) Assume (2). By Theorem 9, each Borel image of X in NN is bounded. Thus,
an argument verbatim as in our proof of (⇐) of Theorem 9 gives (3).

(3)⇒(4) The limit function f is also Borel, and fn − f converges to 0.
(4)⇒(1) is immediate. ut
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This shows that the first assumption in [11, Theorem 5.10(9)] is not needed. It also an-
swers [11, Problem 6.11] in the affirmative. Based on [11, Theorem 6.9] and improving
it, we also obtain the following solution of [11, Problem 6.10].

Corollary 27. Every QN space is an M space. ut

The definition of M space is available in [11].

4.6. wQN∗ spaces

X is a wQN∗ space if each sequence of lower semi-continuous real-valued functions on
X converging pointwise to zero has a subsequence converging to zero quasi-normally. In
his talk at the Third Workshop on Coverings, Selections, and Games in Topology (Serbia,
April 2007), Bukovský defined wQN∗ spaces and described his recent investigations of
this property and its upper semi-continuous variant. The main problem he posed was: Is
every QN space a wQN∗ space?

Theorem 28. Every QN space is a wQN∗ space.

Proof. Every lower semi-continuous function is Borel. Use Theorem 26. ut

Bukovský has later proved that the converse to Theorem 28 also holds [7], and therefore
the notions coincide (with one another and with having bounded Borel images).

4.7. Bounded-ideal convergence spaces

The notion of ideal convergence originates in works of Steinhaus and Fast on statistical
convergence, and was generalized by Bernstein, Katětov, and others (see [16] for an intro-
duction). The following definitions are as in Jasinski–Recław [20]. Let D be a countable
set, and I ⊆ P(D) be an ideal (i.e., I contains all singletons and is closed under taking
subsets and finite unions). Let I∗ denote the filter {D \A : A ∈ I} dual to I. A sequence
{rd}d∈D of real numbers I-converges to 0 if {d ∈ D : |rd | < ε} ∈ I∗ for each positive ε.
A sequence {fd}d∈D of continuous real-valued functions on X I-converges to 0 if for
each x ∈ X, the sequence {fd(x)}d∈D of real numbers I-converges to 0. The space X
has the I-convergence property if for each sequence {fd}d∈D of continuous real-valued
functions on X which I-converges to 0, there is A ∈ I∗ such that {fd}d∈A converges
pointwise to 0.

We will use the following.

Lemma 29. In the definition of I-convergence, it suffices to consider only sequences of
distinct elements.

Proof. Let {fd}d∈D be given. Enumerate D = {dn : n ∈ N} bijectively. For each n, as
the functions fdn + 1/m, m ∈ N, are all distinct, there is m(dn) ∈ N such that m(dn) ≥ n
and fdn + 1/m(dn) /∈ {fd1 + 1/m(d1), . . . , fdn−1 + 1/m(dn−1)}.

It is easy to see that {fd}d∈D I-converges to 0 if, and only if, {fd + 1/m(d)}d∈D
I-converges to 0. ut
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We use these definitions for D = N× N. For h ∈ NN, define Ah = {(n,m) : m ≤ h(n)}.
The family {Ah : h ∈ NN

} is closed under finite intersections, and generates the bounded-
ideal

Ib = {B ⊆ N× N : (∃h ∈ NN) B ⊆ Ah}.

X has the bounded-ideal convergence property if it has the Ib-convergence property.
The bounded-ideal, which is also the Fubini product ∅×Fin of the trivial ideal and the

ideal of finite sets, plays a central role in studies of ideal convergence. For each analytic
P -ideal I, if any X ⊆ R not having Lebesgue measure zero has the I-convergence prop-
erty, then I is isomorphic to Ib [21]. For additional uses of this ideal and its associated
convergence, see [16].

Jasinski and Recław [20] proved that every Sierpiński set has the bounded-ideal con-
vergence property, and that if X has the bounded-ideal convergence property, then X is a
σ space. Both of these assertions follow at once from the following.

Theorem 30. The following are equivalent:

(1) X has the bounded-ideal convergence property.
(2) Cp(X) is an α1 space.
(3) Each Borel image of X in NN is bounded.

Proof. By Theorem 9, it suffices to show that (1)⇔(2).
(2)⇒(1) Assume that {f(n,m)}(n,m)∈N×N Ib-converges to 0. By Lemma 29, we may

assume that the elements f(n,m), (n,m) ∈ N× N, are distinct.
For each x ∈ X and each positive ε, {(n,m) : |f(n,m)(x)| < ε} ∈ I∗b , that is, there

is h ∈ NN such that {(n,m) : |f(n,m)(x)| < ε} ⊇ (N × N) \ Ah. Thus, |f(n,m)(x)| < ε

for all n,m ∈ N such that h(n) < m. It follows that for each n, {f(n,m)}m∈N converges
pointwise to 0.

As Cp(X) is an α1 space, there is for each n a number h(n) ∈ N such that {f(n,m) :
n,m ∈ N, m > h(n)} converges pointwise to 0, and since the enumeration is bijective,
the sequence {f(n,m)}(n,m)∈(N×N)\Ah also converges pointwise to 0. As (N×N)\Ah ∈ I∗b ,
this shows that X has the bounded-ideal convergence property.

(1)⇒(2) Assume that for each n the sequence {f(n,m)}m∈N converges pointwise to 0.
For each x ∈ X, each positive ε, and each n, there is h(n) ∈ N such that |f(n,m)(x)| < ε

for all m > h(n). Thus, {(n,m) : |f(n,m)(x)| < ε} ⊇ (N × N) \ Ah, that is,
{f(n,m)}(n,m)∈N×N Ib-converges to 0.

The bounded-ideal convergence property implies that there is h ∈ NN such that
{f(n,m)}(n,m)∈(N×N)\Ah converges pointwise to 0, and therefore so does the sheaf amal-
gamation {f(n,m) : n,m ∈ N, m > h(n)} (which can be enumerated as a subsequence of
{f(n,m)}(n,m)∈(N×N)\Ah ). ut

Corollary 31. The following are equivalent:

(1) X has the bounded-ideal convergence property.
(2) For each sequence {fd}d∈N×N of Borel real-valued functions on X which Ib-con-

verges to 0, there is A ∈ I∗b such that {fd}d∈A converges pointwise to 0.
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(3) For each sequence {fd}d∈N×N of Borel real-valued functions on X which Ib-con-
verges to a Borel function f , there is A ∈ I∗b such that {fd}d∈A converges pointwise
to f .

(4) For each sequence {fd}d∈N×N of Borel real-valued functions on X which Ib-con-
verges to a function f , there is A ∈ I∗b such that {fd}d∈A converges pointwise to f .

Proof. (1)⇒(2) Replace “continuous” by “Borel” in the proof of Theorem 30 and use
Theorem 21.

(2)⇒(3) Bp(X) is a topological group, and in particular homogeneous.
(3)⇒(4) The assumption in (4) implies, in particular, that f is a pointwise limit of

{f(1,m)}m∈N. Thus, f is Borel. ut

4.8. Bounded Baire-class α images

Continuous functions and Borel functions are the extremal notions in the Baire hierarchy
of functions: A real-valued function f is of Baire class 0 if it is continuous. For 0 <

α ≤ ℵ1, f is of Baire class α if f is the pointwise limit of a sequence of functions, each
of Baire class smaller than α. The function f is Borel if, and only if, f is of Baire class ℵ1
(see [23]). A natural question in light of our study is: Which spaces X have the property
that each Baire-class α image of X in NN is bounded?

Theorem 32. For each α > 0, the following are equivalent:

(1) Each Baire-class α image of X in NN is bounded.
(2) Each Borel image of X in NN is bounded.

Proof. Assume that each Baire-class 1 image of X in NN is bounded. Baire-class 1 func-
tions are exactly the Fσ -measurable functions.

One way to proceed is to use Lemma 14, since for each bijectively enumerated fam-
ily C = {Cn : n ∈ N} of closed sets, the corresponding Marczewski function is Fσ -
measurable (and by the proof of Lemma 14, we may assume that for each x ∈ X, C(x) is
infinite).

However, there is a more direct proof. By Lemma 13, it suffices to prove that X
satisfies Ufin(F,F0). Assume that Un = {Cnm : m ∈ N}, n ∈ N, are closed covers of X not
containing a finite subcover. Define 9 : X→ NN by

9(x)(n) = min{m : x ∈ Cnm}

for all n ∈ N. Each basic open subset of NN is an intersection of finitely many sets of
the form On

m = {f ∈ NN : f (n) = m}. As 9−1[On
m] = Cnm \

⋃
k<m C

n
k is an Fσ set

for all n and m, 9 is Fσ -measurable. Thus, 9[X] is bounded by some g ∈ NN. Then
{
⋃
m≤g(n) C

n
m : n ∈ N} is a point-cofinite cover of X. ut
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5. Closing the circle: Continuous bounded images again

The proof of Theorem 9 gives us the following analogue of Theorem 2. Say that a set Y ⊆
NN

is bounded if there is g ∈ NN such that for each f ∈ Y and all but finitely many n,
f (n) < ∞ implies f (n) ≤ g(n). This generalizes the standard notions of boundedness
in NN or EF.

Theorem 33. The following are equivalent:

(1) Each Borel image of X in NN is bounded.
(2) Each continuous image of X in NN

is bounded.

Proof. (1)⇒(2) Assume that 9 : X → NN
is continuous. Define d : NN

→ NN by
d(x)(n) = x(n) if x(n) < ∞, and d(x)(n) = 1 if x(n) = ∞. Then d ◦ 9 : X → NN is
Borel, and therefore d[9[X]] is a bounded subset of NN. Thus,9[X] is a bounded subset
of NN

.
(2)⇒(1) Assume that each continuous image of X in NN

is bounded. We first prove
that for each bijectively enumerated family U = {Un : n ∈ N} of open sets, U is a discrete
limit of continuous functions. The proof is similar to the proof of Lemma 11. As shown
at the end of the proof of Lemma 11, we may assume that no Un is clopen.

For each n, write Un as a union
⋃
m C

n
m of disjoint clopen sets. Define 9 : X→ NN

by

9(x)(n) =

{
m, x ∈ Unm,

∞, x /∈ Un.

Then 9 is continuous. Let g ∈ NN bound 9[X]. For each n,m, let

Unm =

max{m,g(n)}⋃
i=1

Cni .

For each m, define a continuous function 9m : X→ P(N) by

9m(x) = {n : x ∈ Unm}.

We claim that U is a discrete limit of the maps 9m, m ∈ N.
Fix x ∈ X. Let N be such that for all n ≥ N ,9(x)(n) <∞ implies9(x)(n) ≤ g(n).

For each n < N with x ∈ Un, let mn be such that x ∈ Unmn . Set M = max{mn : n < N}.
Fix m ≥ M . We show that n ∈ 9m(x) if, and only if, x ∈ Un. One direction follows

from Unm ⊆ Un. To prove the other direction, assume that x ∈ Un, and consider the two
possible cases: If n < N , then x ∈ Unm because m ≥ M ≥ mn, and we are done. Thus,
assume that n ≥ N . Then 9(x)(n) ≤ g(n), and therefore x ∈

⋃g(n)

i=1 C
n
i ⊆ U

n
m.

Thus, for each x ∈ X there is M such that for all m ≥ M , 9m(x) = U(x).
Now, each continuous image of X in NN is bounded because NN is a subspace of NN

.
By Hurewicz’s Theorem 1, X satisfies Ufin(O, 0), and by Lemma 12, so does U[X]. By
Lemma 14, each Borel image of X in NN is bounded. ut
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We therefore obtain the aesthetically pleasing result, that the chain of properties

Ufin(B,B0) =⇒ hereditarily-Ufin(O, 0) =⇒ Ufin(O, 0)

is obtained by requiring bounded continuous images in the chain of subspaces

NN
⊇ EF ⊇ NN,

respectively.

Acknowledgments. We thank Masami Sakai for his Theorem 6. We also thank Lev Bukovský for
useful comments and for making his work [7] available to us prior to its publication, and the referee
for his useful comments. A part of the present paper was written when the first author was visiting
the Department of Mathematics at the University of Warsaw. We thank Tomasz Weiss for his kind
hospitality during that stimulating period.

This research was partially supported by the Koshland Center for Basic Research.

Note. After the present paper was accepted for publication, Bukovský and Šupina [12] devised an
alternative, more analytic and less combinatorial, proof of our main Theorem 9.

References

[1] Arhangel’skiı̆, A.: The frequency spectrum of a topological space and the classification of
spaces. Soviet Math. Dokl. 13, 1186–1189 (1972) Zbl 0275.54004 MR 0394575

[2] Arhangel’skiı̆, A.: The frequency spectrum of a topological space and the product operation.
Trans. Moscow Math. Soc. 40, 171–206 (1979) Zbl 0447.54004 MR 0550259

[3] Arhangel’skiı̆, A., Bokalo, B. M.: The tangency of topologies and tangential proper-
ties of topological spaces. Trans. Moscow Math. Soc. 1993, 139–163 Zbl 0798.54002
MR 1256925
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