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Abstract. Menger’s basis property is a generalization of σ -compactness and admits an elegant
combinatorial interpretation. We introduce a general combinatorial method to construct non-σ -
compact sets of reals with Menger’s property. Special instances of these constructions give known
counterexamples to conjectures of Menger and Hurewicz. We obtain the first explicit solution to the
Hurewicz 1927 problem, that was previously solved by Chaber and Pol on a dichotomic basis.

The constructed sets generate nontrivial subfields of the real line with strong combinatorial
properties, and most of our results can be stated in a Ramsey-theoretic manner.

Since we believe that this paper is of interest to a diverse mathematical audience, we have made
a special effort to make it self-contained and accessible.

Keywords. Menger property, Hurewicz property, filter covers, topological groups, selection prin-
ciples

Whenever you can settle a question by explicit construction, be not satisfied with
purely existential arguments.

Hermann Weyl, Princeton Conference 1946

1. Introduction and summary

Menger’s property (1924) is a generalization of σ -compactness. Menger conjectured that
his property actually characterizes σ -compactness. Hurewicz found an elegant combina-
torial interpretation of Menger’s property, and introduced a formally stronger property
(1925, 1927). Hurewicz’s property is also implied by σ -compactness, and Hurewicz con-
jectured that his formally stronger property characterizes σ -compactness. He posed the
question whether his property is strictly stronger than Menger’s. We will call this question
the Hurewicz problem.
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In Section 2 we define the Menger and Hurewicz properties, and show that they are
extremal cases of a large family of properties. We treat this family in a unified manner and
obtain, using a combinatorial approach, many counterexamples to the above mentioned
conjectures of Menger and Hurewicz.

In Section 3 we show that a theorem of Chaber and Pol implies a positive solution to
the Hurewicz problem. In fact, it establishes the existence of a set of reals X without the
Hurewicz property, such that all finite powers of X have the Menger property. However,
this solution does not point out a concrete example. We construct a concrete set having
Menger’s but not Hurewicz’s property, yielding a more elegant and direct solution.

Chaber and Pol’s proof is topological. In Section 4 we show how to obtain Chaber and
Pol’s result and extensions of it using the combinatorial approach. In Section 6 we use
these results to generate fields (in the algebraic sense) which are counterexamples to the
Hurewicz and Menger Conjectures and examples for the Hurewicz problem. In Section 7
it is shown that some of our examples are very small, both in the sense of measure and in
the sense of category.

Section 8 reveals the underlying connections with the field of selection principles,
where our main results are extended further. In Section 9 we explain how to extend some
of the results further, and in Section 10 we translate our results into the language of
Ramsey theory, and indicate an application to the undecidable notion of strong measure
zero.

2. The Menger property

2.1. Menger’s property and bounded images

In 1924 Menger introduced the following basis property for a metric space X [25]:

For each basis B of X, there exists a sequence {Bn}n∈N in B such that
limn→∞ diam(Bn) = 0 and X =

⋃
n Bn.

Each σ -compact metric space has this property, and Menger conjectured that this prop-
erty characterizes σ -compactness. The task of disproving this conjecture without special
hypotheses was first achieved in Fremlin and Miller’s 1988 paper [14], alas in an exis-
tential manner. Concrete counterexamples were given much later [4]. In Section 2.3, we
describe a general method to produce counterexamples to this conjecture.

In 1927 Hurewicz obtained the following characterization of Menger’s property. Let
N denote the (discrete) space of natural numbers, including 0, and endow the Baire space
NN with the Tikhonov product topology. Define a partial order1

≤
∗ on NN by

f ≤∗ g if f (n) ≤ g(n) for all but finitely many n.

A subsetD of NN is dominating if for each g ∈ NN there exists f ∈ D such that g ≤∗ f .

1 By partial order we mean a reflexive and transitive relation. We do not require its being anti-
symmetric.



Scales, fields, and a problem of Hurewicz 839

Theorem 2.1 (Hurewicz [18]). A set of realsX has Menger’s property if, and only if, no
continuous image of X in NN is dominating.

Menger’s property is a specific instance of a general scheme of properties.

Definition 2.2. For A,B ⊆ N, A ⊆∗ B means that A \ B is finite. Let [N]ℵ0 denote
the collection of all infinite sets of natural numbers. A nonempty family F ⊆ [N]ℵ0 is a
semifilter if for each A ∈ F and each B ⊆ N such that A ⊆∗ B, also B ∈ F . (Note that
all elements of F are infinite, and F is closed under finite modifications of its elements.)
F is a filter if it is a semifilter and it is closed under finite intersections (this is often called
a free filter). For F ⊆ [N]ℵ0 and f, g ∈ NN, define

[f ≤ g] = {n : f (n) ≤ g(n)}, f ≤F g if [f ≤ g] ∈ F .

Fix a semifilter F . A set of reals X satisfies B(F) if each continuous image of X in NN is
bounded with respect to ≤F , that is, there is g ∈ NN such that for each f in the image
of X, f ≤F g.

Thus, Menger’s property is the same as B([N]ℵ0), and it is the weakest among the prop-
erties B(F) where F is a semifilter.

Hurewicz also considered the following property (the Hurewicz property) [17]: Each
continuous image of X in NN is bounded with respect to ≤∗. This is also a special case
of B(F), obtained when F is the Fréchet filter consisting of all cofinite sets of natural
numbers. The Hurewicz property is the strongest among the properties B(F) where F is
a semifilter, and Hurewicz conjectured that it characterizes σ -compactness. This was first
disproved by Just, Miller, Scheepers and Szeptycki in [19], and will also follow from the
results below.

The following is easy to verify.

Lemma 2.3. For each semifilter F , B(F) is preserved by continuous images and is
hereditary for closed subsets. ut

This allows us to work in any separable, zero-dimensional metric space instead of working
in R. For brevity, we will refer to any space of this kind as a set of reals. We consider
several canonical spaces which carry a convenient combinatorial structure.

2.2. The many faces of the Baire space and the Cantor space

The Baire space NN and the Cantor space {0, 1}N are equipped with the product topology.
These spaces will appear under various guises in this paper, according to the required
combinatorial structure. P(N), the collection of all subsets of N, is identified with {0, 1}N

via characteristic functions, and inherits its topology (so that by definition P(N) and
{0, 1}N are homeomorphic). [N]ℵ0 is a subspace of P(N) and is homeomorphic to NN. In
turn, [N]ℵ0 is homeomorphic to its subspace [N](ℵ0,ℵ0) consisting of the infinite coinfinite
sets of natural numbers. Similarly, N↑N, the collection of all increasing elements of NN,
is homeomorphic to NN.
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The following compactification of N↑N appears in [3]: Let N = N ∪ {∞} be the
one-point compactification of N. Let N↑N be the collection of all nondecreasing elements
f of NN

such that f (n) < f (n + 1) whenever f (n) < ∞. For each nondecreasing
finite sequence s of natural numbers, define qs ∈ N↑N by qs(n) = s(n) if n < |s|, and
qs(n) = ∞ otherwise. Let Q be the collection of all these elements qs . Then Q is dense
in N↑N = Q ∪ N↑N. N↑N is another guise of the Cantor space. Let [N]<ℵ0 denote the
finite subsets of N.

Lemma 2.4. Define 9 : N↑N→ P(N) by

9(f ) =

{
im(f ), f ∈ N↑N,
im(s), f = qs ∈ Q,

(in short, 9(f ) = im(f ) \ {∞}). Then 9 is a homeomorphism mapping Q onto [N]<ℵ0

and N↑N onto [N]ℵ0 . ut

Lemma 2.4 says that we can identify sets of natural numbers with their increasing enu-
merations, and obtain N↑N (where a finite increasing sequence s is identified with qs).
This identification will be used throughout the paper. When using it, we will denote ele-
ments of [N]ℵ0 by lowercase letters to indicate that we are also treating them as increasing
functions. (Otherwise, we use uppercase letters.) E.g., for a, b ∈ [N]ℵ0 , a ≤F b is an as-
sertion concerning the increasing enumerations of a and b. Similarly for ≤∗, 6≤∗, etc.
Also, min{a, b} denotes the function f (n) = min{a(n), b(n)} for each n, and similarly
for max{a, b}, etc.

We will need the following lemma from [4]. For the reader’s convenience, we repro-
duce its proof.

Lemma 2.5. Assume thatQk
⊆ Xk ⊆ (N↑N)k , and 9 : Xk → NN is continuous onQk .

Then there exists g ∈ NN such that for all x1, . . . , xk ∈ X,

[g < min{x1, . . . , xk}] ⊆ [9(x1, . . . , xk) ≤ g].

Proof. For each A ⊆ N↑N, let A�n = {x�n : x ∈ A}. For each n, let N↑n = N↑N�n. For
σ ∈ N↑n, write qσ for qσ�m where m = 1+max{i < n : σ(i) <∞}.

If σ ∈ N↑n and I is a basic open neighborhood of qσ , then there exists a natural
number N such that for each x ∈ N↑N with x�n ∈ I�n and x(n) > N , x ∈ I .

Fix n. Use the continuity of 9 onQk to choose, for each Eσ = (σ1, . . . , σk) ∈ (N
↑n
)k ,

a basic open neighborhood

IEσ = Iσ1 × · · · × Iσk ⊆ (N
↑N
)k

of qEσ = (qσ1 , . . . , qσk ) such that for all (x1, . . . , xk) ∈ IEσ ∩ X
k , 9(x1, . . . , xk)(n) =

9(qEσ )(n). For each i = 1, . . . , k, choose Ni such that for all x ∈ N↑N with x�n ∈ Iσi �n
and x(n) > Ni , x ∈ Iσi . Define N(Eσ) = max{N1, . . . , Nk}.
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The set I (n)
Eσ
= {(x1�n, . . . , xk�n) : (x1, . . . , xk) ∈ IEσ } is open in (N↑n)k and the

family {I (n)
Eσ

: Eσ ∈ (N↑n)k} is a cover of the compact space (N↑n)k . Take a finite subcover

{I
(n)

Eσ1
, . . . , I

(n)

Eσm
} of (N↑n)k . Let N = max{N(Eσ1), . . . , N(Eσm)}, and define

g(n) = max{N,9(qEσ1)(n), . . . , 9(qEσm)(n)}.

For all x1, . . . , xk ∈ X, let i be such that (x1�n, . . . , xk�n) ∈ I
(n)

Eσi
. If x1(n), . . . , xk(n)

> N , then 9(x1, . . . , xk)(n) = 9(qEσi )(n) ≤ g(n). ut

2.3. Sets of reals satisfying B(F)

Definition 2.6. For a semifilter F , let b(F) denote the minimal cardinality of a family
Y ⊆ NN which is unbounded with respect to ≤F .

The most well known instances of Definition 2.6 are d = b([N]ℵ0) (the minimal cardi-
nality of a dominating family), and b = b(F) where F is the Fréchet filter (the minimal
cardinality of an unbounded family with respect to ≤∗). For a collection (or property) I
of sets of reals, the critical cardinality of I is

non(I) = min{|X| : X ⊆ R and X 6∈ I}.

Lemma 2.7. For each semifilter F , non(B(F)) = b(F). ut

The following notion is our basic building block.

Definition 2.8. S = {fα : α < b(F)} is a b(F)-scale if S ⊆ N↑N, S is unbounded with
respect to ≤F , and for any α < β < b(F), fα ≤F fβ .

Lemma 2.9. For each semifilter F , there exists a b(F)-scale.

Proof. Let B = {bα : α < b(F)} ⊆ NN be unbounded with respect to ≤F . By induction
on α < b(F), let g be a witness that {fβ : β < α} is bounded with respect to ≤F , and
take fα = max{bα, g}. Then S = {fα : α < b(F)} is a b(F)-scale. ut

For a semifilter F , define
F+ = {A ⊆ N : Ac 6∈ F}.

Note that F++ = F .

Remark 2.10. Let R be a binary relation on a set P . A subset S of P is cofinal with
respect to R if for each p ∈ P there is s ∈ S such that pRs. A transfinite sequence
{pα : α < κ} in P is nondecreasing with respect to R if pαRpβ for all α ≤ β.

Recall that a set of realsX is meager (has Baire first category) if it is a countable union
of nowhere dense sets. Since the autohomeomorphism of P(N) defined by A 7→ Ac

carries F+ to Fc
= P(N) \ F , we see that F is meager if, and only if, F+ is comeager.
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Lemma 2.11. Assume thatF is a semifilter. ThenA ∈ F+ if, and only if,A∩B is infinite
for each B ∈ F .

Proof. (⇐) Assume thatA∩B is infinite for each B ∈ F . SinceA∩Ac = ∅, necessarily
Ac 6∈ F .

(⇒) If B ∈ F and A ∩ B is finite, then B ⊆∗ Ac; thus Ac ∈ F . ut

Definition 2.12. For a semifilter F and A ∈ F+, define

F�A = {B ∩ A : B ∈ F}, FA = {C ⊆ N : (∃B ∈ F) B ∩ A ⊆ C}.

Lemma 2.13. For each semifilter F and each A ∈ F+,

(1) FA is the smallest semifilter containing F�A.
(2) F ⊆ FA, and if F is a filter, then FA ⊆ F+. ut

Theorem 2.14. Assume that F is a semifilter, and S = {fα : α < b(F)} is a b(F)-scale.
Let X = S ∪Q. Then for each continuous 9 : X → NN, there exists A ∈ F+ such that
9[X] is bounded with respect to ≤FA .

Proof. Let g ∈ NN be as in Lemma 2.5. Since S is unbounded with respect to ≤F , there
exists α < b(F) such that fα 6≤F g, that is, A := [g < fα] ∈ F+. For each β ≥ α,
[fα ≤ fβ ] ∈ F . By Lemma 2.5,

[9(fβ) ≤ g] ⊇ [g < fβ ] ⊇ A ∩ [fα ≤ fβ ] ∈ F�A.

Let Y = 9[{fβ : β < α} ∪Q]. Since |Y | < b(F), Y is ≤F -bounded by some h ∈ NN,
and we may require that [g ≤ h] = N. Then for each x ∈ X, 9(x) ≤FA h. ut

Corollary 2.15. In the notation of Theorem 2.14, if F is a filter, then X satisfies B(F+).
ut

In many cases (including the classical ones), Theorem 2.14 implies the stronger assertion
that X satisfies B(F).

Corollary 2.16. In the notation of Theorem 2.14, suppose that:

(1) F is an ultrafilter, or
(2) F = [N]ℵ0 (Menger property), or
(3) F is the Fréchet filter (Hurewicz property).

Then X satisfies B(F).

Proof. (1) If F is an ultrafilter, then F+ = F , and by Corollary 2.15, X satisfies B(F).
(2) If F = [N]ℵ0 , then for each A ∈ F+, A is cofinite and therefore FA = F , so X

satisfies B(F).
(3) If F is the Fréchet filter, then each continuous image of X in NN is ≤∗-bounded

when restricted to the infinite set A. To complete the proof, we make the following easy
observations.
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Lemma 2.17. The mapping9 : NN
→ N↑N defined by9(f )(n) = n+f (0)+· · ·+f (n)

is a homeomorphism and preserves ≤∗-unboundedness. ut

Lemma 2.18. If a subset of N↑N is ≤∗-bounded when restricted to some infinite set
a ⊆ N, then it is ≤∗-bounded.

Proof. If a ⊆∗ [f ≤ g] for each f ∈ Y and g is increasing, then f ≤∗ f ◦ a ≤∗ g ◦ a
for each f ∈ Y . ut

It follows that each continuous image of X is ≤∗-bounded, so X satisfies B(F), complet-
ing the proof of Corollary 2.16. ut

Items (2) and (3) in Corollary 2.16 were first proved in [4], using two specialized proofs.
None of the examples provided by Theorem 2.14 is trivial: Each of them is a coun-

terexample to the Menger conjecture, and some of them are counterexamples to the
Hurewicz conjecture (see also Section 2.5). Let κ be an infinite cardinal. A set of re-
als X is κ-concentrated on a set Q if, for each open set U containing Q, |X \ U | < κ .
Recall that a set of reals is perfect if it is nonempty, closed, and has no isolated points.

Lemma 2.19. Assume that a set of reals X is c-concentrated on a countable set Q. Then
X does not contain a perfect set.

Proof. Assume thatX contains a perfect set P . Then P \Q is Borel and uncountable, and
thus contains a perfect set C. Then U = R \C is open and containsQ, and C = P \U ⊆
X \ U has cardinality c. Thus, X is not c-concentrated on Q. ut

Theorem 2.20. In the notation of Theorem 2.14, X does not contain a perfect subset. In
particular, X is not σ -compact.

Proof. If U is an open set containing Q, then K = (N↑N) \ U is a closed and therefore
compact subset of N↑N. Thus, K is a compact subset of N↑N, and therefore it is bounded
with respect to ≤∗. Thus, |S ∩ K| < b(F). This shows that X is b(F)-concentrated (in
particular, c-concentrated) on Q. Use Lemma 2.19. ut

Remark 2.21. In fact, the proof of Theorem 2.20 gives more: Since b(F) ≤ d, X is d-
concentrated on Q, and therefore [4] X has the property S1(0,O) defined in [19] (see
the forthcoming Section 8). By [19], S1(0,O) is preserved under continuous images and
implies that there are no perfect subsets. It follows that no continuous image ofX contains
a perfect subset.

2.4. Cofinal scales

In some situations the following is useful.

Definition 2.22. For a semifilter F , we say that S = {fα : α < b(F)} is a cofinal
b(F)-scale if:

(1) For all α < β < b(F), fα ≤F fβ .
(2) For each g ∈ NN, there is α < b(F) such that for each β ≥ α, g ≤F fβ .
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If F ⊆ F+, then every cofinal b(F)-scale is a b(F)-scale. If F+ is a filter, then every
b(F)-scale is a cofinal b(F)-scale. In particular, if F is an ultrafilter, then the two notions
coincide.

Lemma 2.23. Assume that F is a semifilter and b(F) = d. Then there exists a cofinal
b(F)-scale.

Proof. Fix a dominating family {dα : α < d} ⊆ NN. At step α < d, choose fα ∈ N↑N
which is an upper bound of {fβ , dβ : β < α} with respect to ≤F (this is possible because
d = b(F)). Take S = {fα : α < d}.

Let g ∈ NN. Take α < d such that g ≤∗ dα . For each β ≥ α, g ≤∗ dα ≤F fβ , and
therefore g ≤F fβ . ut

Theorem 2.24. Assume that F is a semifilter. Then for each cofinal b(F)-scale S =
{fn : α < b(F)}, X = S ∪Q satisfies B(F).

Proof. Assume that 9 : X → NN is continuous. Let g ∈ NN be as in Lemma 2.5. Take
α < b(F) such that for each β ≥ α, g ≤F fβ . Then for each β ≥ α, 9(fβ) ≤F g.

The cardinality of9[{fβ : β ≤ α}∪Q] is smaller than b(F), and is therefore bounded
with respect to ≤F . It follows that 9[X] is bounded with respect to ≤F . ut

2.5. Many counterexamples to the Hurewicz conjecture

Recall that Hurewicz conjectured that for sets of reals, the Hurewicz property is equivalent
to σ -compactness. In the previous section we gave one type of counterexample, derived
from a b(F)-scale where F is the Fréchet filter. We extend this construction to a family
of semifilters.

Definition 2.25. A family F ⊆ [N]ℵ0 is feeble if there exists h ∈ N↑N such that for each
A ∈ F , A ∩ [h(n), h(n+1)) 6= ∅ for all but finitely many n.

By a result of Talagrand (see [1, 5.4.1]), a semifilter F is feeble if, and only if, it is a
meager subset of [N]ℵ0 .

Lemma 2.26. Assume that F ⊆ [N]ℵ0 is feeble. If Y ⊆ N↑N is bounded with respect
to ≤F , then Y is bounded with respect to ≤∗.

Proof. Take h ∈ N↑N witnessing that F is feeble, and g ∈ N↑N witnessing that Y is
bounded with respect to ≤F . Define g̃ ∈ NN by g̃(k) = g(h(n + 2)) for each k ∈
[h(n), h(n+1)). It is easy to see that for each f ∈ Y , f ≤∗ g̃. ut

Corollary 2.27. Assume that F is a feeble semifilter. Then b(F) = b. ut

Theorem 2.28. Assume that F is a feeble semifilter, and S = {fα : α < b} is a b(F)-
scale. Then X = S ∪Q has the Hurewicz property.
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Proof. This is a careful modification of the proof of Theorem 2.14. Let h ∈ N↑N witness
the feebleness of F . Assume that 9 : X → NN is continuous. We may assume that all
elements in 9[X] are increasing (see Lemma 2.17). Let g ∈ N↑N be as in Lemma 2.5.
Define g̃ ∈ N↑N by g̃(k) = g(h(n+ 2)) for each k ∈ [h(n), h(n+1)).

As S is unbounded with respect to ≤F , there exists α < b such that A := [g̃ < fα]
∈ F+. In particular, A is infinite. Let C = {n : A ∩ [h(n − 1), h(n)) 6= ∅}. For each
β ≥ α, [fα ≤ fβ ] ∈ F . For all but finitely many n ∈ C, there are m ∈ [fα ≤ fβ ]
∩ [h(n), h(n+1)) and l ∈ A ∩ [h(n− 1), h(n)), and therefore

g(h(n+ 1)) = g̃(l) < fα(l) ≤ fα(m) ≤ fβ(m) ≤ fβ(h(n+ 1)).

In particular, [g < fβ ] ∩ [h(n+ 1), h(n+ 2)) 6= ∅. By Lemma 2.5,

[9(fβ) ≤ g] ⊇ [g < fβ ] ⊇∗ {h(n+ 1) : n ∈ C}.

Thus, Y = {9(fβ) : β ≥ α} is ≤∗-bounded on an infinite set and therefore ≤∗-bounded.
Let Z = 9[{fβ : β < α} ∪ Q]. Since |Z| < b, Z is ≤∗-bounded, and therefore

9[X] = Y ∪ Z is ≤∗-bounded. ut

By Theorem 2.20, each of the sets X of Theorem 2.28 is a counterexample to the Hure-
wicz conjecture.

2.6. Coherence classes

We make some order in the large family of properties of the form B(F).

Definition 2.29. For h ∈ N↑N and A ⊆ N let

clh(A) =
⋃
{[h(n), h(n+1)) : A ∩ [h(n), h(n+1)) 6= ∅}.

A semifilter S is strictly subcoherent to a semifilter F if there exists h ∈ N↑N such that
for each A ∈ S, clh(A) ∈ F (equivalently, there is a monotone surjection ϕ : N → N
such that {ϕ[A] : A ∈ S} ⊆ {ϕ[A] : A ∈ F}). S is strictly coherent to F if each of them
is strictly subcoherent to the other.

The Fréchet filter is strictly subcoherent to any semifilter, so that a semifilter is feeble
exactly when it is strictly coherent to the Fréchet filter.

Lemma 2.30. Each comeager semifilter S is strictly coherent to [N]ℵ0 .

Proof. Clearly, any semifilter is strictly subcoherent to [N]ℵ0 . We prove the other direc-
tion. Since S+ is homeomorphic to Sc, it is meager and thus feeble. Let h ∈ N↑N be
a witness for that. Fix A ∈ [N]ℵ0 and let B = clh(A). Then Bc

6∈ S+, and therefore
B ∈ (S+)+ = S. ut
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Lemma 2.31. Let h ∈ N↑N. Define a mapping 8h : NN
→ NN by 8h(f ) = f̃ , where

for each n and each k ∈ [h(n), h(n+1)),

f̃ (k) = max{f (i) : i ∈ [h(n), h(n+1))}.

Then:

(1) 8h is continuous.
(2) For each f ∈ NN, if f̃ = 8h(f ), then [f ≤ f̃ ] = N.
(3) For each f, g ∈ NN, if f̃ = 8h(f ), g̃ = 8h(g), and A = [f̃ ≤ g̃], then A = clh(A).

ut

Theorem 2.32. Assume that S and F are semifilters such that S is strictly subcoherent
to F . Then B(S) implies B(F). In particular, the properties B(F) depend only on the
strict-coherence class of F .

Proof. Assume that X satisfies B(S), and let h ∈ N↑N be a witness for S being strictly
subcoherent to F . Let Y be any continuous image ofX in NN. Then Y satisfies B(S), and
therefore so does Ỹ = 8h[Y ] (where 8h is as in Lemma 2.31), a continuous image of Y .
Let g ∈ NN be a witness for that, and take g̃ = 8h(g). For each f ∈ Y ,

[f ≤ g̃] ⊇ [f̃ ≤ g̃] ⊇ [f̃ ≤ g] ∈ S,

so taking A = [f̃ ≤ g̃], we find that [f ≤ g̃] ⊇ A = clh(A) ∈ F . ut

Note that if S is a feeble semifilter, then by Theorem 2.32, B(S) = B(F) where F is the
Fréchet filter (thus, each set of reals satisfying B(S) is a counterexample to the Hurewicz
conjecture). In particular, b(S) = non(B(S)) = non(B(F)) = b. Thus, Theorem 2.32
can be viewed as a structural counterpart of Corollary 2.27.

3. A problem of Hurewicz

3.1. History

In his 1927 paper [18], Hurewicz writes (page 196, footnote 1):

Aus der Eigenschaft E∗∗ folgt offenbar die Eigenschaft E∗. Die Frage nach der
Existenz von Mengen mit der Eigenschaft E∗ ohne Eigenschaft E∗∗ bleibt hier
offen.

In our language and terminology this reads: “The Menger property obviously follows
from the Hurewicz property. The question about the existence of sets with the Menger
property and without the Hurewicz property remains open.”

At the correction stage, Hurewicz added there that Sierpiński proved that the answer
is positive if we assume the Continuum Hypothesis. Thus, the answer is consistently
positive. But it remained open whether the answer is provably positive.
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This problem of Hurewicz also appears twice in Lelek’s 1969 paper [24] (pages 210
and 211), as well as in several recent accounts, for example: Problem 3 in Just, Miller,
Scheepers and Szeptycki’s [19].

An existential solution to the Hurewicz problem was essentially established by Chaber
and Pol at the end of 2002.

Theorem 3.1 (Chaber–Pol [13]). There exists X ⊆ NN such that all finite powers of X
have the Menger property, and X is not contained in any σ -compact subset of NN.

In Theorem 5.7 of [19] it is proved that a set of reals X has the Hurewicz property if, and
only if, for eachGδ setG containingX, there is a σ -compact setK such thatX ⊆ K ⊆ G.
Consequently, Chaber and Pol’s result implies a positive answer to the Hurewicz problem,
even when all finite powers of X are required to have the Menger property.

Prior to the present investigation, it was not observed that the Chaber–Pol Theorem
3.1 solves the Hurewicz problem, and the Hurewicz problem continued to be raised, e.g.:
Problem 1 in Bukovský and Haleš’ [11]; Problem 2.1 in Bukovský’s [9]; Problem 1 in
Bukovský’s [10]; Problem 5.1 in the first author’s [38].

Chaber and Pol’s solution is existential in the sense that their proof does not point out a
specific example for a setX, but instead gives one example if b = d (the interesting case),
and another if b < d (the trivial case). In the current context, this approach was originated
in Fremlin and Miller’s [14], improved in Just, Miller, Scheepers and Szeptycki’s [19]
and exploited further in Chaber and Pol’s argument.

We will give an explicit solution to the Hurewicz problem.

3.2. A solution of the Hurewicz problem by direct construction

A continuous metrizable image of the Baire space NN is called analytic.

Lemma 3.2. Assume that A is an analytic subset of [N]ℵ0 . Then the smallest semifilter
F containing A is analytic.

Proof. For a finite subset F of N, define 8F : [N]ℵ0 → [N]ℵ0 by 8F (A) = A \ F for
each A ∈ [N]ℵ0 . Then 8F is continuous, and therefore 8F (A) is analytic. Let

B =
⋃

finiteF⊆N
8F (A).

Then B is analytic, and therefore so is B×P(N). Since the mapping8 : P(N)×P(N)→
P(N) defined by (A,B) 7→ A ∪ B is continuous, we see that F = 8[B × P(N)] is
analytic. ut

Lemma 3.3. Assume that F is a nonmeager semifilter, and Y ⊆ NN is analytic. If Y is
bounded with respect to ≤F+ , then Y is bounded with respect to ≤∗.
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Proof. Let g be a ≤F+ -bound of Y . Define 8 : Y → [N]ℵ0 by

8(f ) = [f ≤ g].

Then8 is continuous. Thus,8[Y ] is analytic and by Lemma 3.2, the smallest semifilter S
containing it is also analytic. Since S is closed under finite modifications of its elements,
the topological 0-1 law [20, 8.47] shows that S is either meager or comeager.

Note that S ⊂ F+. Since F is not meager, F+ is not comeager, hence S is meager
(and therefore feeble). As Y is bounded with respect to ≤S (as witnessed by g), it follows
from Lemma 2.26 that Y is bounded with respect to ≤∗. ut

Corollary 3.4. Assume that F is a nonmeager semifilter. Then for each f ∈ N↑N, the set
{g ∈ N↑N : f ≤F g} is nonmeager.

Proof. Assume that {g ∈ N↑N : f ≤F g} is meager. Then there exists a dense Gδ set
G ⊆ N↑N such that g ≤F+ f for all g ∈ G. By Lemma 3.3, G is bounded with respect
to ≤∗, and therefore meager; a contradiction. ut

Definition 3.5. A semifilter S is nonmeager-bounding if for each family Y ⊆ NN with
|Y | < b(S), the set {g ∈ N↑N : (∀f ∈ Y ) f ≤S g} is nonmeager.

We will use the following generalization of Definition 2.29.

Definition 3.6. For h ∈ N↑N and A ⊆ N let

cl+h (A) =
⋃
{[h(n), h(n+ 3)) : A ∩ [h(n+ 1), h(n+ 2)) 6= ∅}.

A semifilter S is subcoherent to a semifilter F if there exists h ∈ N↑N such that for each
A ∈ S, cl+h (A) ∈ F . S is coherent to F if each of them is subcoherent to the other.

It is often, but not always, the case that subcoherence coincides with strict subcoherence—
see Chapter 5 of [1].

Proposition 3.7. Assume that S is a semifilter. If any of the following holds, then S is
nonmeager-bounding:

(1) S is a nonmeager filter, or
(2) S = [N]ℵ0 , or
(3) S is coherent to a nonmeager filter, or
(4) S is comeager.

Proof. (1) Assume that Y ⊆ N↑N and |Y | < b(S). Let f ∈ N↑N be a ≤S -bound of Y .
By Corollary 3.4, {g ∈ N↑N : f ≤S g} is nonmeager. Since S is a filter, ≤S is transitive,
and therefore each member in this nonmeager set is a ≤S -bound of Y .

(2) Assume that Y ⊆ N↑N and |Y | < d. We may assume that Y is closed under
pointwise maxima. Let g ∈ N↑N be a witness for the fact that Y is not dominating. Then
{[f ≤ g] : f ∈ Y } is closed under taking finite intersections. Let U be an ultrafilter
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extending it. By (1), Z = {h ∈ N↑N : g ≤U h} is nonmeager. For each h ∈ Z, f ≤U
g ≤U h (in particular, f ≤[N]ℵ0 g) for each f ∈ Y .

(3) Any semifilter coherent to a filter is actually strictly coherent to it [1, 5.5.3]. Thus,
assume that S is strictly coherent to a nonmeager filter F . Then there is a monotone
surjection ϕ : N→ N such that {ϕ[A] : A ∈ S} = {ϕ[A] : A ∈ F} [1, 5.5.2]. The filter
G generated by {ϕ−1[ϕ[A]] : A ∈ S} is contained in S. Since G is coherent to S, it is
nonmeager and b(G) = b(S) [1, 5.3.1 and 10.1.13]. Thus, G is nonmeager-bounding and
since b(G) = b(S) and ≤S extends ≤G , S is nonmeager-bounding.

(4) Using Lemma 2.30, let h ∈ N↑N be a witness for [N]ℵ0 being strictly subcoherent
to S. Assume that Y ⊆ NN and |Y | < b(S). For each f ∈ Y define f̃ ∈ NN by f̃ (n) =
max{f (k) : k ∈ [h(n), h(n+1))}. By (2), Z = {g ∈ N↑N : (∀f ∈ Y ) f̃ ≤[N]ℵ0 g}

is nonmeager. Fix any g in this nonmeager set. Let f ∈ Y , and A = [f̃ ≤ g]. Then
A ∈ [N]ℵ0 , and for each n ∈ A and each k ∈ [h(n), h(n+1)),

f (k) ≤ f̃ (n) ≤ g(n) ≤ g(h(n)) ≤ g(k),

that is, [f ≤ g] ⊇
⋃
n∈A [h(n), h(n+1)). By Lemma 2.30, the last set is in S. ut

Remark 3.8. Under some set-theoretic hypotheses, e.g., b = d or u < g, all nonmeager
semifilters are nonmeager-bounding.

The assumptions on F in the following theorem hold for F = [N]ℵ0 . Thus, this
theorem implies the promised solution to the Hurewicz problem.

Theorem 3.9. Assume that F is a nonmeager-bounding semifilter with b(F) = d. Then
there is a cofinal b(F)-scale S = {fα : α < d} such that the set X = S ∪ Q satisfies
B(F) but does not have the Hurewicz property.

Proof. We will identify N↑N with P(N), identifying Q with [N]<ℵ0 and N↑N with [N]ℵ0

(see Lemma 2.4 and the discussion following it). Recall that [N](ℵ0,ℵ0) is the collection
of infinite coinfinite subsets of N. For each g ∈ NN, {a ∈ [N](ℵ0,ℵ0) : a ≤∗ g} is
meager, and therefore so is Mg := {a ∈ [N](ℵ0,ℵ0) : ac ≤∗ g} (since A 7→ Ac is an
autohomeomorphism of [N](ℵ0,ℵ0)).

Fix a dominating family {dα : α < d} ⊆ NN. Define aα ∈ [N](ℵ0,ℵ0) by induction
on α < d, as follows: At step α use the fact that F is nonmeager-bounding to find aα ∈
[N](ℵ0,ℵ0) \Mdα which is a bound for {dβ , aβ : β < α} with respect to ≤F . Take S =
{aα : α < d}.

By Theorem 2.24, X = S ∪Q satisfies B(F). But {xc : x ∈ X} is a homeomorphic
image ofX in NN, and is unbounded (with respect to≤∗), since for each α < d, acα 6≤

∗ dα .
Thus, X does not have the Hurewicz property. ut

The methods that Chaber and Pol used to prove their Theorem 3.1 are topological. We
proceed to show that Chaber and Pol’s theorem can also be obtained using the combina-
torial approach.
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4. Finite powers and the Chaber–Pol theorem

Having the property B(F) in all finite powers is useful for the generation of (nontrivial)
groups and other algebraic objects satisfying B(F). In this section we restrict attention to
filters.

Theorem 4.1. Assume that F is a filter, and S = {fα : α < b(F)} is a b(F)-scale. Let
X = S ∪ Q. Then for each k and each continuous 9 : Xk → NN, there exist elements
A1, . . . , Ak ∈ F+ such that 9[Xk] is bounded with respect to ≤FA1∪···∪FAk .

The proof of Theorem 4.1 is by induction on k. To make the induction step possible, we
strengthen its assertion.

Proposition 4.2. For each k and each family C of fewer than b(F) continuous functions
from Xk to NN, there exist elements A1, . . . , Ak ∈ F+ such that

⋃
{9[Xk] : 9 ∈ C } is

bounded with respect to ≤FA1∪···∪FAk .

Proof. For each 9 ∈ C , let g9 ∈ NN be as in Lemma 2.5. Since |C | < b(F), there is
g0 ∈ NN such that g9 ≤F g0 for each 9 ∈ C . Choose α < b(F) such that [g0 < fα]
∈ F+. Then Ak := [g0 < fα] ∈ F+. We continue by induction on k.

k = 1: By Lemma 2.5, for each β ≥ α and each9 ∈ C , [9(fβ) ≤ g0] ∈ FA1 . Since
the cardinality of the set

{9(f ) : 9 ∈ C , f ∈ {fβ : β < α} ∪Q}

is smaller than b(F), this set is bounded with respect to ≤F , by some function h ∈ NN.
Take g = max{g0, h}.

k = m+ 1: For all α1, . . . , αk ≥ α, by Lemma 2.5 we have

[9(fα1 , . . . , fαk ) ≤ g0] ⊇ [g0 < min{fα1 , . . . , fαk }] ⊇ Ak ∩
k⋂
i=1

[fα ≤ fαi ] ∈ F�Ak.

For each f ∈ {fβ : β < α} ∪Q and each i = 1, . . . , k define 9i,f : Xm→ NN by

9i,f (x1, . . . , xm) = 9(x1, . . . , xi−1, f, xi, . . . , xm).

Since there are fewer than b(F) such functions, the induction hypothesis yields
A1, . . . , Am ∈ F+ such that⋃

{9i,f [Xm] : i = 1, . . . , k, f ∈ {fβ : β < α} ∪Q, 9 ∈ C }

is bounded with respect to ≤FA1∪···∪FAm . Let h ∈ NN be such a bound, and take g =
max{g0, h}. Then

⋃
{9[Xk] : 9 ∈ C } is bounded with respect to ≤FA1∪···∪FAk . ut

This completes the proof of Theorem 4.1. ut

Corollary 4.3. In the notation of Theorem 4.1, all finite powers of X satisfy B(F+). ut

Item (2) in Corollary 4.4 below was first proved in [4], using a specialized proof.
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Corollary 4.4. In the notation of Theorem 4.1, suppose that:

(1) F is an ultrafilter, or
(2) F is the Fréchet filter (Hurewicz property).

Then all finite powers of X satisfy B(F).

Proof. (1) If F is an ultrafilter, then F+ = F .
(2) Fix k and a continuous 9 : Xk → NN. We may assume that 9[Xk] ⊆ N↑N.

Apply Theorem 4.1, and let g ∈ NN be a witness for 9[Xk] being bounded with respect
to ≤FA1∪···∪FAk . For each i = 1, . . . , k let Yi = {f ∈ 9[Xk] : f ≤FAi g}. Then each Yi
is bounded, and therefore so is

k⋃
i=1

Yi = 9[Xk]. ut

For later use, we point out the following.

Theorem 4.5. Assume thatF is a filter and S = {fα : α < b(F)} is a cofinal b(F)-scale.
Then all finite powers of the set X = S ∪Q satisfy B(F).

Proof. This is a part of the proof of Theorem 4.1, with each F+ replaced by F (in this
case the proof can be simplified). ut

The cardinal d is not provably regular. However, in most of the known models of set
theory it is regular. In Theorem 16 of [4], a weaker version of Theorem 4.6 below is
established using various hypotheses, all of which imply that d is regular.

Theorem 4.6. Assume that d is regular. Then there is an ultrafilter U with b(U) = d, and
a b(U)-scale S = {fα : α < d} such that all finite powers of the set X = S ∪Q satisfy
B(U), but X does not have the Hurewicz property.

Proof. There always exists an ultrafilter U with b(U) = cf(d) [12]. Since ultrafilters are
not meager, Proposition 3.7(1) shows that U is nonmeager-bounding. Take a b(U)-scale
S = {fα : α < d} as in Theorem 3.9, so that the set X = S ∪ Q does not have the
Hurewicz property. By Corollary 4.4(1), all finite powers of X satisfy B(U). ut

Remark 4.7. In particular, we obtain Chaber and Pol’s Theorem 3.1:

(1) If d is regular, use Theorem 4.6. Otherwise, let X be any unbounded subset of NN

of cardinality cf(d). This proof is still on a dichotomic basis, but the dichotomy here
puts more weight on the interesting case (since b < cf(d) = d is consistent).

(2) The sets in this argument are of cardinality cf(d), while Chaber and Pol’s sets are of
cardinality b. To get sets of cardinality b, use the dichotomy “b = d (which implies
that d is regular) or b < d” instead.
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Remark 4.8. Just as in Chaber and Pol’s [13], our constructions can be carried out in any
nowhere locally compact Polish space P : Fix a countable dense subset E of P . Since E
and our Q are both countable metrizable with no isolated points, they are both homeo-
morphic to the space Q of rational numbers, and hence are homeomorphic via some map
ϕ : Q→ E. According to Lavrent’ev’s theorem [20, 3.9], ϕ can be extended to a homeo-
morphism between two (dense)Gδ sets containingQ and E, respectively. Now, everyGδ
setG in N↑N containingQ contains the set {f ∈ N↑N : f 6≤∗ g} for some fixed g ∈ N↑N,
in which our constructions can be carried out.

5. Finite powers for arbitrary feeble semifilters

We extend Theorem 2.28 and Corollary 4.4(2).

Theorem 5.1. Assume that F1, . . . ,Fk are feeble semifilters, and for each i = 1, . . . , k,
Si = {f

i
α : α < b} is a b(Fi)-scale and Xi = Si ∪Q. Then

∏k
i=1Xi has the Hurewicz

property.

Proof. The proof is by induction on k. The case k = 1 is Theorem 2.28, so assume that
the assertion holds for k − 1 and let us prove it for k.

Let h1, . . . , hk ∈ N↑N witness the feebleness of F1, . . . ,Fk . Take h ∈ N↑N
such that for each n and each i = 1, . . . , k, [h(n), h(n+1)) contains some interval
[hi(j), hi(j+1)). Clearly, h witnesses the feebleness of all semifilters F1, . . . ,Fk .

Assume that 9 :
∏k
i=1Xi → NN is continuous. We may assume that all elements

in 9[X] are increasing. Let g ∈ N↑N be as in Lemma 2.5, and define g̃ ∈ N↑N by
g̃(m) = g(h(n+ 2)) for each m ∈ [h(n), h(n+1)).

Lemma 5.2. Assume that Y1, . . . , Yk ⊆ N↑N are unbounded (with respect to ≤∗) and
g ∈ NN. Then there exist fi ∈ Yi , i = 1, . . . , k, such that [g < min{f1, . . . , fk}] is
infinite.

Proof. Take f1 ∈ Y1 such that A1 = [g < f1] is infinite. As all members of Y2 are
increasing and Y2 is unbounded, Y2 is not bounded on A1, thus there is f2 ∈ Y2 such that
A2 = [g < min{f1, f2}] = A1 ∩ [g < f2] is infinite. Continue inductively. ut

Use Lemma 5.2 to choose α1, . . . , αk < b such that A = [g̃ < min{f 1
α1
, . . . , f kαk }] is

infinite. Let C = {n : A ∩ [h(n− 1), h(n)) 6= ∅}. Take α = max{α1, . . . , αk}.
As in the proof of Theorem 2.28, we infer that for each β ≥ α and each i = 1, . . . , k,

g(h(n+1)) < f iβ(h(n+1)) for all but finitely many n ∈ C. Thus, for all β1, . . . , βk ≥ α,

g(h(n+ 1)) < min{f 1
β1
(h(n+ 1)), . . . , f kβk (h(n+ 1))}

for all but finitely many n ∈ C. By Lemma 2.5,

[9(f 1
β1
, . . . , f kβk ) ≤ g] ⊇ [g < min{f 1

β1
, . . . , f kβk }] ⊇

∗
{h(n+ 1) : n ∈ C},
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that is, {9(f 1
β1
, . . . , f kβk ) : β1, . . . , βk ≥ α} is≤∗-bounded on an infinite set and therefore

≤
∗-bounded.

It follows, as at the end of the proof of Proposition 4.2, that the image of 9 is a union
of fewer than b ≤∗-bounded sets, and is therefore ≤∗-bounded. ut

6. Adding an algebraic structure

In this section we show that most of our examples can be chosen to have an algebraic
structure.

A classical result of von Neumann [27] asserts that there exists a subset C of R which
is homeomorphic to the Cantor space and is algebraically independent over Q. Since the
properties B(F) are preserved under continuous images, we may identify N↑N with such
a set C ⊆ R, and for eachX ⊆ N↑N consider the subfield Q(X) of R generated by Q∪X.
The following theorem extends Theorem 1 of [40] significantly.

Theorem 6.1. Assume that F is a filter, S = {fα : α < b(F)} is a b(F)-scale, and
X = S ∪Q. Then:

(1) All finite powers of Q(X) satisfy B(F+).
(2) If F is an ultrafilter, then all finite powers of Q(X) satisfy B(F).
(3) If F is a feeble filter, then all finite powers of Q(X) have the Hurewicz property.

On the other hand,

(4) For each property P of sets of reals which is hereditary for closed subsets, if X does
not have the property P , then neither does Q(X).

(5) Q(X) is not σ -compact.

Proof. (1) Denote by Q(t1, . . . , tn) the field of all rational functions in the indeterminates
t1, . . . , tn with coefficients in Q. For each n,

Qn(X) = {r(x1, . . . , xn) : r ∈ Q(t1, . . . , tn), x1, . . . , xn ∈ X}

is a union of countably many continuous images of Xn, thus for each k, (Qn(X))
k is

a union of countably many continuous images of Xnk , which by Corollary 4.3 satisfy
B(F+).

For a family I of sets of reals with
⋃
I 6∈ I, let

add(I) = min
{
|J | : J ⊆ I and

⋃
J 6∈ I

}
.

Lemma 6.2. For each semifilter F , add(B(F)) ≥ b. If F is a filter, then add(B(F))
= b(F). ut

Since B(F+) is preserved under taking continuous images and countable unions, we
conclude that each set (Qn(X))

k satisfies B(F+), and therefore so does (Q(X))k =⋃
n(Qn(X))

k .
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(2) and (3) are obtained similarly, as consequences of Corollary 4.4 and Theorem 5.1,
respectively.

(4) Since X ⊆ C and C is algebraically independent, we deduce that Q(X) ∩ C = X
and therefore X is a closed subset of Q(X).

(5) Use (4) and apply Theorem 2.20. ut

The following theorem extends Theorem 5 of [40], and shows that even fields can witness
that the Hurewicz property is stronger than Menger’s.

Theorem 6.3. If d is regular, then for the setX of Theorem 4.6, all finite powers of Q(X)
have the Menger property, but Q(X) does not have the Hurewicz property.

Proof. This follows from Theorems 4.6 and 6.1(4). ut

The following solves Hurewicz’s problem for subfields of R.

Corollary 6.4. There exists X ⊆ R of cardinality cf(d) such that all finite powers of
Q(X) have Menger’s property, but Q(X) does not have the Hurewicz property.

Proof. Take the dichotomic examples of Remark 4.7. ut

Remark 6.5. Problem 6 of [40] and Problem 1.3 of [41] ask (see Section 8 below)
whether there exists a subgroup G of R such that |G| = d and G has Menger’s property.
Theorem 6.3 answers this question in the affirmative under the additional weak assump-
tion that d is regular. Corollary 6.4 answers affirmatively the analogous question where d
is replaced by cf(d).

Remark 6.6. We can make all of our examples subfields of any nondiscrete, separable,
completely metrizable field F. Examples for such fields are, in addition to R, the complex
numbers C and the p-adic numbers Qp. More examples involving meromorphic functions
or formal Laurent series are available in [28]. To this end, we use Mycielski’s extension of
von Neumann’s theorem, asserting that for each countable dense subfield Q of F, F con-
tains an algebraically independent (over Q) homeomorphic copy of the Cantor space (see
[28] for a proof).

7. Smallness in the sense of measure and category

A set of realsX is null if it has Lebesgue measure zero.X is universally null if every Borel
isomorphic image of X in R is null. Equivalently, for each finite σ -additive measure µ on
the Borel subsets of X such that µ{x} = 0 for each x ∈ X, µ(X) = 0. A classical result
of Marczewski asserts that each product of two universally null sets of reals is universally
null.

A set X of reals is perfectly meager if for each perfect set P , X ∩ P is meager in the
relative topology of P . The set X is universally meager if each Borel isomorphic image
of X in R is meager. Zakrzewski [43] proved that each product of two universally meager
sets is universally meager.

As in Section 6, we identify the Cantor space with a subset of R which is algebraically
independent over Q.
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Theorem 7.1. Let F be the Fréchet filter, S = {fα : α < b} be any b(F)-scale, and X =
S ∪ Q. Then all finite powers of Q(X) have the Hurewicz property and are universally
null and universally meager.

Proof. Theorem 6.1 deals with the first assertion.
Plewik [29] proved that every set S as above is both universally null and universally

meager.2 Since both properties are preserved under taking countable unions and are satis-
fied by singletons, we see thatX is universally null and universally meager. Consequently,
so too are all finite powers of X.

We should now understand why these properties would also hold for Q(X) and its
finite powers. To this end, we use some results of Pfeffer and Prikry. The presentation is
mutatis mutandis the one from Pfeffer’s [28], in which full proofs are supplied.

Let

Q′(t1, . . . , tn) = Q(t1, . . . , tn) \
n⋃
i=1

Q(t1, . . . , ti−1, ti+1, . . . , tn).

The usual order in the Cantor set induces an order � in C, which is closed in C2. For
X ⊆ C and each m and k, define

Xm,k = {(x1, . . . , xm) ∈ X
m : x1 � · · · � xm, (∀i 6= j) |xi − xj | > 1/k}.

Each Xm,k is closed in Xm, in particular, each Cm,k is compact. Since C is alge-
braically independent, each r ∈ Q′(t1, . . . , tm) defines a continuous map (a1, . . . , am) 7→

r(a1, . . . , am) from
⋃
k Cm,k to R. It follows that r is a homeomorphism into Q(X), and

Q(X) = Q ∪
⋃
m,k∈N

⋃
r∈Q′(t1,...,tm)

r[Xm,k].

For any m1, m2, k1, k2, Xm1,k1 × Xm2,k2 ⊆ X
m1+m2 and is therefore universally null

and universally meager. Thus, so is each homeomorphic copy r1[Xm1,k1 ]× r2[Xm2,k2 ] of
Xm1,k1 × Xm2,k2 , where r1 ∈ Q′(t1, . . . , tm1), r2 ∈ Q′(t1, . . . , tm2). A similar assertion
holds for products of any finite length. Consequently, each finite power of Q(X) is a
countable union of sets which are universally null and universally meager, and is therefore
universally null and universally meager. ut

8. Connections with selection principles

8.1. Selection principles

In his 1925 paper [17], Hurewicz introduced two properties of the following type. For
collections A ,B of covers of a space X, define

2 The latter assertion also follows from Corollary 2.16 and Theorem 2.20, by a result of Za-
krzewski [43] which asserts that every set of reals having the Hurewicz property and not containing
perfect sets is universally meager.
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Ufin(A ,B): For each sequence {Un}n∈N of members of A which do not contain a finite
subcover, there exist finite subsets Fn ⊆ Un, n ∈ N, such that {

⋃
Fn :

n ∈ N} ∈ B.
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Fig. 1. Ufin(A ,B).

Hurewicz (essentially) proved that if X is a set of reals and O is the collection of
all open covers of X, then Ufin(O,O) is equivalent to B([N]ℵ0) (the Menger property).
He also introduced the following property: Call an open cover U of X a γ -cover if U is
infinite, and each x ∈ X belongs to all but finitely many members of U . Let 0 denote the
collection of all open γ -covers of X. Hurewicz proved that for sets of reals, Ufin(O, 0) is
the same as B(F) where F is the Fréchet filter (the Hurewicz property).

Here too, the properties Ufin(O,O) and Ufin(O, 0) are specific instances of a general
scheme of properties.

Definition 8.1. (1) Let U be a cover of X enumerated bijectively as EU = {Un : n ∈ N}.
The Marczewski characteristic function of EU , h EU : X→ P(N), is defined by

h EU (x) = {n : x ∈ Un} for each x ∈ X.

(2) Let F be a semifilter.
(a) U is an F-cover of X if there is a bijective enumeration EU = {Un : n ∈ N} such

that h EU [X] ⊆ F .
(b) OF is the collection of all open F-covers of X.

If F = [N]ℵ0 , then it is easy to see that Ufin(O,OF ) = Ufin(O,O) [19]. If F is the
Fréchet filter, then OF = 0 and therefore Ufin(O,OF ) = Ufin(O, 0). The families of
covers OF were first introduced and studied in a similar context by Garcı́a-Ferreira and
Tamariz-Mascarúa [15, 16].
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Definition 8.2. SN is the collection of all permutations σ of N. For a semifilter F and
σ ∈ SN, write σF = {σ [A] : A ∈ F}.

Observe that if F is [N]ℵ0 or the Fréchet filter, then σF = F for all σ . Consequently, the
following theorem generalizes Hurewicz’s theorem.

Theorem 8.3. Assume that F is a semifilter. For a setX of reals, the following are equiv-
alent:

(1) X satisfies Ufin(O,OF ).
(2) For each continuous image Y of X in NN, there is σ ∈ SN such that Y is bounded

with respect to ≤σF .

In particular, B(F) implies Ufin(O,OF ).

Proof. (2)⇒(1): Assume that Un, n ∈ N, are open covers of X, which do not contain
a finite subcover of X. For each n, let Ũn be a countable cover refining Un such that all
elements of Ũn are clopen and disjoint. Enumerate Ũn bijectively as {Cnm : m ∈ N}. Then
the function 9 : X→ NN defined by

9(x)(n) = m such that x ∈ Cnm

is continuous, and therefore 9[X] is bounded with respect to ≤σF for some σ ∈ SN. Let
g ∈ NN be a witness for that. By induction on n, choose finite subsets Fn ⊆ Un such
that

⋃
m≤g(n) C

n
m ⊆

⋃
Fn, and such that

⋃
Fn is not equal to any

⋃
Fk for k < n.3

Consequently,{
n : x ∈

⋃
Fn

}
⊇

{
n : x ∈

⋃
m≤g(n)

Cnm

}
= [9(x) ≤ g] ∈ σF

for each x ∈ X. Consequently, the (bijective!) enumeration {
⋃
Fσ−1(n) : n ∈ N} wit-

nesses that {
⋃
Fn : n ∈ N} is an F-cover.

(1)⇒(2): Assume that X satisfies Ufin(O,OF ), and let Y be a continuous image of
X in NN. We may assume that each f ∈ Y is increasing. It is easy to see that the following
holds.

Lemma 8.4. Ufin(O,OF ) is preserved under taking continuous images. ut

Thus, Y satisfies Ufin(O,OF ). Consider the open covers Un = {Unm : m ∈ N} of Y
defined by Unm = {f ∈ Y : f (n) ≤ m} (note that the elements Unm are increasing withm).
There are two cases to consider.

Case 1: There is a strictly increasing sequence {kn}n∈N of natural numbers such that
each Ukn contains an elementU knmn which is equal to Y . Define g(n) = mn for each n. Then
for each f ∈ Y and each n, f (n) ≤ f (kn) ≤ mn = g(n), that is, [f ≤ g] = N ∈ F .

3 Since no Un contains a finite cover of X, we may achieve this as follows: Choose a finite
A ⊆ Un such that

⋃
m≤g(n) C

n
m ⊆

⋃
A. For each k < n take xk ∈ X \

⋃
Fk . Choose a finite

B ⊆ Un such that {x1, . . . , xn−1} ⊆
⋃
B, and take Fn = A ∪ B.
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Case 2: There is n0 such that for each n ≥ n0, Un does not contain Y as an element.
Then by (1), there are finite subsets Fn ⊆ Un, n ≥ n0, such that U = {

⋃
Fn : n ≥ n0} is

an F-cover of X. Let h ∈ N↑N be such that {
⋃
Fh(n) : n ∈ N} is a bijective enumeration

of U . Define g(n) = max{m : Uh(n)m ∈ Fh(n)} for each n. Then there is σ ∈ SN such that
for each f ∈ Y , {n : f ∈

⋃
Fh(σ(n))} ∈ F . For each n with f ∈

⋃
Fh(σ(n)),

f (σ(n)) ≤ f (h(σ (n))) ≤ g(σ (n)).

Thus f ≤σF g for all f ∈ Y . ut

Remark 8.5. (1) By the methods of [44], Theorem 8.3 actually holds for arbitrary (not
necessarily zero-dimensional) subsets of R.

(2) One can characterize B(F) by: For each sequence Un of open covers ofX, there exist
finite subsets Fn ⊆ Un, n ∈ N, such that for each x ∈ X, {n : x ∈

⋃
Fn} ∈ F .

LetX be a set of reals. In addition to γ -covers, the following type of cover plays a cen-
tral role in the field: An open cover U ofX is an ω-cover ofX ifX is not in U and for each
finite subset F of X, there is U ∈ U such that F ⊆ U . Let � denote the collection of all
countable open ω-covers of X. For each filter F , OF ⊆ �. Consequently, Ufin(O,OF )
implies Ufin(O, �), which is strictly stronger than Menger’s property Ufin(O,O) [19].
In light of Theorem 8.3, all of the examples shown to satisfy B(F) for a filter F , satisfy
Ufin(O, �).

8.2. Finer distinction

We now reveal the remainder of the framework of selection principles, and apply the
combinatorial approach to obtain a new result concerning these, which further improves
our earlier results.

This framework was introduced by Scheepers in [32, 19] as a unified generaliza-
tion of several classical notions, and studied since in a long series of papers by many
mathematicians (see the surveys [35, 21, 41]). Let X be a set of reals. An open cover U
of X is a τ -cover of X if each member of X is covered by infinitely many members
of U , and for any x, y ∈ X, at least one of the sets {U ∈ U : x ∈ U and y 6∈ U} or
{U ∈ U : y ∈ U and x 6∈ U} is finite. Let T denote the collection of all countable open
τ -covers of X. It is easy to see that

0 ⊆ T ⊆ � ⊆ O.

Let A and B be collections of covers of X. In addition to Ufin(A ,B), we have the
following selection hypotheses.

S1(A ,B): For each sequence {Un}n∈N of members of A , there exist members Un ∈
Un, n ∈ N, such that {Un : n ∈ N} ∈ B.

Sfin(A ,B): For each sequence {Un}n∈N of members of A , there exist finite (possibly
empty) subsets Fn ⊆ Un, n ∈ N, such that

⋃
n Fn ∈ B.
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Ufin(O, 0) // Ufin(O,T) // Ufin(O, �) // Ufin(O,O)

Sfin(0,T) //

;;xxxxxxx
Sfin(0,�)

;;xxxxxxx

S1(0, 0)

;;vvvvvvvvvvvvvvvvvv
// S1(0,T)

<<yyyyyyy
// S1(0,�)

<<xxxxxxx
// S1(0,O)

<<xxxxxxxxxxxxxxxxx

Sfin(T,T) //

OO

Sfin(T, �)

OO

S1(T, 0) //

OO

S1(T,T)

OO

<<yyyyyyy
// S1(T, �)

OO

<<xxxxxxx
// S1(T,O)

OO

Sfin(�,T)

OO

// Sfin(�,�)

OO

S1(�, 0)

OO

// S1(�,T)

OO

<<yyyyyyy
// S1(�,�)

OO

<<xxxxxxx
// S1(O,O)

OO

Fig. 2. The surviving properties.

In addition to the Menger (Ufin(O,O)) and Hurewicz (Ufin(O, 0)) properties, sev-
eral other properties of this form were studied in the past by Rothberger (S1(O,O)),
Arkhangel’skiı̆ (Sfin(�,�)),4 Gerlits and Nagy (S1(�, 0)), and Sakai (S1(�,�)). Many
equivalences hold among these properties, and the surviving ones appear in Figure 2
(where an arrow denotes implication) [32, 19, 37].

In [19] it is proved that a set of reals X satisfies Sfin(�,�) if, and only if, all fi-
nite powers of X have the Menger property Ufin(O,O). By Corollary 4.3, the exam-
ples involving filters (including those from Section 6) satisfy Sfin(�,�). In Theorem 4.6
the example did not satisfy Ufin(O, 0). We will improve that to find such an example
which does not satisfy Ufin(O,T). Since it is consistent that Ufin(O, 0) is equivalent to
Ufin(O,T) [45] and that Ufin(O, �) is equivalent to Ufin(O,O) [46], our result is the best
possible with regard to Figure 2.

Again, we will identify N↑N with P(N). We will use the following notion. A family
Y ⊆ P(N) is splitting if for each A ∈ [N]ℵ0 there is B ∈ Y such that A∩B and A \B are
both infinite. Recall that if d is regular then there is an ultrafilter (necessarily nonmeager)
F satisfying b(F) = d.

Theorem 8.6. Assume that d is regular. Then for each nonmeager filterF with b(F) = d,
there is a cofinal b(F)-scale S = {aα : α < d} ⊆ [N](ℵ0,ℵ0) such that:

(1) All finite powers of the set X = S ∪Q satisfy B(F), but

4 Arkhangel’skiı̆ studied “Menger property in all finite powers”, which was proved to be equiva-
lent to Sfin(�,�) in [19].
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(2) The homeomorphic copy X̃ = {xc : x ∈ X} of X is a splitting and unbounded (with
respect to ≤∗) subset of [N]ℵ0 .

Proof. For each h ∈ N↑N, let

Ah =
{⋃
n∈A

[h(n), h(n+1)) : A ∈ [N](ℵ0,ℵ0)
}
.

Then Ah is homeomorphic [N](ℵ0,ℵ0), and is therefore analytic.

Lemma 8.7. For each h ∈ N↑N and each f ∈ N↑N, there is a ∈ Ah such that f ≤F a.

Proof. Clearly, Ah is not ≤∗-bounded. Apply Lemma 3.3. ut

Lemma 8.8. For all h, f, g ∈ N↑N, there is a ∈ Ah such that f ≤F a and ac 6≤∗ g.

Proof. Let q ∈ N↑N be such that for each a ∈ [N](ℵ0,ℵ0) with a ≤∗ g, a intersects all but
finitely many of the intervals [q(n), q(n+1)). (E.g., define inductively q(0) = g(0) and
q(n+ 1) = g(q(n))+ 1.) We may assume that im q ⊆ imh, and therefore Aq ⊆ Ah. By
Lemma 8.7, there is a ∈ Aq such that f ≤F a. Since ac ∈ Aq , it misses infinitely many
intervals [q(n), q(n+1)), and therefore ac 6≤∗ g. ut

Let {dα : α < d} ⊆ N↑N be such that for each A ∈ [N]ℵ0 there is α < d such that
|A ∩ [dα(n), dα(n+1))| ≥ 2 for all but finitely many n [6]. In particular, {dα : α < d} is
dominating.

For each α < b(F) = d inductively, do the following: Choose f ∈ N↑N which
is a ≤F -bound of {aβ : β < α}. Use Lemma 8.8 to choose aα ∈ Adα such that
max{f, dα} ≤F aα and acα 6≤

∗ dα . Since F is a filter, aβ ≤F aα for each β < α.
Thus S = {aα : α < d} is a cofinal b(F)-scale, and so by Theorem 4.5, all finite

powers of X = S ∪ Q satisfy B(F). As for each α < d we have acα 6≤
∗ dα , X̃ is

unbounded. To see that it is splitting, let b ∈ [N]ℵ0 and choose α such that b intersects
[dα(n), dα(n+1)) for all but finitely n. Since aα ∈ Adα , aα splits b. ut

According to [37], a subset Y of NN has the excluded-middle property if there exists
g ∈ NN such that:

(1) for each f ∈ Y , the set [f < g] is infinite,
(2) for all f, h ∈ Y at least one of the sets [f < g ≤ h] and [h < g ≤ f ] is finite.

In Theorem 3.11 and Remark 3.12 of [37] it is proved that if Y satisfies Ufin(O,T), then
all continuous images of Y in NN have the excluded-middle property.

Corollary 8.9. Assume that d is regular. Then for each nonmeager filter F with
b(F) = d, there is a set of reals Y ⊆ NN such that:

(1) All finite powers of Y satisfy B(F), but
(2) Y does not have the excluded-middle property. In particular, Y does not satisfy

Ufin(O,T).
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Proof. Let X̃ be the set from Theorem 8.6(2). Define continuous functions 9` :
X̃2
→ NN, ` = 0, 1, by

90(x, y)(n) =

{
x(n), n ∈ y,

0, n 6∈ y,
91(x, y)(n) =

{
0, n ∈ y,

x(n), n 6∈ y.

Take Y = 90[X̃2]∪91[X̃2]. Each finite power of Y is a finite union of continuous images
of finite powers of X̃. Consequently, all finite powers of Y satisfy B(F).

The argument in the proof of Theorem 9 of [36] shows that Y does not have the
excluded-middle property. ut

We obtain the following.

Theorem 8.10. There exists a set of reals X satisfying Sfin(�,�) but not Ufin(O,T).

Proof. The proof is dichotomic. If cf(d) = d, use Corollary 8.9. Otherwise, cf(d) < d.
As max{b, s} ≤ cf(d) (s ≤ cf(d) is proved in [26]), max{b, s} < d. As the critical
cardinalities of Ufin(O,T) and Sfin(�,�) are max{b, s} [36] and d [19], respectively, we
can take Y to be any witness for the first of these two assertions. ut

By the arguments of Section 6, we have the following.

Corollary 8.11. Assume that F is a nondiscrete, separable, completely metrizable field,
and Q is a countable dense subfield of F.
(1) If d is regular, then for each nonmeager filter F with b(F) = d, there is X ⊆ F such

that:
(a) All finite powers of Q(X) satisfy B(F), but
(b) Q(X) does not satisfy Ufin(O,T).

(2) There exists X ⊆ F such that Q(X) satisfies Sfin(�,�) but not Ufin(O,T). ut

Readers not familiar with forcing can safely skip the following remark.

Remark 8.12. The constructions in this section can be viewed as an extraction of the
essential part in the forcing-theoretic construction obtained by adding c Cohen reals to a
model of set theory, and letting X be the set of the added Cohen reals. Since Cohen reals
are not dominating, all finite powers of X will have Menger’s property. It is also easy to
see that X will not satisfy the excluded-middle property, e.g., using the reasoning in [36].
See [8] for these types of construction, but note that they only yield consistency results.

9. Towards semifilters again

We strengthen the solution to the Hurewicz problem as follows.

Theorem 9.1. Assume that P is a nowhere locally compact Polish space, and S is a
nonmeager bounding semifilter such that b(S) = d. Then there is a subspace X of P
such that:
(1) All finite powers of X have Menger’s property.
(2) X satisfies B(S).
(3) X does not have the Hurewicz property.
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Proof. As pointed out in Remark 4.8, it suffices to consider the case P = [N](ℵ0,ℵ0) ∪

[N]<ℵ0 , in a disguise of our choice. We give an explicit construction in the case where d
is regular. The remaining case, being “rare” but consistent, is trivial.

A family F ⊆ [N]ℵ0 is centered if each finite subset of F has an infinite intersection.
Centered families generate filters by taking finite intersections and closing upwards. We
will denote the generated filter by 〈F〉. For Y ⊆ NN, let maxfinY denote its closure under
pointwise maxima of finite subsets.

We construct, by induction on α < d, a filter F with b(F) = d and a b(F)-scale
{aα : α < d} ⊆ [N](ℵ0,ℵ0) which is also a cofinal b(S)-scale.

Let {dα : α < d} ⊆ NN be dominating, and assume that aβ are defined for each
β < α. Let

Aα = maxfin{dβ , aβ : β < α}, F̃α =
⋃
β<α

Fβ , Gα = {f ◦ b : f ∈ Aα, b ∈ F̃α}.

We inductively assume that Fβ , β < α, is an increasing chain of filters such that |Fβ | ≤
|β| for each β < α. This implies that |Gα| ≤ |α| < d.

As S is nonmeager-bounding, there exists a ≤S -bound aα of Gα such that acα 6≤
∗ dα .

Define
Fα = 〈F̃α ∪ {[f ≤ aα] : f ∈ Aα}〉.

We must show that Fα remains a filter. First, assume that there are b ∈ F̃α and f ∈ Aα
such that b∩[f ≤ aα] is finite. Then aα ≤ aα ◦b <∗ f ◦b ∈ Gα , a contradiction. Now, for
each b ∈ Fα and f1, . . . , fk ∈ Aα , we have f = max{f1, . . . , fk} ∈ Aα , and therefore

b ∩

k⋂
i=1

[fi ≤ aα] = b ∩ [f ≤ aα]

is infinite.
Take S = {aα : α < d} and F =

⋃
α<d Fα . By the construction, S is a cofinal b(S)-

scale. By Theorem 2.24, X = S ∪Q satisfies B(S). For all α < β < d, aα ≤F aβ . We
claim that if d is regular, then b(F) = d. Indeed, assume that Y ⊆ NN has cardinality less
than d. As d is regular, there exists α < d such that each f ∈ Y is ≤∗-bounded by some
dβ , β < α. As aα is a ≤F -bound of {dβ : β < α}, it is a ≤F -bound of Y . We deduce that
S is also a cofinal b(F)-scale. By Theorem 4.5, all finite powers of X satisfy B(F) (and,
in particular, Menger’s property).

Finally, since {xc : x ∈ X} is an unbounded subset of NN, X does not have the
Hurewicz property. ut

10. Topological Ramsey theory

Most of our constructions can be viewed as examples in topological Ramsey theory. We
explain this briefly. The following partition relation, motivated by a study of Baumgartner
and Taylor in Ramsey theory [5], was introduced by Scheepers in [32]:
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A → dBe2k: For each U ∈ A and each f : [U]2
→ {0, . . . , k − 1}, there exists V ⊆ U

such that V ∈ B, j ∈ {0, . . . , k − 1}, and a partition V =
⋃
n Fn of V into

finite sets, such that for each {A,B} ∈ [V]2 such that A and B are not from
the same Fn, f ({A,B}) = j .

Menger’s property is equivalent to (∀k) � → dOe2k [33], and having the Menger
property in all finite powers is equivalent to (∀k) �→ d�e2k [34].

A cover U of X which does not contain a finite subcover is γ -groupable if there is a
partition of U into finite sets, U =

⋃
n Fn, such that {

⋃
Fn : n ∈ N} is a γ -cover of X.

Denote the collection of γ -groupable open covers of X by G(0).
The Hurewicz property is equivalent to (∀k) �→ dG(0)e2k , and having the Hurewicz

property in all finite powers is equivalent to (∀k) �→ d�gp
e

2
k , where�gp denotes covers

with partition
⋃
n Fn into finite sets such that for each finite F ⊆ X and all but finitely

many n, there is U ∈ Fn such that F ⊆ U [22, 30, 31].
Clearly, �gp

⊆ � ∩G(0).
We state only three of our results using this language, leaving the statement of the

remaining ones to the reader.

Theorem 10.1. (1) The sets X constructed in Theorem 3.9 satisfy (∀k) � → dOe2k but
not (∀k) �→ dG(0)e2k .

(2) The fields Q(X) constructed in Theorem 7.1 satisfy (∀k) � → d�gp
e

2
k but are not

σ -compact.
(3) The fields Q(X) constructed in Theorem 8.11 satisfy (∀k) � → d�e2k but not (∀k)

�→ d�gp
e

2
k (or even (∀k) �→ dG(0)e2k).

10.1. Strong measure zero and Rothberger fields

We can move beyond the decidable case. According to Borel [7], a set of reals X has
strong measure zero if for each sequence {εn}n∈N of positive reals, there exists a cover
{In : n ∈ N} of X such that for each n, the diameter of In is smaller than εn. This is a
very strong property, and Borel conjectured that every strong measure zero set of reals is
countable. This was proved consistent by Laver [23].

Rothberger’s property S1(O,O) implies strong measure zero, and its critical cardi-
nality is cov(M), the minimal cardinality of a cover of the real line by meager sets. By
known combinatorial characterizations [2], if b is not greater than the minimal cardinality
of a set of reals which is not of strong measure zero, then b ≤ cov(M). In the following
theorem, any embedding of N↑N in R can be used.

Theorem 10.2. If b ≤ cov(M), then the fields Q(X) constructed in Theorem 7.1 satisfy
S1(�,�

gp) (equivalently, all finite powers of Q(X) satisfy the Hurewicz property as well
as Rothberger’s property [22]).

Proof. Since X = S ∪ Q is b-concentrated on the countable set Q, it satisfies—by the
assumption on b—Rothberger’s property S1(O,O). As all finite powers of X have the
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Hurewicz property, Theorem 4.3 of [42] implies that X satisfies S1(�,�
gp). By the ar-

guments in the proof of Theorem 6.1(1), all finite powers of Q(X) satisfy S1(O,O).
Theorem 6.1(2) tells us that all finite powers of Q(X) also satisfy the Hurewicz property,
so we are done. ut

The following partition relation [32] is a natural extension of Ramsey’s.

A → (B)nk : For each U ∈ A and f : [U]n→ {1, . . . , k}, there exist j and V ⊆ U such
that V ∈ B and f �[V]n ≡ j .

Using this notation, Ramsey’s theorem is (∀n, k) [N]ℵ0 → ([N]ℵ0)nk .
In [22] it is proved that S1(�,�

gp) is equivalent to (∀n, k) �→ (�gp)nk .

Corollary 10.3. If b ≤ cov(M), then the fields Q(X) constructed in Theorem 7.1 satisfy
(∀n, k) �→ (�gp)nk .

11. Some concluding remarks

Using filters in the constructions allowed avoiding some of the technical aspects of ear-
lier constructions and naturally obtain examples for the Menger and Hurewicz conjectures
which possess an algebraic structure. The extension to semifilters is essential for the con-
sideration of the Menger and Hurewicz properties in terms of boundedness on “large”
sets of natural numbers. While making some of the proofs more difficult, it seems to have
provided the natural solution of the Hurewicz problem, and allowed its strengthening in
several manners.

Chaber and Pol asked us about the difference in strength between the construction in
[4] (corresponding to item (2) in Corollary 4.4) and their dichotomic construction [13]
(Theorem 3.1). The answer is now clear: The set from [4] has the Hurewicz property, and
the (dichotomic) set from [13] has the Menger property but not the Hurewicz property.

Previous constructions (dichotomic or using additional hypotheses) which made var-
ious assumptions on the cardinal d can now be viewed as a “projection” of the construc-
tions which only assume that d is regular. While giving rise (in a dichotomic manner) to
ZFC theorems, the possibility to eliminate the dichotomy in Theorem 4.6 and its conse-
quences without making any additional hypotheses remains open. It may be impossible.
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[4] Bartoszyński, T., Tsaban, B.: Hereditary topological diagonalizations and the Menger–
Hurewicz conjectures. Proc. Amer. Math. Soc. 134, 605–615 (2006) Zbl pre02227202
MR 2176030

[5] Baumgartner, J. E., Taylor, A. D.: Partition theorems and ultrafilters. Trans. Amer. Math. Soc.
241, 283–309 (1978) Zbl 0386.03024 MR 0491193

[6] Blass, A. R.: Combinatorial cardinal characteristics of the continuum. In: Handbook of Set
Theory, M. Foreman et al. (eds.), Kluwer, Dordrecht, to appear

[7] Borel, E.: Sur la classification des ensembles de mesure nulle. Bull. Soc. Math. France 47,
97–125 (1919) JFM 47.0181.02 MR 1504785

[8] Brendle, J.: Generic constructions of small sets of reals. Topology Appl. 71, 125–147 (1996)
Zbl 0923.03058 MR 1399552
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