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The θ-closed hull of a set A in a topological space is the smallest set C containing
A such that, whenever all closed neighborhoods of a point intersect C, this point is
in C.
We define a new topological cardinal invariant function, the θ-bitightness small
number of a space X, btsθ(X), and prove that in every topological space X, the
cardinality of the θ-closed hull of each set A is at most |A|btsθ(X). Using this result,
we synthesize all earlier results on bounds on the cardinality of θ-closed hulls. We
provide applications to P -spaces and to the almost-Lindelöf number.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An Urysohn (or T2 1
2
) space, is a space in which distinct points are separated by closed neighborhoods.

Thus, Urysohn spaces are in between Hausdorff and regular spaces. The spaces considered here generalize
Urysohn spaces.

Let X be a topological space. A point x ∈ X is in the θ-derivative θ(A) of a set A ⊆ X if each closed
neighborhood of x intersects A (cf. Veličko [11]).1 For regular spaces, θ(A) = A, but in general the operator
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θ is not idempotent for Urysohn spaces.2 The θ-closed hull Aθ of A (cf. [3]) is the smallest set C ⊆ X such
that A ⊆ C = θ(C).3

As there are first countable Urysohn spaces X and sets A ⊆ X such that, e.g., |A| = ℵ0 < 2ℵ0 = θ(A)
[3], a major goal concerning the mentioned concepts is that of providing upper bounds on the cardinalities
of θ-closed hulls of sets, in terms of cardinal functions of the ambient space X (e.g., Bella and Cammaroto
[3], Cammaroto and Kočinac [8,9], Bella [2], Alas and Kočinac [1], Bonanzinga, Cammaroto and Matveev
[5], Bonanzinga and Pansera [6], and McNeill [10]). We identify several concepts and topological cardinal
functions, which lead to generalizations of results from the mentioned papers.

Throughout this paper, X is a topological space and A is an arbitrary subset of X.
Recall that for x ∈ X, χ(X,x) is the minimal cardinality of a local base at x, and the character χ(X)

of X is the maximum of ℵ0 and supx∈X χ(X,x). In 1988, Bella and Cammaroto proved that, for Urysohn
spaces X, |Aθ| � |A|χ(X) [3].

For x ∈ X, let χθ(X,x) be the minimal cardinality of a family of closed neighborhoods of x such that
each closed neighborhood of x contains one from this family. The θ-character χθ(X) of X is the maximum
of ℵ0 and supx∈X χθ(X,x). Thus, χθ(X) � χ(X). In [1], Alas and Kočinac define this topological cardinal
invariant, show that the inequality may be proper, and modify the Bella–Cammaroto argument to show
that, for Urysohn spaces X, |Aθ| � |A|χθ(X).

In 1993, Cammaroto and Kočinac defined the θ-bitightness of an Urysohn space X, btθ(X), to be the
minimal cardinal κ such that, for each non-θ-closed A ⊆ X, there are x ∈ θ(A) \ A and sets Aα ∈ [A]�κ,
α < κ, such that

⋂
α<κ θ(Aα) = {x} [8]. For Urysohn spaces X, Cammaroto and Kočinac proved that

btθ(X) � χ(X). Moreover, their proof shows that btθ(X) � χθ(X). They supplied examples where the
inequality is strict, and proved that |Aθ| � |A|btθ(X), thus refining the Bella–Cammaroto Theorem.

In their recent work [5], Bonanzinga, Cammaroto and Matveev defined the Urysohn number U(X) to be
the minimal cardinal κ such that, for each set {xα: α < κ} ⊆ X, there are closed neighborhoods Uα of xα,
α < κ, such that

⋂
α<κ Uα = ∅. Thus, X is Urysohn if and only if U(X) = 2. They note that, for Hausdorff

spaces, U(X) � |X|, and prove that for each cardinal κ � 2, there is a Hausdorff space with U(X) = κ [5].

Definition 1.1. X is finitely-Urysohn if U(X) is finite.

Bonanzinga, Cammaroto and Matveev generalized the result by Bella and Cammaroto from Urysohn
to finitely-Urysohn spaces [5]. Later, Bonanzinga and Pansera improved this and the result by Alas and
Kočinac: For finitely-Urysohn spaces, |Aθ| � |A|χθ(X) [6].

A technical problem in synthesizing the Bonanzinga–Cammaroto–Matveev theorem and the Cammaroto–
Kočinac theorem is that btθ(X) need not be defined for finitely-Urysohn spaces.

We define a new topological cardinal invariant function, the θ-bitightness small number of a space X,
denoted btsθ(X), and prove the following assertions:

(1) btsθ(X) is defined for all topological spaces X (Definition 2.7).
(2) Whenever btθ(X) is defined, btsθ(X) � btθ(X) (Corollary 2.2 and Definition 2.7).
(3) For all finitely-Urysohn spaces, btsθ(X) � χθ(X) (Theorem 2.6 and Definition 2.7).
(4) In every topological space X, |Aθ| � |A|btsθ(X) (Theorem 2.8).

This generalizes all of the above-mentioned results. The situation is summarized in the following diagram.

2 In earlier works, the θ-derivative θ(A) is also denoted clθ(A) and called θ-closure. Since the operator θ is not idempotent, we
decided not to use the term closure here.
3 In earlier works, the θ-closed hull of A is also denoted [A]θ.
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∀ finitely-Urysohn X, |Aθ| � |A|χ(X) [5] ∀ Urysohn X, |Aθ| � |A|χ(X) [3]

∀ finitely-Urysohn X, |Aθ| � |A|χθ(X) [6] ∀ Urysohn X, |Aθ| � |A|χθ(X) [1]

∀X, |Aθ| � |A|btsθ(X) ∀ Urysohn X, |Aθ| � |A|btθ(X) [8]

We actually establish finer theorems than the ones mentioned above, as explained in the following sections.
We also provide a partial solution to a problem of Bonanzinga, Cammaroto and Matveev [5] and Bo-

nanzinga and Pansera [6].

2. Finite bitightness and the bitightness small number

Definition 2.1. The finite θ-bitightness of a space X, fbtθ(X), is the minimal cardinal κ such that, for each
non-θ-closed A ⊆ X, there are sets Aα ∈ [A]�κ, α < κ, such that

⋂
α<κ θ(Aα) \A is finite and nonempty.

Corollary 2.2. fbtθ(X) is defined for all finitely-Urysohn spaces. When btθ(X) is defined, so is fbtθ(X), and
fbtθ(X) � btθ(X).

The following easy fact will be used in several occasions.

Lemma 2.3. If x ∈ θ(A), then for each closed neighborhood V of x, x ∈ θ(A ∩ V ).

For Urysohn spaces, fbtθ(X) is very closely related to btθ(X).

Proposition 2.4. Let X be an Urysohn space, and κ = fbtθ(X). For each non-θ-closed A ⊆ X, there are
x /∈ A and Aα ∈ [A]�κ, α < κ, such that

⋂
α<κ θ(Aα) \A = {x}.

Proof. Pick sets Aα ∈ [A]�κ, α < κ, such that
⋂

α<κ θ(Aα) \A is finite, say equal to {x1, . . . , xk}.
Since X is Urysohn, there are closed neighborhoods Vi of xi, i � k, such that V1 ∩ (V2 ∪ · · · ∪ Vk) = ∅.

Indeed, for each i = 2, . . . , k pick disjoint closed neighborhoods Ui and Vi of x1, xi, respectively, and set
V1 = U2 ∩ · · · ∩ Uk.

For each α < κ, x1 ∈ θ(Aα ∩ V1). Then Aα ∩ V1 ∈ [A]�κ for each α, and
⋂
α<κ

θ(Aα ∩ V1) \A = {x1}. �

Lemma 2.5. Let X be a finitely-Urysohn space. For all B,D ⊆ X with B ⊆ θ(D) and |B| � U(X), there
are 1 � m � k < U(X) and b1, . . . , bk ∈ B such that

B ∩
⋂

V ∈Nθ(b1)∧···∧Nθ(bk)

θ(D ∩ V ) = {b1, . . . , bm}. (1)

Proof. For k = U(X), any intersection as in (1) is empty. For k = 1, any such intersection is nonempty
(since, by Lemma 2.3, it contains b1). Thus, let k be maximal such that there are b1, . . . , bk ∈ B for which
the intersection in (1) is nonempty. 1 � k < U(X). We claim that

B ∩
⋂

θ(D ∩ V ) ⊆ {b1, . . . , bk}.

V ∈Nθ(b1)∧···∧Nθ(bk)
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Assume, towards a contradiction, that there is

x ∈ B ∩
⋂

V ∈Nθ(b1)∧···∧Nθ(bk)

θ(D ∩ V ) \ {b1, . . . , bk}.

By Lemma 2.3, for each V ∈ Nθ(b1) ∧ · · · ∧ Nθ(bk) and each W ∈ Nθ(x), x ∈ θ(D ∩ V ∩W ). Thus,

x ∈ B ∩
⋂

V ∈Nθ(b1)∧···∧Nθ(bk)∧Nθ(x)

θ(D ∩ V ),

and in particular this set is nonempty. This contradicts the maximality of k.
Thus, the intersection is nonempty, and by reordering b1, . . . , bk, we may assume that the intersection is

{b1, . . . , bk} for some m with 1 � m � k. �
Theorem 2.6. For each finitely-Urysohn space X, fbtθ(X) � χθ(X).

Proof. For families of sets F1,F2, . . . ,Fn ⊆ P (X), define

F1 ∧ F2 ∧ · · · ∧ Fn := {V1 ∩ V2 ∩ · · · ∩ Vn: V1 ∈ F1, . . . , Vn ∈ Fn}.

For x ∈ X, let Nθ(x) be the family of closed neighborhoods of x.
Let κ = χθ(X). Let A ⊆ X be non-θ-closed. Assume that θ(A) \A is finite. Fix b ∈ θ(A) \A. Fix a base

{Vα: α < κ} for Nθ(b). For each α < κ, let aα ∈ A ∩ Vα. Let D = {aα: α < κ}, and set Aα = D for all
α < κ. Then

b ∈ θ(D) \A =
⋂
α<κ

θ(Aα) \A ⊆ θ(A) \A,

so that
⋂

α<κ θ(Aα) \ A is finite and nonempty, and the requirement in the definition of fbtθ(X) � κ is
fulfilled.

Thus, assume that the set B = θ(A)\A is infinite. Apply Lemma 2.5 to the sets B and D = A, to obtain
1 � m � k < U(X) and b1, . . . , bk ∈ B such that Eq. (1) holds. For each i � k, fix a basis Fi for Nθ(bi)
with |Fi| � κ. Enumerate

F1 ∧ · · · ∧ Fk = {Vα: α < κ}.

By Eq. (1),

B ∩
⋂
α<κ

θ(A ∩ Vα) = {b1, . . . , bm}.

In particular, for each α < κ there is aα ∈ A ∩ Vα. Take

C = {aα: α < κ} ∈ [A]�κ.

Fix i � m and α < κ. Let V ∈ Nθ(bi). Then Vα ∩ V ∈ Nθ(b1) ∧ · · · ∧ Nθ(bm), and thus there is β < κ

such that Vβ ⊆ Vα ∩ V . Then aβ ∈ C ∩ Vα ∩ V , and in particular C ∩ Vα ∩ V is nonempty. This shows that
bi ∈ θ(C ∩ Vα).
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Thus,

b1, . . . , bm ∈
⋂
α<κ

θ(C ∩ Vα) \A ⊆
⋂
α<κ

θ(A ∩ Vα) \A

⊆
(
θ(A) \A

)
∩

⋂
α<κ

θ(A ∩ Vα) = {b1, . . . , bm},

and therefore

⋂
α<κ

θ(C ∩ Vα) \A = {b1, . . . , bm},

as required in the definition of fbtθ(X) � κ. �
Definition 2.7. The θ-bitightness small number of X, btsθ(X), is the minimal cardinal κ such that, for each
non-θ-closed A ⊆ X that is not a singleton,4 there are Aα ∈ [A]�κ, α < κ, such that

⋂
α<κ

θ(Aα) \A 
= ∅ and
∣∣∣∣
⋂
α<κ

θ(Aα)
∣∣∣∣ � |A|κ.

btsθ(X) is defined for all spaces X, and is obviously � fbtθ(X) whenever the latter is defined.

Theorem 2.8. Let X be a topological space. For each A ⊆ X,

∣∣Aθ
∣∣ � |A|btsθ(X)

.

Proof. Let κ = btsθ(X), λ = |A|. We define sets Cα ⊆ X, with |Cα| � λκ, α � κ+, by induction on α.
C0 := A.
Given Cα,

Cα+1 :=
⋃{⋂

β<κ

θ(Bβ): {Bβ : β < κ} ⊆ [Cα]�κ,

∣∣∣∣
⋂
β<κ

θ(Bβ)
∣∣∣∣ � λκ

}
.

Then Cα ⊆ Cα+1. As |Cα| � λκ, |Cα+1| � ((λκ)κ)κ · (λκ)κ = λκ.
For a limit ordinal α, Cα :=

⋃
β<α Cβ . Then |Cα| � |α| · λκ � κ+ · λκ = λκ.

End of the construction.

Let C = Cκ+ . Then |C| � λκ, A = C0 ⊆ C, and C is θ-closed. Indeed, assume otherwise and let
Bα ∈ [C]�κ, α < κ, be such that

⋂
α<κ θ(Bα) \ C 
= ∅ and |

⋂
α<κ θ(Bα)| � |C|κ. Then |

⋂
α<κ θ(Bα)| �

(λκ)κ = λκ. As κ+ is regular, for each α < κ there is βα < κ+ such that Bα ⊆ Cβα
. Again as κ+ is

regular, β := supα<κ βα < κ. Then Bα ∈ [Cβ ]�κ for all α < κ, and thus
⋂

α<κ θ(Bα) ⊆ Cβ+1 ⊆ C.
A contradiction. �
Remark 2.9. Immediately after Proposition 7 of [2], Bella points out that there are Hausdorff spaces X

where the inequality |Aθ| � |A|χ(X) fails for some of their subsets. In particular, by Theorem 2.8, btsθ(X)
may be larger than χθ(X) may fail for general Hausdorff spaces X.

4 In the Hausdorff context, singletons are θ-closed, and thus the restriction to non-singletons may be removed.



2376 F. Cammaroto et al. / Topology and its Applications 160 (2013) 2371–2378
3. The θ-closed hull in P -spaces

Bonanzinga, Cammaroto and Matveev [5] and Bonanzinga and Pansera [6] ask whether, in all Hausdorff
spaces X, |Aθ| � |A|χθ(X) · U(X). We give a partial answer.

Definition 3.1. The θ-P -point number of a space is the minimal cardinal κ such that some x ∈ X has closed
neighborhoods Vα, α < κ, with

⋂
α<κ Vα not a neighborhood of x.

As the θ-P -point number of any space is at least ℵ0, the following theorem generalizes the Bonanzinga–
Pansera Theorem, and thus also the earlier three theorems discussed in the introduction.

Theorem 3.2. Let X be a topological space whose Urysohn number is smaller than its θ-P-point number. For
each A ⊆ X,

∣∣Aθ
∣∣ � |A|χθ(X) · U(X).

Proof. Let κ = χθ(X). For each x ∈ θ(A), let {V x
α : α < κ} be a family of closed neighborhoods of x such

that each closed neighborhood of x contains one from this family. For each α < κ, fix ax,α ∈ A ∩ V x
α . Let

Ax = {ax,α: α < κ}.
Define a map

Ψ : θ(A) →
[
[A]�κ

]�κ
,

x �→
{
Ax ∩ V x

α : α < κ
}
.

Let ν = U(X). Let xα, α < ν, be distinct elements of θ(A) which are all mapped to the same element Ψ(x).
For each α < ν, pick βα < κ such that

⋂
α<ν

V xα

βα
= ∅.

Let α < ν. As Ψ(xα) = Ψ(x), there is γα < κ such that Axα
∩ V xα

βα
= Ax ∩ V x

γα
. As ν is smaller than the

θ-P-point number of X, V :=
⋂

α<ν V
x
γα

is a closed neighborhood of x. Fix δ < κ such that V x
δ ⊆ V . Then

ax,δ ∈ Ax ∩ V x
δ ⊆ Ax ∩ V = Ax ∩

⋂
α<ν

V x
γα

=
⋂
α<ν

Ax ∩ V x
γα

=
⋂
α<ν

Axα
∩ V xα

βα
⊆

⋂
α<ν

V x
βα

= ∅;

a contradiction.
Thus, Ψ is < ν to 1, and therefore the cardinality of Aθ is at most

∣∣[[A]�κ
]�κ∣∣ · ν = |A|κ · ν.

By induction on α � κ+, define A0 := A, Aα+1 := θ(Aα), and Aα =
⋃

β<α Aβ for limit ordinals α. Then,
by induction, |Aα| � |A|κ · ν for all α. As χθ(X) = κ, Aκ+ = Aθ [6]. �

Recall that X is a P -space if each countable intersection of neighborhoods is a neighborhood. Thus, the
θ-P -point number of a P -space is � ℵ1.

Corollary 3.3. Let X be a P-space with U(X) = ℵ0. For each A ⊆ X, |Aθ| � |A|χθ(X).
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4. The almost-Lindelöf number

Definition 4.1. ([3]) The almost-Lindelöf number aL(A,X) of a set A ⊆ X is the minimal cardinal κ such
that, for each open cover U of A, there is V ∈ [U ]�κ such that A ⊆

⋃
U∈U U .

Theorem 4.2. Let X be a Hausdorff topological space. For each A ⊆ X,

|A| � 2btsθ(X)·χθ(X)·aL(A,X).

Proof. Let κ = btsθ(X) · χθ(X) · aL(A,X). For each x ∈ X, let Fx be a family of closed neighborhoods of
x such that |Fx| � κ, and each closed neighborhood of x contains one from Fx.

Fix a ∈ A. We define, by induction on α � κ+, sets Aα ⊆ X such that |Aα| � 2κ.
A0 := {a}.
Step α > 0: Let B =

⋃
β<α Aβ . By the induction hypothesis, |B| � 2κ. Thus, |

⋃
x∈B∩A Fx| � 2κ as well,

and therefore |[
⋃

x∈B∩A Fx]�κ| � 2κ. For each V ∈ [
⋃

x∈B∩A Fx]�κ, with A \
⋃
V 
= ∅, pick a point from

A \
⋃
V. Let C be the set of these points. Then |B ∪ C| � 2κ. Set Bα = B ∪ Cθ. As btsθ(X) � κ, we have

by Theorem 2.8 that |B| � (2κ)κ = 2κ. End of the construction.
Let B = Bκ+ . It remains to show that A ⊆ B. Assume otherwise, and fix a0 ∈ A \ B. As B is θ-closed,

for each x ∈ A \ B we can choose Vx ∈ Fx such that Vx ∩ B = ∅. For x ∈ A ∩ B, choose Vx ∈ Fx such
that a0 /∈ Vx. As {Vx

◦: x ∈ A} is an open cover of A and aL(A,X) � κ, there is K ∈ [A]�κ such that
A ⊆

⋃
x∈K Vx. As Vx ∩B = ∅ for each x ∈ A \B,

B ∩A ⊆
⋃

x∈K∩B

Vx.

As κ+ is regular, there is α < κ+ such that K∩B ⊆ Bα. As a0 ∈ A\
⋃

x∈K∩B Vx, we have by the construction
of Bα+1 an element in Bα+1 ∩A \

⋃
x∈K∩B Vx, and therefore so in B ∩A \

⋃
x∈K∩B Vx; a contradiction. �

The following corollary improves upon a result of Bonanzinga, Cammaroto and Matveev [5], asserting
that for Hausdorff, finitely-Urysohn spaces X, |X| � 2χ(X)·aL(X,X).

Corollary 4.3. Let X be a Hausdorff, finitely-Urysohn space. For each A ⊆ X, |A| � 2χθ(X)·aL(A,X). In
particular, |X| � 2χθ(X)·aL(X,X).

Proof. By Theorem 2.6, btsθ(X) � fbtθ(X) � χθ(X) for finitely-Urysohn spaces. Thus, Theorem 4.2
applies. �
4.1. Final comment

Replacing, everywhere relevant, closed neighborhoods by neighborhoods, one obtains the notions of finitely-
Hausdorff spaces, and the corresponding results hold true. This line of investigation was initiated by
Bonanzinga in [4]. The results presented here generalize some of her results.
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