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group by compact subgroups. It follows, for example, that 
the density and the local density of an abelian metrizable 
group determine the character of its dual group. Our main 
result applies to the more general case of closed subgroups 
of Pontryagin–van Kampen duals of abelian Čech-complete 
groups.
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Cofinality
Pcf theory

In the special case of free abelian topological groups, our 
results extend a number of results of Nickolas and Tkachenko, 
which were proved using combinatorial methods.
In order to obtain concrete estimations, we establish a natural 
bridge between the studied concepts and pcf theory, that 
allows the direct application of several major results from that 
theory. We include an introduction to these results and their 
use.

© 2014 Elsevier Inc. All rights reserved.

1. Overview and main results

The topological structure of a topological group is completely determined by its local 
structure at an element. The most fundamental invariant of the local structure is the 
character, the minimal cardinality of a local basis. Metrizable groups have countable 
character, and the celebrated Birkhoff–Kakutani Theorem asserts that this is the only 
case where the character is countable.

The computation of the character of nonmetrizable groups may be a difficult task. For 
example, the character of free abelian topological groups is only known in some cases 
(cf. [24,25]). The free abelian topological group A(X) over a Tychonoff space X is the 
abelian topological group with the universal property that each continuous function ϕ
from X into any abelian topological group H has a unique extension to a continuous 
homomorphism ϕ̃: A(X) → H.

A(X)
∃!ϕ̃

X

id

∀ϕ
H

As a set, A(X) is the family of all formal linear combinations of elements of X over the 
integers. But the topology of A(X) is very complex, and in general, it is not known how 
to determine the character of A(X) from the properties of X.

In this paper, we make use of the fact that groups from an important class of topo-
logical groups, whose character estimation was intractable for earlier methods, contain 
open subgroups whose Pontryagin–van Kampen duals are metrizable. An introduction 
to the pertinent part of this duality theory will be given in Section 5.

A subset C of a partially ordered set P is cofinal (in P ) if for each p ∈ P , there is 
c ∈ C such that p ≤ c. In this paper, families of sets are always ordered by ⊆.

All groups considered in this overview are assumed, without further notice, to be 
locally quasiconvex. This is a mild restriction, meaning that the group admits reasonably 
many continuous homomorphisms into the circle group.

A topological space is kω if its topology is determined by a countable cofinal family 
of compact subsets, i.e., there are compact sets K1, K2, . . . ⊆ X such that each compact 
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set K ⊆ X is contained in some Kn, and for each set U ⊆ X with all U ∩ Kn open 
in Kn, the set U is open in X.

Topological abelian groups which are subgroups of the dual of a metrizable groups 
are exactly the kω groups. The class of abelian groups containing open kω subgroups 
includes, in addition to all locally compact abelian groups:

– all free abelian groups on a compact space, indeed on any kω space;
– all dual groups of countable projective limits of metrizable (more generally, Čech-

complete1) abelian groups;
– all dual groups of abelian pro-Lie groups defined by countable systems [19,23].

Moreover, this class is preserved by countable direct sums, closed subgroups, and finite 
products [19].

Consider the set NN with the partial order f ≤ g if f(n) ≤ g(n) for all n. The cofinality
of a partially ordered set P , denoted cof(P ), is the minimal cardinality of a cofinal subset 
of P . The cardinal number d is the cofinality of NN with respect to ≤. This cardinal was 
extensively studied [12,6], and for the present purposes it may be thought of as some 
constant cardinal between ℵ1 and the continuum (inclusive).

For a cardinal number κ, thought of as a set of cardinality κ, the set [κ]ℵ0 is the 
family of all countable subsets of κ. The weight of a topological space X is the minimal 
cardinality of a basis of open sets for the topology of X. For brevity, define the compact 
weight of X to be the supremum of the weights of compact subsets of X. For nondiscrete 
(locally) compact groups, the character is equal to the (compact) weight. The main 
theorem of this paper, stated in an inner language, is the following one. Note that this 
theorem is directly applicable to every group containing an open abelian non-locally 
compact kω group G.

Theorem 1.1. Let G be an abelian non-locally compact kω group. Let κ be the compact 
weight of G, and λ be the minimum among the compact weights of the quotients of G by 
compact subgroups. Then the character of G is the maximum of d, κ, and the cofinality 
of [λ]ℵ0 .

In particular, if the group G has no proper compact subgroups (this is the case for 
the free abelian groups considered below), or more generally, if quotients by compact 
subgroups do not decrease the compact weight of G, then the character of G is the 
maximum of d and cof([κ]ℵ0).

Theorem 1.1 reduces the computation of the character of the group G to the purely 
combinatorial task of estimating the cofinality of [λ]ℵ0 . The estimation of cof([λ]ℵ0), for 
a given uncountable cardinal λ, is a central goal in Shelah’s pcf theory. The last section 

1 A group G is Čech-complete if it has a compact subgroup H such that the quotient space G/H is 
complete metrizable.
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of this paper is dedicated to an introduction of this theory and its applications in our 
context. In contrast to cardinal exponentiation, the function λ �→ cof([λ]ℵ0) is very tame. 
For example, if there are no large cardinals (in a certain canonical model of set theory),2
then cof([λ]ℵ0) is simply λ if λ has uncountable cofinality, and λ+ (the successor of λ) 
otherwise. Thus, the axiom SSH, asserting that cof([λ]ℵ0) ≤ λ+, is extremely weak. 
Moreover, without any special hypotheses, cof([λ]ℵ0) can be estimated, and in many 
cases computed exactly.

For brevity, denote the character of a topological group G by χ(G). Following is a 
summary of consequences of the main theorem.

Corollary 1.2. In the notation of Theorem 1.1:

(1) χ(G) ≤ κℵ0 .
(2) If κ = κℵ0 , then χ(G) = κ.
(3) If λ = ℵn for some n, then χ(G) = max(d, κ).
(4) If λ = ℵμ, for a limit cardinal μ below the first fixed point of the ℵ function, and 

μ has uncountable cofinality, then χ(G) = max(d, κ).
(5) If λ = ℵα is smaller than the first fixed point of the ℵ function, then χ(G) is smaller 

than max(d+, κ+, ℵ|α|+4).
(6) If SSH holds, then:

(a) If λ < κ or cof(λ) > ℵ0, then χ(G) = max(d, κ).
(b) If λ = κ and cof(λ) = ℵ0, then χ(G) = max(d, κ+).

The proof of these theorems spans throughout the entire paper, but the paper is 
designed so that each reader can read the sections accessible to him or her, taking for 
granted the other ones.

In Section 2, we set up a general framework for studying bounded sets in topological 
groups. The level of generality is just the one needed to capture available methods from 
the context of topological vector spaces, and import them to the seemingly different con-
text of separable topological groups with translations by elements of a dense subset. This 
is done in Section 3, which concludes by showing that in metrizable groups, precompact 
subsets of dense subgroups determine the precompact subsets of the full group. It follows 
that the precompact sets in the group and in its dense subgroup have the same cofinal 
structure. These are, essentially, the only two results from the first two sections needed 
for the remaining sections. In a first reading of Sections 2 and 3, the reader may wish 
to consider only the special case of topological groups with translations by elements of 
a dense subset, since this is the case needed in the concluding results of these sections.

In Section 4, the approach of Section 3 is generalized from separable to arbitrary 
metrizable groups. The density of a topological group G, d(G), is the minimal cardinality 

2 It is not even possible to prove, using the standard axioms of set theory, that the existence of such 
cardinals is consistent.
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of a dense subset of that space. We define the local density of G, ld(G), to be the minimal 
density of a neighborhood of the identity element of G. Let PK(G) denote the family of 
all precompact subsets of G. The main result of this section is the following theorem. 
In this theorem, which is of independent interest, we do not require that G is locally 
quasiconvex or abelian.

Theorem 1.3. Let G be a metrizable non-locally precompact group. The cofinality 
of PK(G) is equal to the maximum of d, d(G), and cof([ld(G)]ℵ0).

In Section 5 we use Theorem 1.3 and methods of Pontryagin–van Kampen duality to 
prove the following theorem. A topological abelian group is complete if it is complete 
with respect to its uniformity. (Being abelian, the left, right, and two-sided uniformities 
of the group coincide.)

Theorem 1.4. Let G be a complete abelian group whose dual group is a metrizable non-
locally precompact group Γ . Then χ(G) is the maximum of d, d(Γ ), and cof([ld(Γ )]ℵ0).

This already puts us in a position to prove, in Section 6, the following result. We state 
it in full because the estimations are slightly simpler than those in Corollary 1.2.

Theorem 1.5. Let X be a nondiscrete kω space. Let κ be the compact weight of X. Then 
the character of A(X) is the maximum of d and cof([κ]ℵ0).

Corollary 1.6. In the notation of Theorem 1.5:

(1) χ(A(X)) ≤ κℵ0 , and if κ = κℵ0 , then χ(A(X)) = κ.
(2) If κ = ℵn for some n ∈ N, then χ(A(X)) = max(d, ℵn).
(3) If κ = ℵμ, for μ smaller than the first fixed point of the ℵ function, and μ is a limit 

cardinal of uncountable cofinality, then χ(A(X)) = max(d, ℵμ).
(4) If κ = ℵα is smaller than the first fixed point of the ℵ function, then χ(A(X)) is 

smaller than max(d+, ℵ|α|+4).
(5) If SSH holds, then:

(a) If cof(κ) > ℵ0, then χ(A(X)) = max(d, κ).
(b) If cof(κ) = ℵ0, then χ(A(X)) = max(d, κ+).

By virtue of [25, Corollary 2.3], Theorem 1.5 also holds for the free nonabelian topo-
logical group F (X).

The result in Theorem 1.5 was previously known only in few of the cases covered by 
this theorem [24,25], for example when X is compact, or when, in addition to the premise 
in our theorem, all compact subsets of X are metrizable [25]. However, Theorem 1.5
does not capture all of the related results of [24,25]. The proofs in [24,25] are more 
combinatorially oriented than ours.
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In Section 7 we develop the remaining Pontryagin–van Kampen theory required to 
deduce Theorem 1.1 from Theorem 1.4. Section 8 introduces and applies pcf theory, to 
obtain the concrete estimations in Corollary 1.2 and Corollary 1.6.

We note that all estimations in Corollary 1.2 apply to Theorem 1.4 as well, which 
may be viewed by some readers as the main result of this paper.

2. Bounded sets in topological groups

The unifying concept of this paper is that of boundedness in topological groups. This 
concept plays a central role in a number of studies in functional analysis and topology. 
In its most abstracted form, a boundedness (or bornology) on a topological space X
is a family of subsets of X that is closed under taking subsets and unions of finitely 
many elements, and contains all finite subsets of X.3 The abstract approach has found 
applications in several areas of mathematics – see the introduction and references in [5]. 
In particular, Vilenkin [31] applied this approach in the realm of topological groups. 
Here, we focus on well-behaved boundedness notions in topological groups, which make 
it possible to simultaneously extend some earlier studies in locally convex topological 
vector spaces as well as seemingly unrelated studies of general topological groups.

We use the following notational conventions throughout the paper. For a set X, let 
P (X) denote the family of all subsets of X, and let Fin(X) denote the family of all finite
subsets of X. An operator t on P (X) is a function t: P (X) → P (X). Throughout, G is 
an infinite Hausdorff topological group with identity element e (or 0 if G is restricted to 
be abelian), and T is a set of operators on P (G).

Definition 2.1. For an operator t on P (G) and A ⊆ G, write t ∗ A for t(A). Let T be a 
set of operators on P (G).

(1) For H ⊆ T , let H ∗A :=
⋃

t∈H t ∗A.
(2) A set B ⊆ G is T -bounded (bounded, when T is clear from the context) if for each 

neighborhood U of e there is a finite set F ⊆ T such that B ⊆ F ∗ U .

The following axioms guarantee that the family of T -bounded sets is a boundedness 
notion.

Definition 2.2. A boundedness system is a pair (G, T ) such that G is a topological group, 
T is a set of operators on P (G), and the following axioms hold:

(B1) For each open set U and each element t ∈ T , the set t ∗ U is open;
(B2) For each neighborhood U of e, we have that T ∗ U = G;
(B3) For each T -bounded set A ⊆ G and each t ∈ T , the set t ∗A is T -bounded;

3 In set theoretic terms, this defines a (not necessarily proper) ideal on X containing all singletons.
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(B4) For all A ⊆ B ⊆ G and each t ∈ T , we have that t ∗A ⊆ t ∗B;
(B5) For each S ⊆ T with |S| < |T |, there is a neighborhood U of e such that S ∗U 
= G;
(B6) For each n, there is a neighborhood U of e such that for all F ⊆ T with |F | ≤ n, 

we have that F ∗ U 
= G.

A boundedness system (G, T ) is said to be metrizable if G is metrizable.

Axiom (B5) is assumed since one can restrict attention to a set T ′ ⊆ T of minimal 
cardinality such that T ′ ∗ U = G for each neighborhood U of e. Axiom (B6) is added 
to avoid trivialities. By moving to the semigroup of operators generated by T , we may 
assume that T is a semigroup. We will, however, not make use of this fact.

The following example shows that precompact sets need not be bounded when G is 
not complete. However, we have the subsequent Lemma 2.4.

Example 2.3. Consider the additive group Q of rational numbers, equipped with its 
standard topology. Enumerate Q as {qn : n ∈ N} and let {xn} be a sequence of rational 
numbers converging to 

√
2. Taking T = N, we define n ∗ A = (qn + A) \ {xk : k ≥ n}. 

Then the sequence {xn} is a precompact but unbounded subset of Q.

Lemma 2.4. For each boundedness system (G, T ):

(1) Every compact set K ⊆ G is bounded.
(2) The family of bounded subsets of G is a boundedness. �

The following two examples of boundedness systems are well known. In these exam-
ples, we identify T with some set of parameters defining the elements of T . In general, 
we may identify T with any set S of the same cardinality, by modifying the definition 
of ∗ appropriately.

Example 2.5 (Standard boundedness on topological vector spaces). Let E be a topological 
vector space. Take T = N, and define n ∗A = {nv : v ∈ A} for each A ⊆ V . For example, 
Axiom (B2) holds since limn

1
nv = �0 for each v ∈ E. The N-bounded sets are those 

bounded in the ordinary sense.

In Example 2.5, if E is a locally convex topological vector space, we may alternatively 
define n ∗A = nA = {v1 + · · ·+vn : v1, . . . , vn ∈ A} for each A ⊆ V , and obtain the same 
bounded sets. More generally, for any connected multiplicative topological group G, we 
can take T = N and n ∗ A = An = {a1a2 · · · an : a1, a2, . . . , an ∈ A}. Let U be an open 
and symmetric neighborhood of e. Then N ∗ U is an open, and therefore also closed, 
subgroup of G. Thus, N ∗ U = G.

Example 2.6 (Standard boundedness on topological groups). Fix any dense subset T of G
of minimal cardinality. Define t ∗ A = tA = {ta : a ∈ A} for all t ∈ T, A ⊆ G. The 



C. Chis et al. / Journal of Algebra 420 (2014) 86–119 93
T -bounded sets are the precompact subsets of G. Axiom (B6) holds because our groups 
are assumed to be infinite Hausdorff. Indeed, let x1, . . . , xn+1 be distinct elements of G. 
Take a symmetric neighborhood U of the identity element such that xiU

2 ∩ xjU
2 = ∅

for all distinct i and j. Assume that F ⊆ G, |F | ≤ n and FU = G. Then there are an 
element a ∈ F and distinct indices i and j such that {xi, xj} ⊆ aU . Then xj ∈ xiU

2; 
a contradiction. Axiom (B2) is equivalent to the density of T : If U is a symmetric 
neighborhood of the identity element, then t ∈ T ∩ (gU) if, and only if, g ∈ tU . The 
remaining axioms are a straightforward consequence of basic properties of topological 
groups.

It follows that if T ⊆ G is a set of translations then (G, T ) is a boundedness system 
if, and only if, T is dense in G.

When a topological group also happens to be a topological vector space, the term 
standard boundedness system on G has two contradictory interpretations. When we wish 
to use the one of topological vector spaces, we will say so explicitly.

The two canonical examples were combined by Hejcman [21], who considered the case 
T = D × N, where D is a dense subset of G, and (d, n) ∗A = dAn. The T -bounded sets 
are the standard bounded sets when G is a topological vector space, and the precompact 
sets when G is a locally compact group.

Definition 2.7. Let (G, T ) be a boundedness system and κ be an infinite cardinal number. 
A set A ⊆ G is κ-bounded (with respect to T ) if, for each neighborhood U of e, there is 
a set S ⊆ T of cardinality at most κ such that A ⊆ S ∗U . The boundedness number of A
in (G, T ), denoted bT (A), is the minimal cardinal κ such that A is κ-bounded.

Axiom (B6) asserts that bT (G) ≥ ℵ0.

Definition 2.8. For a topological group G and a set A ⊆ G, b(A) is the minimal cardinal 
κ such that for each neighborhood U of e, there is S ⊆ A such that |S| ≤ κ, and A ⊆ SU .

For the standard boundedness system (G, T ) on a topological group G (Example 2.6), 
the cardinal bT (G) does not depend on the choice of the dense subset T . Indeed, we have 
the following.

Lemma 2.9 (Folklore). Let (G, T ) be a standard boundedness system on G. Then:

(1) bT (A) = b(A) for all A ⊆ G.
(2) If A ⊆ B ⊆ G, then b(A) ≤ b(B).

Proof. (2) Clearly, bT (A) ≤ bT (B). Thus, it suffices to prove (1).
(≥) Fix a neighborhood U of e in G. Let V be a neighborhood of e in G, such that 

V = V −1 and V 2 ⊆ U . Let S ⊆ T be such that |S| ≤ bT (A), and A ⊆ SV . By thinning 
out S if needed, we may assume that for each s ∈ S, the set sV intersects A. For each 
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s ∈ S, pick an element as ∈ sV ∩ A. Then s ∈ asV , and thus sV ⊆ asV
2 ⊆ asU . Let 

S′ = {as : s ∈ S}. Then S′ ⊆ A, |S′| ≤ |S| ≤ bT (A), and A ⊆ SV ⊆ S′U .
(≤) Similar, using that T is dense in G. �

Corollary 2.10. For a standard boundedness system (G, T ) on a topological group, the 
cardinality of T is d(G). �

Thus, if (G, T ) is a boundedness system with G a σ-compact group, then bT (G) = ℵ0. 
But if G is (nonmetrizable and) not separable, then for the standard boundedness system 
on G, |T | = d(G) > ℵ0. That is, for each neighborhood U of e there is a countable S ⊆ T

such that S ∗ U = G, but there is no such S independent of U .
Recall that for infinite cardinals κ and λ, κ · λ = max(κ, λ).

Proposition 2.11. Let (G, T ) be a boundedness system. Then

bT (G) ≤ |T | ≤ χ(G) · bT (G).

In particular:

(1) For metrizable G, |T | = bT (G).
(2) b(G) ≤ d(G) ≤ χ(G) · b(G).
(3) For metrizable G, b(G) = d(G).

Proof. |T | ≤ χ(G) · bT (G): Let {Uα : α < χ(G)} be a neighborhood base of G at e. 
For each α < χ(G), let Sα ⊆ T be such that |Sα| ≤ bT (G), and Sα ∗ Uα = G. Let 
S =

⋃
α<χ(G) Sα. For each neighborhood U of e, S ∗ U = G. It follows that |T | = |S| ≤

χ(G) · bT (G).
For (2) and (3), consider the standard boundedness system on G. �
Thus, when considering metrizable groups, we may replace bT (G) by |T |, or by d(G)

when the standard boundedness system is considered.
We give some examples, using the multiplicative torus group T = {z ∈ C : |z| = 1}.

Example 2.12. The inequalities in Proposition 2.11 cannot be improved, not even for the 
standard boundedness system (Proposition 2.11(3)) on powers of the torus: For compact 
groups G of cardinality 2κ, we have that b(G) = ℵ0, and d(G) = log(κ), where log(κ) is 
defined as min{λ : κ ≤ 2λ} [10, Theorem 3.1].

Thus, for an infinite cardinal κ, we have that b(Tκ) = ℵ0, d(Tκ) = log(κ) and 
χ(Tκ) = κ. The inequality ℵ0 ≤ log(κ) ≤ κ cannot be improved. Indeed, for c := 2ℵ0 , we 
have the following:

(1) κ = ℵ0 gives b(G) = d(G) = χ(G) = ℵ0.
(2) κ = c gives b(G) = d(G) = ℵ0 < χ(G) = c.
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(3) κ = c+ gives b(G) = ℵ0 < d(G) = log(c+) < χ(G) = c+.
(4) κ = �ω gives b(G) = ℵ0 < d(G) = χ(G) = �ω.

Here, the cardinal �ω is defined as the supremum of all cardinals �n, n ∈ N, where 
�1 = 2ℵ0 and for each n > 1, �n = 2�n−1 .

3. When T is countable

Methods and ideas from the context of topological vector spaces, developed by Saxon 
and Sánchez-Ruiz [28], and by Burke and Todorcevic [8], generalize to general bounded-
ness systems (G, T ) with T countable. Even for the standard boundedness systems on 
topological groups, some of the obtained results were apparently not observed earlier.

Definition 3.1. A boundedness system (G, T ) is locally bounded if there is in G a neigh-
borhood base at e, consisting of bounded sets.

Let P and Q be partially ordered sets. We write P � Q if there is an order preserving 
f : P → Q with image cofinal in Q. We say that P is cofinally equivalent to Q if P � Q

and Q � P . Our notion of cofinal equivalence is stronger and simpler than the standard 
one. This variation will not affect our results.

If P � Q, then cof(Q) ≤ cof(P ).

Definition 3.2. Let (G, T ) be a boundedness system. BddT (G) is the family of T -bounded 
subsets of G. BddT (G) is partially ordered by the relation ⊆. When (G, T ) is a standard 
boundedness system, BddT (G) is the family of precompact subsets of G, which we denote 
for simplicity by PK(G).

Remark 3.3. If G is T -bounded, then BddT (G) is cofinally equivalent to the singleton {1}.

For a function f : X → Y and sets A ⊆ X and B ⊆ Y , we use the notation f [A] =
{f(a) : a ∈ A} and f−1[B] = {x ∈ X : f(x) ∈ B}.

For locally convex topological vector spaces with the standard boundedness structure, 
the following is pointed out in [8, Theorem 2.5]. Recall that when T is countable, we 
may identify T with N.

Proposition 3.4. If a boundedness system (G, N) is locally bounded and G is unbounded, 
then BddN(G) is cofinally equivalent to N.

Proof. Fix a bounded neighborhood U of e, such that for each finite F ⊆ N, F ∗U 
= G. 
Define ϕ: G → N by

ϕ(g) = min{n : g ∈ n ∗ U}.
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The functions K �→ maxϕ[K] and n �→ ϕ−1[{1, . . . , n}] establish the required cofinal 
equivalence. �

Systems which are not locally bounded are more interesting in this respect. Assume 
that (G, N) is a metrizable boundedness system, and let Un, n ∈ N, be a neighborhood 
base at e.

Definition 3.5. Define a map Ψ : G → NN by

x �→ ϕx(n) = min{m : x ∈ m ∗ Un}.

For a bounded set B ⊆ NN, the function f := maxB ∈ NN is defined by f(n) =
max{g(n) : g ∈ B}. Define functions BddN(G) → NN and NN → BddN(G), respectively, 
by

K �→ maxΨ [K];

f �→ Ψ−1[{g ∈ NN : g ≤ f
}]
.

Both functions are monotone, and the image of the latter is cofinal in BddN(G).
For locally convex topological vector spaces with the standard boundedness structure, 

the following is proved in [28, Proposition 1] and in [8, Theorem 2.5].

Theorem 3.6. Let (G, N) be a metrizable non-locally bounded boundedness system. Then 
BddN(G) is cofinally equivalent to NN.

Proof. As compact sets are bounded, it suffices to show that there is a neighborhood 
base Un, n ∈ N, at e, and for each f ∈ NN, there is a compact set K ⊆ G such that 
f ≤ maxΨ [K].

Let Un, n ∈ N, be a descending neighborhood base at e. As U1 is not bounded, we may 
assume (by shrinking U2 if needed) that there is no m such that U1 ⊆ {1, . . . , m} ∗ U2. 
Continuing in the same manner, we may assume that for each n, there is no m such that 
Un ⊆ {1, . . . , m} ∗ Un+1.

Given f ∈ NN, choose for each n an element xn ∈ Un \ {1, . . . , f(n)} ∗ Un+1. As the 
original sequence Un was descending to e, the elements xn converge to e, and thus the 
set {xn : n ∈ N} ∪ {e} is compact, as required. �
Corollary 3.7. Let G be a separable metrizable non-locally precompact group. Then PK(G)
is cofinally equivalent to NN. �
Definition 3.8. For a topological space X, let C(X, T) be the group of all continuous 
functions from X into T, with pointwise multiplication, endowed with the compact-open 
topology. That is, a neighborhood base at the constant function 1 is given by the sets
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{
f ∈ C(X,T) :

∣∣f(x) − 1
∣∣ < ε for all x ∈ K

}
,

where K is a compact subset of X, and ε is a positive real number.

A Polish group is a complete, separable, metrizable group. We give two well known 
examples of non-locally compact Polish groups, and where it is not immediately clear 
(without Corollary 3.7) that PK(G) is cofinally equivalent to NN.

Example 3.9. Let L be a Lie group, for example T or the group of unitary n ×n complex 
matrices. Let K be a compact metric space. The group C(K, L) is Polish, with the metric 
given by the supremum norm. C(K, L) is not locally compact (unless K is finite). By 
Theorem 3.6, the family of compact subsets of C(K, L) is cofinally equivalent to NN.

Example 3.10. Consider the group SN of permutations on N, where for each finite F ⊆ N, 
the set UF of all permutations fixing F is a neighborhood of the identity. This de-
fines a neighborhood base at the identity permutation, and thus a topology on SN. The 
nonabelian group SN is Polish and non-locally compact. Thus, its compact subsets are 
cofinally equivalent to NN.

For functions f, g ∈ NN, the notation f ≤∗ g stands for f(n) ≤ g(n) for all but finitely 
many n. The cardinal number b is the minimal cardinality of a ≤∗-unbounded subset 
of NN. The cardinal b is uncountable, and can consistently be any regular uncountable 
cardinal not larger than c. More details about this cardinal are available in [12,6].

For locally convex topological vector spaces with the standard boundedness structure, 
the following is Corollary 2.6 of [8].

Corollary 3.11. Let (G, N) be a metrizable boundedness system.

(1) For each family F ⊆ BddN(G) with |F| < b, there is a countable family S ⊆ BddN(G)
such that each member of F is contained in a member of S.

(2) Each union of less than b bounded subsets of G is a union of countably many bounded 
subsets of G.

Proof. The assertions are immediate when G is locally bounded. Thus, assume it is 
not. Then (1) follows from the cofinal equivalence of BddN(G) and NN, and (2) follows 
from (1). �
Definition 3.12. A group G is metrizable modulo precompact if there is a precompact 
subgroup K of G, such that the coset space G/K is metrizable.

Example 3.13. All Čech-complete groups, and all almost-metrizable groups, are metriz-
able modulo precompact.
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For a nonabelian group G, the coset space G/K need not be a group since we do 
not require K to be a normal subgroup. However, the concept of boundedness extends 
naturally to the coset space G/K, and we have the following.

Lemma 3.14. Let K be a precompact subgroup of G, and π: G → G/K be the canonical 
quotient map.

(1) If P ∈ PK(G), then π[P ] ∈ PK(G/K).
(2) If Q ∈ PK(G/K), then π−1[Q] ∈ PK(G).
(3) PK(G) is cofinally equivalent to PK(G/K).

Proof. (1) Precompactness of K is not needed here: Let U be a neighborhood of eK

in G/K. As π−1[U ] is a neighborhood of e in G, there is a finite F ⊆ G such that 
P ⊆ Fπ−1[U ]. Then π[P ] ⊆ π[Fπ−1[U ]] = FU .

(2) Let U be a neighborhood of e in G. Take a neighborhood W of e such that W 2 ⊆ U . 
As K is precompact, there is a neighborhood V of e such that V K ⊆ KW .4 As K is 
precompact, there is a finite I ⊆ G such that K ⊆ IW .

The set π[V ] is a neighborhood of eK in G/K. Take a finite subset F of G such 
that Q ⊆ π[F ]π[V ]. Then π−1[Q] ⊆ π−1[π[F ]π[V ]] = FKVK ⊆ FK2W = FKW ⊆
FIW 2 ⊆ FIU , and FI is finite.

(3) If P ∈ PK(G), then Q = π[P ] ∈ PK(G/K), and π−1[Q] ∈ PK(G), and contains P . 
Thus, the map Q �→ π−1[Q] shows that PK(G/K) � PK(G). Similarly, if Q ∈ PK(G/K), 
then P = π−1[Q] ∈ PK(G), and Q = π[P ] ∈ PK(G/K), and thus the map P �→ π[P ]
gives PK(G) � PK(G/K). �
Corollary 3.15. Let G be a separable, metrizable modulo precompact, Baire group. If G
is a union of fewer than b precompact sets, then G is locally precompact.

Proof. By Lemma 3.14, we may assume that G is metrizable. By Corollary 3.11, G is 
a union of countably many precompact sets. As the closure of precompact sets is pre-
compact, we may assume that these sets are closed. As G is Baire, one of these sets has 
nonempty interior. It follows that there is a precompact neighborhood of e. �

If every bounded subset of a normed space is separable, then the space is separable. 
Dieudonné [11] asked to what extent this can be generalized to locally convex topological 
vector spaces. Burke and Todorcevic answered this question completely, by showing that 
the same assertion holds in all locally convex topological vector spaces if, and only if, 
ℵ1 < b [8]. One direction of this assertion is generalized by the following theorem. This 

4 This is standard: Take a neighborhood W0 of e with W 2
0 ⊆ W , and then take a finite F ⊆ K such that 

K ⊆ FW0. For each g ∈ F , e · g = g ∈ FW0, and thus there is a neighborhood Vg of e with Vg · g ⊆ FW0. 
Take V =

⋂
g∈F Vg. Then V F ⊆ FW0, and thus V K ⊆ V FW0 ⊆ FW0W0 ⊆ FW .
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theorem, which is trivial when applied to standard boundedness systems on topological 
groups, is nontrivial in general.

Theorem 3.16. Let (G, N) be a metrizable boundedness system with d(G) < b. If all 
bounded subsets of G are separable, then G is separable.

Proof. Assume otherwise, and let D be a discrete subset of G of cardinality ℵ1. As 
ℵ1 < b, we have by Corollary 3.11 that D is a union of countably many bounded sets. 
Thus, D has a (discrete, of course) bounded subset of cardinality ℵ1. �
Proposition 3.17. For each sequence xn → x in G, there is a subsequence {yn} of {xn}
such that ϕyn

converges to a function f ≤ ϕx.

Proof. For each k, the set {y ∈ G : ϕy(k) ≤ ϕx(k)} is an open neighborhood of x. Thus, 
ϕxn

(1) ≤ ϕx(1) for all but finitely many n. Therefore, there is m1 ≤ ϕx(1) such that 
I1 = {n : ϕxn

(1) = m1} is infinite.
Inductively, given the infinite Ik−1 ⊆ N, we have that ϕxn

(k) ≤ ϕx(k) for all but 
finitely many n ∈ Ik−1, and thus there is mk ≤ ϕx(k) such that Ik = {n ∈ Ik−1 :
ϕxn

(k) = mk} is infinite.
For each k, pick ik ∈ Ik with ik > ik−1. Then ϕxik

→ f , where f(k) = mk ≤ ϕx(k)
for all k. �

The next result tells that if the group has a small dense subset, then the bounded sub-
sets of its completion are determined by the bounded subsets of any dense subgroup of G. 
A special case of it was proved by Grothendieck [20], and extended in [8, Theorem 2.1], 
for G a separable metrizable locally convex topological vector space.

Theorem 3.18. Let (G, N) be a metrizable boundedness system with d(G) < b. Let D be a 
dense subset of G. For each bounded K ⊆ G, there is a bounded J ⊆ D such that K ⊆ J .

Proof. Assume that G is locally compact, and let U be a compact neighborhood of e. 
Take a finite F ⊆ N such that K ⊆ F ∗ U , and let J = D ∩ (F ∗ U). Then K ⊆ J .

Next, assume that G is not locally compact. As d(G) < b, there is K ′ ⊆ K such that 
|K ′| < b and K ⊆ K ′. For each x ∈ K ′, let {xn} be a sequence in D converging to x. By 
Proposition 3.17, we may assume that {ϕxn

} converges to a function ϕ′
x ≤ ϕx. The set 

{xn : n ∈ N} ∪ {x} is compact, and thus bounded. Take gx such that ϕxn
≤ gx for all n.

As |K ′| < b, there is h ∈ NN such that gx ≤∗ h for all x ∈ K ′. We require also that 
all elements of Ψ [K] are ≤ h. For each x ∈ K ′, we have that ϕxn

≤ h for all but finitely 
many n. Indeed, let N be such that gx(k) ≤ h(k) for all k > N . For all but finitely 
many n,

ϕxn
(1) = ϕ′

x(1) ≤ ϕx(1) ≤ h(1), . . . , ϕxn
(N) = ϕ′

x(N) ≤ ϕx(N) ≤ h(N),



100 C. Chis et al. / Journal of Algebra 420 (2014) 86–119
as x ∈ K, and for k > N , ϕxn
(k) ≤ gx(k) ≤ h(k). Thus, for J = D ∩ Ψ−1[{f ∈ NN :

f ≤ h}], we have that K ′ ⊆ J , and therefore also K ⊆ J . �
It seems that the following special case of Theorem 3.18 was not noticed before.

Corollary 3.19. Let G be a metrizable group with a dense subgroup H. For each precompact 
set K ⊆ G, there is a precompact set J ⊆ H such that K ⊆ J .

Proof. As K is precompact and G is metrizable, K is separable. As H is dense in G and 
K is separable, there is a countable D ⊆ H such that K ⊆ D. We may assume that D
is a group. Let G′ = D, and apply Theorem 3.18 to G′ and D to obtain a bounded set 
J ⊆ D such that K ⊆ J . �
Example 3.20. Consider the permutation group SN from Example 3.10. By Corollary 3.19, 
each compact subset of SN is contained in the closure of some precompact set of finitely 
supported permutations.

Remark 3.21. There is no assumption on the density of G in Corollary 3.19. However, 
metrizability is needed: A P -group is a group where every Gδ set is open. For each 
P -group G with a proper dense subgroup H, and each g ∈ G, the singleton {g} is not 
contained in the closure of any precompact subset of H. Indeed, if B ⊆ H is precompact, 
then B is a compact subset of G, and thus finite (countably infinite subsets of P -spaces 
are closed and discrete), and thus B ⊆ H.

For a concrete example, let Z2 be the two element group, and take G = (Z2)κ for 
some κ > ℵ0, with the countable box topology, and let H be the group of all g ∈ (Z2)κ
which are supported on a countable set.

Corollary 3.19 implies the following.

Corollary 3.22. Let G be a metrizable group with a dense subgroup H. Then PK(H) is 
cofinally equivalent to PK(G). �
4. The cofinality of the family of bounded sets

For locally convex topological vector spaces with the standard boundedness structure, 
the following corollary is proved in [28, Theorem 1] and in [8, Theorem 2.5]. In its general 
form, it follows from Proposition 3.4 and Theorem 3.6.

Corollary 4.1. Let (G, N) be a boundedness system.

(1) If G is bounded, then cof(BddN(G)) = 1.
(2) If G is locally bounded and unbounded, then cof(BddN(G)) = ℵ0.
(3) If G is metrizable non-locally bounded, then cof(BddN(G)) = d. �
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Lemma 4.2. Let (G, T ) be a boundedness system.

(1) If G is bounded, then cof(BddT (G)) = 1.
(2) If G is unbounded, then:

(a) ℵ0 ≤ cof(BddT (G)).
(b) bT (G) ≤ cof(BddT (G)).
(c) If χ(G) ≤ |T | (in particular, for metrizable G), then |T | ≤ cof(BddT (G)).

Proof of (2). (a) Otherwise, G is the union of finitely many bounded sets, and is thus 
bounded.

(b) Let κ = cof(BddT (G)). By (a), κ ≥ ℵ0. Let {Kα : α < κ} be cofinal in BddT (G). 
For each neighborhood U of e, there are finite Fα ⊆ T , for α < κ, such that Kα ⊆ Fα∗U . 
Let S =

⋃
α<κ Fα. Then |S| = κ, and the set S ∗ U contains the set 

⋃
α<κ Kα = G.

(c) Apply (b) and Proposition 2.11. �
Lemma 4.3.

(1) Let (G, T ) be an unbounded locally bounded metrizable boundedness system. Then 
cof(BddT (G)) = |T |.

(2) For each metrizable nonprecompact locally precompact group G, we have that 
cof(PK(G)) = d(G).

Proof of (1). Let U be a bounded neighborhood of e. Then the set {F ∗U : F ∈ Fin(T )}
is cofinal in BddT (G), and thus cof(BddT (G)) ≤ |Fin(T )| = |T |. Apply Lemma 4.2. �
Definition 4.4. For a set X, Fin(X)N is the set of all functions f : N → Fin(X). This set 
is partially ordered by defining f ⊆ g as f(n) ⊆ g(n) for all n.

The cardinal cof(Fin(X)N) depends only on |X|.

Lemma 4.5. Let (G, T ) be a metrizable boundedness system, and let κ = |T |. Then:

(1) Fin(κ)N � BddT (G).
(2) cof(BddT (G)) ≤ cof(Fin(κ)N).
(3) cof(PK(G)) ≤ cof(Fin(d(G))N).

Proof of (1). Fix a neighborhood base Un, n ∈ N, at e. For each f ∈ Fin(κ)N, define

Kf =
⋂
n∈N

f(n) ∗ Un.

Then each set Kf is in BddT (G), and the family {Kf : f ∈ Fin(κ)N} is cofinal 
in BddT (G). �
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The following concept is central for the main results of this section.

Definition 4.6. The local density of a group G is the cardinal

ld(G) = min
{
d(U) : U is a neighborhood of e in G

}
.

G has stable density if ld(G) = d(G).

G has local density κ if, and only if, G has a local base at e, consisting of elements of 
density κ.

Lemma 4.7. The cardinal ld(G) is the minimal density of a clopen subgroup H of G. 
Thus, G has stable density if, and only if, d(H) = d(G) for all clopen H ≤ G.

Proof. Let U ⊆ G be an open neighborhood of e with d(U) = ld(G). Take H = 〈U〉. 
Then H is an open, and thus closed, subgroup of G. �
Example 4.8. Every connected group has stable density.

Definition 4.9. Let V be a neighborhood of e in G. A set A ⊆ G is a V -grid if the sets aV , 
for a ∈ A, are pairwise disjoint. A set A is a grid if it is a V -grid for some neighborhood 
V of e.

The intersection of a precompact set and a grid must be finite.

Lemma 4.10. Let G be a metrizable group with stable density. Let κ = d(G), and U be a 
neighborhood of e.

(1) For each λ < κ, the neighborhood U contains a grid of cardinality greater than λ.
(2) If cof(κ) > ℵ0, then U contains a grid of cardinality κ.

Proof. (1) Let V ⊆ U be a symmetric neighborhood of e, such that for each S ⊆ G with 
|S| = λ < κ, SV 2 does not contain U .

By Zorn’s Lemma, there is a maximal V -grid A in U . As V is symmetric, U ⊆ AV 2. 
It follows that |A| > λ.

(2) Let {Vn : n ∈ N} be a symmetric local base at e, and for each n let An be a 
maximal Vn-grid in U . The previous argument shows that for each λ < κ, there is n such 
that |An| > λ. Thus, supn |An| = κ. As cof(κ) > ℵ0, there is n with |An| = κ. �

We are now ready for the main results of this section. Given partially ordered sets 
P1, . . . , Pk, define the coordinate-wise partial order on P1 × · · · × Pk by (a1, . . . , ak) ≤
(b1, . . . , bk) if a1 ≤ b1, . . . , ak ≤ bk.
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Definition 4.11. For cardinals κ, λ, the family

[κ]λ :=
{
A ⊆ κ : |A| = λ

}
is partially ordered by ⊆.

Theorem 4.12. Let G be a metrizable non-locally precompact group of stable density κ. 
Then cof(PK(G)) = d · cof([κ]ℵ0).

Theorem 4.12 follows from the following two propositions.

Proposition 4.13. Let G be a metrizable non-locally precompact group of stable density κ. 
Then:

(1) PK(G) is cofinally equivalent to Fin(κ)N.
(2) cof(PK(G)) = cof(Fin(κ)N).

Proof. If cof(κ) > ℵ0, let κn = κ for all n. Otherwise, for n ∈ N let κn be cardinals such 
that κn < κn+1 for all n and supn κn = κ.

Let {Un : n ∈ N} be a decreasing local base at e. For each n, there is by Lemma 4.10
a grid An ⊆ Un with |An| = κn. Let P ∈ PK(G). Then P ∩ An is finite for all n. Thus, 
we can define Ψ : PK(G) →

∏
n Fin(An) by

P �→ f with f(n) = P ∩An

for all n.
The map Ψ is cofinal: For each f ∈

∏
n Fin(An), the set P =

⋃
n f(n) ∪ {e} is a 

countable set converging to e, and thus compact. For each n, we have that f(n) ⊆
Ψ(P )(n).

As Ψ is monotone and cofinal, PK(G) �
∏

n Fin(An).

Lemma 4.14. If κn ≤ κn+1 for all n, and supn κn = κ, then

∏
n

Fin(κn) � NN ×
∏
n

Fin(κn) � Fin(κ)N.

Proof. To prove the first assertion, map f to the pair (h, f), where h(n) = max f(n) ∩ω

(or 0 if f(n) ∩ ω is empty). For the second assertion, map (h, g) to the function f(n) =⋃
m≤h(n) g(m). �
Finally, apply Lemma 4.5. �
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Proposition 4.15. For each infinite cardinal κ, cof(Fin(κ)N) = d · cof([κ]ℵ0).

Proof. Fin(κ)N � NN × [κ]ℵ0 : Given a function f ∈ Fin(κ)N, define gf ∈ NN by gf (n) =
max(f(n) ∩ω) ∪{0}, and sf =

⋃
n f(n). The map f �→ (gf , sf ) is monotone and cofinal.

Thus, cof(Fin(κ)N) ≥ cof(NN × [κ]ℵ0) = d · cof([κ]ℵ0).
(≤) For each s ∈ [κ]ℵ0 , fix a surjection rs: N → s. Consider the mapping of (f, s) ∈

NN × [κ]ℵ0 to g ∈ Fin(κ)N, defined by

g(n) =
{
rs(1), rs(2), . . . , rs

(
f(n)

)}
for all n. Then the image of a product of two cofinal sets is cofinal. �

We now treat the general case, using the following observation: If H is a clopen 
subgroup of G of density ld(G), then H has stable density, G/H is discrete, and d(G) =
|G/H| · ld(G).

Theorem 4.16. Let G be a metrizable non-locally precompact group.

(1) Let H be a clopen subgroup of G, of density ld(G). Then PK(G) is cofinally equivalent 
to Fin(G/H) × Fin(ld(G))N.

(2) cof(PK(G)) = d · d(G) · cof([ld(G)]ℵ0).

Proof. (1) d(H) = ld(G) = ld(H).

Lemma 4.17. For each clopen subgroup H of G, PK(G) is cofinally equivalent to 
Fin(G/H) × PK(H).

Proof. Fix a set S ⊆ G of coset representatives, that is such that |S ∩ gH| = 1 for all 
g ∈ G. We need to show that PK(G) is cofinally equivalent to Fin(S) × PK(H). For 
A ⊆ G let S(A) = {s ∈ S : sH ∩A 
= ∅}. The function

P �→
(
S(P ), H ∩

⋃
s∈S(P )

s−1P

)

is a monotone and cofinal map from PK(G) to Fin(S) × PK(H).
For the other direction, we can map each (F, P ) ∈ Fin(S) × PK(H) to FP . �
This, together with Theorem 4.12, proves (1).
(2) By (1) and Proposition 4.15,

cof
(
PK(G)

)
= |G/H| · d · cof

([
ld(G)

]ℵ0)
.

The statement follows, using that |G/H| ≤ d(G) ≤ cof(PK(G)) (Lemma 4.2). �
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Example 4.18. For all cardinals λ ≤ κ, there are metrizable groups G with ld(G) = λ

and d(G) = κ. For example, a product of a discrete group of cardinality κ and C(Tλ, T). 
An extreme example is where G is discrete: We obtain ld(G) = 1, and d(G) = |G|, and 
indeed PK(G) = Fin(G/{e}).

The cardinal cof(Fin(κ)N) also appears, in a different context, in a completely different 
context studied by Bonanzinga and Matveev [7].

5. Abelian groups and Pontryagin–van Kampen duality

In the remainder of the paper, all considered groups are assumed to be abelian, and 
we use the additive notation and 0 for the trivial element. In particular, we identify T
with the additive group [−1/2, 1/2), having addition defined by identifying ±1/2.

A character on a topological abelian group G is a continuous group homomorphism 
from G to the torus group T. This is a collision in terminology, which may be solved as 
follows: Characters on G are its continuous homomorphisms into T, whereas the character 
of G is the minimal cardinality of a local base of G at e. The set of all characters on G, 
with pointwise addition, is a group.

For a topological abelian group G, let K(G) denote the family of all compact subsets 
of G. For a set A ⊆ G and a positive real ε, define

[A, ε] :=
{
χ ∈ Ĝ :

∣∣χ(a)
∣∣ ≤ ε for all a ∈ A

}
.

The sets [K, ε] ⊆ Ĝ, for K ∈ K(G) and ε > 0, form a neighborhood base at the trivial 
character, defining the compact-open topology. We write Ĝ for the topological abelian 
group obtained in this manner.

A topological abelian group G is reflexive if the evaluation map

E:G → ̂̂
G,

defined by E(g)(χ) = χ(g) for all g ∈ G and χ ∈ Ĝ, is a topological isomorphism. By the 
Pontryagin–van Kampen theory, we know that every locally compact abelian group is 
reflexive. Furthermore, the dual of a compact group is discrete and the dual of a discrete 
group is compact. In general, the dual of a locally compact abelian group is also locally 
compact. It follows that every compact abelian group is equipped with the topology of 
pointwise convergence on its dual group. This fact will be used below.

Let K be a compact subset of G. For each n, the set Kn = K ∪ 2K ∪ · · · ∪ nK is 
compact, and [Kn, 1/4] ⊆ [K, 1/4n]. Thus, the sets [K, 1/4], for K ∈ K(G), also form a 
neighborhood base of Ĝ at the trivial character.
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Definition 5.1. Let G be a topological abelian group. For A ⊆ G, let A� := [A, 1/4]. 
Similarly, for X ⊆ Ĝ, let

X� :=
{
g ∈ G :

∣∣χ(g)
∣∣ ≤ 1

4 for all χ ∈ X

}
.

Lemma 5.2. (See [4, Proposition 1.5].) For each neighborhood U of 0 in G, we have that 
U� ∈ K(Ĝ).

Definition 5.3. (See Vilenkin [31].) Let G be a topological abelian group. A set A ⊆ G

is quasiconvex if A�� = A. The topological group G is locally quasiconvex if it has a 
neighborhood base at its identity, consisting of quasiconvex sets.

For each set A ⊆ G, the set A� is a quasiconvex subset of Ĝ. Thus, the topological 
group Ĝ is locally quasiconvex for all topological abelian groups G. Moreover, local 
quasiconvexity is hereditary for arbitrary subgroups.

The set A�� is the smallest quasiconvex subset of G containing A. This set is closed.
In the case where G is a topological vector space G is locally quasiconvex in the present 

sense if, and only if, G is a locally convex topological vector space in the ordinary sense [4].
If G is locally quasiconvex, its characters separate points of G, and thus the evaluation 

map E: G → Gˆ̂ is injective. For each quasiconvex neighborhood U of 0 in G, the set 
U� is a compact subset of Ĝ (Lemma 5.2), and thus U�� is a neighborhood of 0 in Gˆ̂ . 
As E[G] ∩ U�� = E[U��] = E[U ], we have that E is open [4, Lemma 14.3].

Lemma 5.4. Let G be a complete locally quasiconvex group. Let N̂ be the family of all 
neighborhoods of 0 in Ĝ. Then:

(1) (N̂ , ⊇) is cofinally equivalent to (K(G), ⊆).
(2) χ(Ĝ) = cof(K(G)).

Proof of (1). We have seen above that the monotone map �: K(G) → N̂ is cofinal.
Consider the other direction. Let K ∈ K(G), and take U = K� ∈ N̂ . By Lemma 5.2, 

U� ∈ K(Gˆ̂ ). Now,

K ⊆ K�� = U� = E−1[U� ∩ E[G]
]
.

As G is complete, U�∩E[G] is compact. As G is locally quasiconvex, the map E is open, 
and therefore E−1[U� ∩ E[G]] is compact. Thus, the monotone map �: N̂ → K(G) is 
also cofinal. �
Remark 5.5. As can be seen from the proof of Lemma 5.4, the assumption that G is 
complete can be wakened to the so-called quasiconvex compactness property, that is, the 
property that for each K ∈ K(G), we have that K�� ∈ K(G).
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We obtain the following proposition, which extends to topological abelian groups a 
result of Saxon and Sánchez-Ruiz for the strong dual of a metrizable space [28, Corol-
lary 2]. As every locally convex topological vector space is connected, it has stable density 
and therefore the concept of local density is not required in [28]. As stated here, our re-
sult does not generalize that of Saxon and Sánchez-Ruiz. There is a natural extension 
of our approach which implies their result as well, by replacing K(G) with more gen-
eral boundedness notions on G. For concreteness, we do not present our results in full 
generality.

A topological space X is a k-space if the topology of X is determined by its compact 
subsets, that is, F ⊆ X is closed if (and only if) F ∩K is closed in K for all K ∈ K(G). 
Every metrizable space is a k-space. A k-group is a topological group which is a k-space.

Let G be the dual of a metrizable group Γ . If Γ is (pre)compact, then by Pontryagin’s 
Theorem, G is discrete, that is χ(G) = 1. Item (1) of the following proposition is known 
[10, Theorem 3.12(ii)].

Proposition 5.6. Let G be the dual of a metrizable, nonprecompact group Γ .

(1) If Γ is locally precompact, then χ(G) = d(Γ ).
(2) If Γ is non-locally precompact, then χ(G) is the maximum of d, d(Γ ), and 

cof([ld(Γ )]ℵ0).

Proof. Außenhofer [3] and, independently, Chasco [9] proved that a metrizable group 
and its completion have the same (topological) dual group. Since the density and local 
density of a metrizable group are equal to those of its completion, we may assume that 
Γ is complete.

Since Γ is metrizable, it is a k-space, and therefore G = Γ̂ is complete [4, Proposi-
tion 1.11]. By Lemma 5.4 and the completeness of Γ , we have that

χ(G) = χ(Γ̂ ) = cof
(
K(Γ )

)
= cof

(
PK(Γ )

)
.

(1) By Lemma 4.3, cof(PK(Γ )) = d(Γ ).
(2) By Theorem 4.16 and Theorem 4.15, we have that

cof
(
PK(Γ )

)
= d(Γ ) · cof

(
Fin

(
ld(Γ )

)N) = d · d(Γ ) · cof
([

ld(Γ )
]ℵ0)

. �
Even for locally quasiconvex G, the evaluation map E need not be continuous. If it 

is, then G is isomorphic to its image E[G] in Gˆ̂ .

Definition 5.7. A topological abelian group G is subreflexive if the evaluation map E: G →
E[G] is a topological isomorphism. In this case, we identify G with its image E[G] ≤ Gˆ̂ .
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Remark 5.8. If G is a subreflexive topological abelian group, then G is locally quasicon-
vex. Indeed, the group Gˆ̂ is locally quasiconvex, being a dual group, and therefore so 
is its subgroup E[G], which is isomorphic to G.

Lemma 5.9. Let G be a subreflexive topological abelian group. Then the family {K� :
K ∈ K(Ĝ)} is a neighborhood base at e in G.

Proof. Let K ∈ K(Ĝ). The set K� is a neighborhood of 0 in Gˆ̂ . As G is subreflexive, 
K� is a neighborhood of 0 in G.

Let U be a neighborhood of e in G. As G is locally quasiconvex, we may assume 
that U is quasiconvex. Then the set K := U� is compact in Ĝ (Lemma 5.2), and 
K� = U�� = U . �
Proposition 5.10. Let G be a subreflexive topological abelian group, and N be the family 
of all neighborhoods of 0 in G. Then:

(1) (N , ⊇) is cofinally equivalent to (K(Ĝ), ⊆).
(2) χ(G) = cof(K(Ĝ)).

Proof of (1). By Lemma 5.9, the monotone map �: K(Ĝ) → N is cofinal. The monotone 
map �: N → K(Ĝ) is also cofinal: Let K ∈ K(Ĝ). By Lemma 5.9, K� ∈ N , and 
(K�)� ⊇ K. �

Even complete subreflexive groups G need not be reflexive. The following corollary tells 
that, however, Gˆ̂ is not much larger than G. (See also Theorem 7.6 and Corollary 7.7
below.) Außenhofer made related observations in [3, 5.22]. Question 5.23 in [3] asks 
whether the character group of an abelian metrizable group is reflexive.

Corollary 5.11.

(1) For subreflexive G with Ĝ complete, χ(Gˆ̂ ) = χ(G).
(2) If G is a locally quasiconvex k-group, then χ(Gˆ̂ ) = χ(G).

Proof. (1) The group Ĝ is locally quasiconvex. By Lemma 5.4 and Proposition 5.10, 
χ(Gˆ̂ ) = cof(K(Ĝ)) = χ(G).

(2) By Corollary 7.4 below, the group G is subreflexive. As G is a k-group, the group 
Ĝ is complete. Apply (1). �

The first two items in the following theorem are well known.

Theorem 5.12. Let G be a subreflexive group such that the group Γ = Ĝ is metrizable. 
Then χ(G) = cof(PK(Γ )). Thus:
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(1) If Γ is precompact, then χ(G) = 1, that is, the topological group G is discrete.
(2) If Γ is nonprecompact locally precompact, then χ(G) = d(Γ ).
(3) If Γ is non-locally precompact, then χ(G) = d · d(Γ ) · cof([ld(Γ )]ℵ0).

Proof. By Proposition 5.10, we have that χ(G) = cof(K(Ĝ)) = cof(K(Γ )). Let Δ be 
the completion of Γ . The group Δ is locally quasiconvex too, and metrizable, and thus 
subreflexive. By Corollary 3.22, we have that cof(K(Δ)) = cof(PK(Γ )).

It remains to prove that K(Γ ) is cofinally equivalent to K(Δ). By the Außenhofer–
Chasco Theorem, we may identify Δ̂ with Γ̂ . As G is subreflexive, we may also identify 
G with its image in Gˆ̂ = Γ̂ , and similarly for Δ.

K(Δ) � K(Γ ): Let K ∈ K(Δ). Then K� is a neighborhood of 0 in Δ̂ = Γ̂ = Gˆ̂ . As G
is subreflexive, K�∩G is a neighborhood of 0 in G, and thus (K�∩G)� ∈ K(Ĝ) = K(Γ ). 
Define Φ(K) = (K� ∩G)�. For each K ∈ K(Γ ), K ∈ K(Δ) and Φ(K) ⊇ K. Thus, Φ is 
cofinal.

K(Γ ) � K(Δ): Let K ∈ K(Γ ). Then K� is a neighborhood of 0 in Γ̂ = Δ̂. Thus, 
K�� ∈ K(Δˆ̂ ), and as Δ is complete, K�� ∩ Δ ∈ K(Δ). Define Ψ : K(Γ ) → K(Δ)
by Ψ(K) = K�� ∩ Δ. For each C ∈ K(Δ), C� is a neighborhood of 0 in Δ̂ = Γ̂ , and 
thus there is K ∈ K(Γ ) such that K� ⊆ C�. Then K�� ⊇ C�� ⊇ C, and therefore 
Ψ(K) = K�� ∩ Δ ⊇ C. This shows that Ψ is cofinal.

(1) and (2) follow, using Lemma 4.3 and Theorem 4.16. �
Theorem 5.12 is stronger than Proposition 5.6: duals of metrizable groups are subre-

flexive, and have a metrizable dual.

6. Application to the free abelian topological groups

A topological space X is hemicompact if cof(K(X)) ≤ ℵ0. X is a kω space if it is a 
hemicompact k-space. Denote the weight of a topological space X by w(X).

The following theorem extends, but does not generalize, several results of Nickolas 
and Tkachenko (e.g., the results numbered 2.12, 2.18, 2.22 in [24], and those numbered 
2.9, 3.5, 3.7 in [25].) For example, Nickolas and Tkachenko proved that if X is compact, 
then

χ
(
A(X)

)
= d · cof

([
w(X)

]ℵ0)
,

and that if X is a kω space such that all compact subsets of X are metrizable, then 
χ(A(X)) = d. Nickolas and Tkachenko’s results were proved by direct, but more combi-
natorially involved, methods.

Theorem 6.1. Let X be a nondiscrete kω space of compact weight κ. Then

χ
(
A(X)

)
= d · cof

(
[κ]ℵ0

)
.



110 C. Chis et al. / Journal of Algebra 420 (2014) 86–119
Proof. Außenhofer [3] and, independently, Galindo–Hernández [16] proved that for a 
class of spaces X containing k-spaces (namely, Ascoli μ-spaces), the free abelian topolog-
ical group A(X) is subreflexive. Pestov [26] proved that for a class of spaces X containing 

kω spaces (namely, μ-spaces), Â(X) = C(X, T). As X is kω, C(X, T) has a countable 
local base at 0 (namely, the sets [Kn, 1/n] where {Kn : n ∈ N} is cofinal in K(X)). Thus, 
C(X, T) is metrizable.

Moreover, C(X, T) is non-locally precompact. Thus, Theorem 5.12 applies.

Lemma 6.2. Let X be a Tychonoff space of compact weight κ. Then:

(1) b(C(X, T)) = b(C(X, R)) = κ.
(2) If X is hemicompact (or just cof(K(X)) ≤ κ), then

b
(
C(X,T)

)
= d

(
C(X,T)

)
= ld

(
C(X,T)

)
= w

(
C(X,T)

)
= κ.

In particular, C(X, T) has stable density.

Proof. For each cofinal family K ⊆ K(X), and for Y = T or R, the mapping f �→
(f |K : K ∈ K) is an embedding of C(X, Y ) in

∏
K∈K C(K, Y ).

(1) If X is locally compact and w(X) is infinite, then w(C(X, T)) ≤ w(X) [13, 3.4.16]. 
Thus, in the case K = K(X), we have that

b
(
C(X,Y )

)
≤ b

( ∏
K∈K(X)

C(K,Y )
)

= sup
K∈K(X)

w
(
C(K,Y )

)

≤ sup
K∈K(X)

w(K).

Let K ∈ K(X). Take S ⊆ C(X, Y ) with |S| = b(C(X, Y )), such that S + [K, 1/16] =
C(X, Y ). Then {f−1(−1/16, 1/16) ∩K : f ∈ S} is a base of K: Let p ∈ U ∩K, U open 
in X. As X is Tychonoff, there is g ∈ C(X, Y ) such that g is 1/4 on X \U and g(p) = 0. 
As S + [K, 1/16] = C(X, Y ), there is f ∈ S such that |f(x) − g(x)| ≤ 1/16 for each 
x ∈ K. It follows that p ∈ g−1(−1/16, 1/16) ∩K ⊆ U ∩K. Thus, w(K) ≤ b(C(X, Y ))
for each K ∈ K(X).

(2) By (1), κ = b(C(X, R)) ≤ d(C(X, R)). As C(X, R) is connected, d(C(X, R)) =
ld(C(X, R)). For each ε < 1/2 and each compact K ⊆ X, [K, ε] is the same in C(X, R)
and in C(X, T). Thus,

κ ≤ ld
(
C(X,R)

)
≤ ld

(
C(X,T)

)
≤ d

(
C(X,T)

)
≤ w

(
C(X,T)

)
.

In the case where |K| = cof(K(X)),
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w
(
C(X,T)

)
≤ w

( ∏
K∈K

C(K,T)
)

= |K| · sup
K∈K

w
(
C(K,T)

)
≤ cof

(
K(X)

)
· sup
K∈K(X)

w(K) ≤ κ · κ = κ. �

We therefore have, by Theorem 5.12, that χ(A(X)) is the maximum of d and cof([κ]ℵ0), 
where κ = d(C(X, T)) = sup{w(K) : K ∈ K(X)}. This completes the proof of Theo-
rem 6.1. �
Example 6.3. If X is compact, or locally compact σ-compact, then X is a kω space and 
Theorem 6.1 applies.

As already pointed out in the introduction, by virtue of [25, Corollary 2.3], our results 
also apply to the free nonabelian topological groups F (X).

7. The inner theorem

We begin with an inner characterization of subreflexivity.

Definition 7.1. A set V ⊆ G is a k-neighborhood of 0 if for each K ∈ K(G) with 0 ∈ K, 
V ∩K is a neighborhood of 0 in K.

Lemma 7.2. (See Hernández–Trigos-Arrieta [22].)

(1) Let G be a k-group. Every quasiconvex k-neighborhood of 0 is a neighborhood of 0.
(2) Let U be a quasiconvex subset of a locally quasiconvex group G. U is a k-neighborhood 

of 0 if, and only if, U� ∈ K(Ĝ).

We obtain the following.

Theorem 7.3. A group G is subreflexive if, and only if, G is locally quasiconvex, and each 
quasiconvex k-neighborhood of the identity in G is a neighborhood of the identity.

Proof. (⇐) Let F ∈ K(Ĝ) and K ∈ K(G). By Ascoli’s Theorem, the restrictions of the 
elements of F to K form an equicontinuous subset of C(K, T). Hence, if K contains 0, 
then F� ∩ K is a neighborhood of 0 in K. Again, taking intersections, we have that 
F� ∩K is a neighborhood of 0 in K. Thus, F� is a neighborhood of 0.

(⇒) Let W be a quasiconvex k-neighborhood of 0. Then W� is compact in Ĝ. As G
is subreflexive, W = W�� is a neighborhood of 0 in G. �

Lemma 7.2 and Theorem 7.3 imply the following.

Corollary 7.4 (Folklore). Every locally quasiconvex k-group is subreflexive. �
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For locally convex topological vector spaces and countable weight, the following result 
was proved by Ferrando, Ķakol, and M. López Pellicer [15].

Theorem 7.5. Let G be a locally quasiconvex abelian group.

(1) The cardinal b(Ĝ) is equal to the compact weight of G.
(2) If the topological group Ĝ is metrizable, then d(Ĝ) is equal to the compact weight 

of G.

Proof of (1). (≤) As Ĝ ≤ C(G, T), we have by Lemmata 2.9 and 6.2 that b(Ĝ) ≤
b(C(G, T)) = sup{w(K) : K ∈ K(G)}.

(≥) Let K ∈ K(G). Since [K, 1/8] is a neighborhood of the identity of Ĝ, there is a 
set S ⊆ Ĝ with |S| ≤ b(Ĝ) such that S + [K, 1/8] = Ĝ.

The set S separates the points of K: Let a1, a2 be distinct elements of K. As G is 
locally quasiconvex, there is χ ∈ Ĝ such that |χ(a1−a2)| > 1/4. As χ ∈ Ĝ = S+[K, 1/8], 
there are α ∈ S and β ∈ [K, 1/8] such that χ = α + β. Then |β(a1 − a2)| ≤ |β(a1)| +
|β(a2)| ≤ 2/8 = 1/4, and thus |α(a1 − a2)| ≥ |χ(a1 − a2)| − 1/4 > 0.

Thus, the minimal topology on K which makes all elements of S continuous is Haus-
dorff, and as K is compact, its topology (which is minimal Hausdorff) coincides with it. 
Thus, w(K) ≤ |S| ≤ b(Ĝ). �

An unpublished result of Außenhofer asserts that, if G is a separable metrizable group, 
then all higher character groups of G are separable. This is in accordance with item (3) 
of the following theorem.

Theorem 7.6. Let G be a topological abelian group, and let κ be the compact weight of Ĝ.

(1) If G is subreflexive then b(G) = b(Gˆ̂ ) = κ.
(2) If G is a locally quasiconvex k-group then b(G) = b(Gˆ̂ ) = κ.
(3) If G is locally quasiconvex and metrizable then d(G) = d(Gˆ̂ ) = κ.

Proof. (1) As G ≤ Gˆ̂ , we have that b(G) ≤ b(Gˆ̂ ). By Theorem 7.5, b(Gˆ̂ ) = κ. We 
prove that κ ≤ b(G).

Let K be a compact subset of Ĝ. As G is subreflexive, the set

U = (K ∪ 2K)� =
{
g ∈ G : (∀χ ∈ K)

∣∣χ(g)
∣∣ ≤ 1/8

}
is a neighborhood of 0 in G. Let S ⊆ G be such that |S| ≤ b(G), and S + U = G.

S separates points of K: Let χ, ψ ∈ K be distinct. As G� = {0}, there is g ∈ G such 
that |(χ − ψ)(g)| > 1/4. Take s ∈ S, u ∈ U , such that g = s + u. Then
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∣∣(χ− ψ)(s)
∣∣ ≥ ∣∣(χ− ψ)(g)

∣∣− ∣∣(χ− ψ)(u)
∣∣ > 1/8.

It follows that w(K) ≤ |S| ≤ b(G).
(2) Locally quasiconvex metrizable groups are subreflexive, being locally quasiconvex 

k-groups (Corollary 7.4). �
Mikhail Tkachenko pointed out to us that our results imply the following.

Corollary 7.7. For all subreflexive G with Ĝ complete, w(Gˆ̂ ) = w(G).

Proof. This follows from Corollary 5.11 and Theorem 7.6, using the fact w(G) = b(G) ·
χ(G) for all topological groups [2]. �

We now turn to characterizing the local density of Ĝ in terms of inner properties of G.
A mapping is compact covering if each compact subset of the range space is covered 

by the image of a compact subset of the domain.

Lemma 7.8. Let H be a compact subgroup of G. Then the canonical projection π: G →
G/H is compact covering.

Proof. For each compact K ⊆ G/H, the set π−1[K] is compact. �
Lemma 7.9. Let G be a topological abelian group. Then:

(1) For each compact subgroup H of G, the topological groups Ĝ/H and H� are isomor-
phic.

(2) For each open subgroup H of G, the topological groups Ĝ/H and H� are isomorphic.

Proof. (1) The homeomorphism ϕ: Ĝ/H → Ĝ defined by ϕ(χ) = χ ◦π is continuous and 
injective, and its image is {χ ∈ Ĝ : χ|H = 0} = H�. A mapping is compact covering if 
each compact subset of the range space is covered by the image of a compact subset of 
the domain. If H is a compact subgroup of G, then the canonical projection π: G → G/H

is compact covering.
To see that ϕ is open, let U be a neighborhood of the identity of Ĝ/H. We may 

assume that U = K� for some compact set K ⊆ G/H. Since π is compact covering, we 
may assume that K = π[K ′] for some compact set K ′ ∈ K(G). We may also assume that 
K ′ ⊇ H. Then K ′ � ⊆ H�, and therefore the set

ϕ[U ] = ϕ
[
π
[
K ′]�] =

{
ϕ(χ) : χ ∈ π

[
K ′]�} =

{
χ ◦ π : χ ◦ π ∈ K ′ �} = K ′ �

is open.
(2) By the Pontryagin–van Kampen Theorem, since the group G/H is discrete, 

the compact group Ĝ/H is equipped with the pointwise convergence topology. As a 
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consequence, the homeomorphism ϕ: Ĝ/H → Ĝ defined by ϕ(χ) = χ ◦ π is continuous 
and injective, and its image is {χ ∈ Ĝ : χ|H = 0} = H�. The map ϕ is also open since 

Ĝ/H is compact. �
For brevity, denote the compact weight of a group G by kw(G).

Proposition 7.10. Let G be a locally quasiconvex kω group. Then

ld(Ĝ) = min
{
kw(G/H) : H ≤ G compact

}
.

Proof. (≥) Let Γ be an open subgroup of G such that d(Γ ) = ld(Ĝ). As G is kω, Ĝ is 
first countable and thus metrizable. By Corollary 7.4, the group G is subreflexive. As kω
groups are complete, Γ� = Γ�∩G is an intersection of a compact group and a complete 
group, and is thus compact.

By Lemma 7.9, Ĝ/Γ� is isomorphic to Γ��, which contains Γ . By definition, Γ sep-
arates the points of G/Γ�, and therefore so does every dense subset of Γ . Thus, 
w(K) ≤ d(Γ ) for all compact sets K ⊆ G/Γ�.

(≤) Let H be a compact subgroup of G. By Lemma 7.9, Ĝ/H is isomorphic to H�. 
As H� ≤ Ĝ, it is metrizable, and thus by Corollary 7.5,

d
(
H�) = d(Ĝ/H) = kw(G/H).

As H� is open, ld(Ĝ) ≤ d(H�). �
G is locally hemicompact (respectively, locally kω) if G contains an open hemicompact 

(respectively, kω) subgroup. The first item of the following theorem is an immediate 
consequence of the Pontryagin–van Kampen Theorem. The second item is new.

Theorem 7.11. Let G be a locally quasiconvex, locally kω group. Let H be an open kω
subgroup of G, of compact weight κ. Let λ = min{kw(H/K) : K ≤ H compact}. Then:

(1) If H is nondiscrete and locally compact then χ(G) = κ.
(2) If H is non-locally compact then χ(G) is the maximum of d, κ and cof([λ]ℵ0).

Proof of (2). As H is open in G, χ(G) = χ(H). G is locally quasiconvex, and therefore 
so is H. By Lemma 7.4, H is subreflexive. By hemicompactness, Γ := Ĥ is metrizable. 
By Theorem 5.12,

χ(H) = d · d(Γ ) · cof
([

ld(Γ )
]ℵ0)

.

By Theorem 7.5(2), we have that d(Γ ) = κ. By Proposition 7.10, ld(Γ ) = λ. �
Concrete estimations are given in the overview (Section 1). The proofs for these esti-

mations are provided in the following, last section.
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8. Shelah’s theory of possible cofinalities

In this section, we provide estimations for the cardinal cof([κ]ℵ0). The estimations 
given here either appear explicitly in works of Shelah, or are easy consequences thereof. 
Since we could not find a convenient reference for these, we also provide proofs.

Lemma 8.1. For each cardinal κ > ℵ0, we have that κ ≤ cof([κ]ℵ0) ≤ κℵ0 .

Proof. Clearly, cof([κ]ℵ0) ≤ |[κ]ℵ0 | = κℵ0 . For the other inequality, note that if A ⊆ [κ]ℵ0

and |A| < κ, then | 
⋃
A| ≤ |A| · ℵ0 < κ, and thus 

⋃
A 
= κ. In particular, A is not cofinal 

in [κ]ℵ0 . �
For each cardinal λ, the cardinal κ = λℵ0 has the property κℵ0 = κ. This property 

holds for every cardinal κ = 2λ for an infinite cardinal λ, and if κℵ0 = κ, then the same 
is true for the subsequent cardinal κ+. This is also the case when κ is inaccessible. If the 
Generalized Continuum Hypothesis (GCH) holds, then this is the case for all cardinals 
of uncountable cofinality.

Corollary 8.2. For each infinite cardinal κ with κℵ0 = κ, we have that cof(Fin(κ)N) =
cof([κ]ℵ0) = κ.

Proof. If κℵ0 = κ, then κ ≥ c ≥ d. Apply Theorem 4.15 and Lemma 8.1. �
Lemma 8.3. For each κ > ℵ0, cof([κ]ℵ0) = κ · sup{cof([λ]ℵ0) : λ ≤ κ, cof(λ) = ℵ0}.

Proof. (≥) Monotonicity and Lemma 8.1.
(≤) If cof(κ) = ℵ0, this follows from the fact that κ ≤ cof([κ]ℵ0) (Lemma 8.1).
If cof(κ) > ℵ0, then each countable subset of κ is bounded in κ. Thus, [κ]ℵ0 =⋃

α<κ [α]ℵ0 , and therefore cof([κ]ℵ0) ≤ κ · sup{cof([λ]ℵ0) : λ < κ}. The statement for 
κ = ℵ1 follows, and by induction, for each λ < κ with λ > ℵ1,

cof
(
[λ]ℵ0

)
= λ · sup

{
cof

(
[μ]ℵ0

)
: μ ≤ λ, cof(μ) = ℵ0

}
≤ κ · sup

{
cof

(
[μ]ℵ0

)
: μ ≤ κ, cof(μ) = ℵ0

}
. �

Corollary 8.4. For each κ, if cof([κ]ℵ0) = κ, then cof([κ+]ℵ0) = κ+. �
Item (1) of the following corollary is well known [1], and item (2) was proved, inde-

pendently, by Bonanzinga and Matveev [7].

Corollary 8.5.

(1) cof([ℵ0]ℵ0) = 1, and for each n ≥ 1, cof([ℵn]ℵ0) = ℵn.
(2) cof(Fin(ℵ0)N) = d, and for each n ≥ 1, cof(Fin(ℵn)N) = d · ℵn. �
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Already for κ = ℵω, the situation is different. A diagonalization argument as in König’s 
Lemma shows that, cof([κ]cof(κ)) > κ for singular cardinals κ.

Corollary 8.6. If cof(κ) = ℵ0 < κ, then cof(Fin(κ)N) ≥ d · κ+. �
We next consider upper bounds.

8.1. In the absence of large cardinals

Shelah’s Strong Hypothesis (SSH) is the statement that for each uncountable κ with 
cof(κ) = ℵ0, cof([κ]ℵ0) = κ+. SSH follows, for example, from the Generalized Continuum 
Hypothesis. Shelah’s Strong Hypothesis was originally stated differently, but was shown 
in [30, Theorem 6.3] to be equivalent to the variation adopted here.5 The adjective 
“Strong” in SSH means that there is a yet weaker hypothesis, but SSH is in fact quite 
weak. In particular, its failure implies the consistency of large cardinals.6

Following is the concluding Theorem 6.3 of [30]. The simplicity of the proof given here 
is due to the reformulation of SSH.

Theorem 8.7. (See Shelah [30].) Assume SSH. For each κ > ℵ0, the cardinal cof([κ]ℵ0)
is κ if cof(κ) > ℵ0, and κ+ if cof(κ) = ℵ0.

Proof. The case κ = ℵ1 is Corollary 8.5. Continue by induction on κ: If cof(κ) = ℵ0, use 
SSH. If cof(κ) > ℵ0, use Lemma 8.3 and the induction hypothesis to get

cof
(
[κ]ℵ0

)
= κ · sup

{
cof

(
[λ]ℵ0

)
: λ < κ

}
≤ κ · sup

{
λ+ : λ < κ

}
= κ. �

It follows that, assuming SSH, we have that the cardinal cof(Fin(κ)N) is d · κ if 
cof(κ) > ℵ0 and d · κ+ if cof(κ) = ℵ0. Thus, under SSH, the value of cof(Fin(κ)N) is 
completely determined. Moreover, in Theorem 8.7, it suffices to assume that Shelah’s 
Strong Hypothesis holds for all λ ≤ κ.

8.2. Bounds in ZFC

Even without any hypotheses beyond the ordinary axioms of mathematics, nontrivial 
bounds on Fin(κ)N can be established in many cases, using Shelah’s pcf theory [29]. 
There are several good introductions to pcf theory. A recent one is [1], whose references 
include some additional introductions. The following deep result appears as Theorem 7.2 
in [1].

5 In fact, only the main implication is provided there. For the other implication: If κ is such that pp(κ) >
κ+, then in particular cof[κ]cof(κ) > κ+, and we may (e.g., by Lemmata 3.4 and 3.8 in [27]) arrange that 
cof(κ) = ℵ0.
6 The failure of SSH at κ implies that in the Dodd–Jensen core model, there is a measurable λ ≤ κ, 

moreover o(λ) = λ++. The exact consistency strength of SSH was established by Gitik in [17,18].
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Theorem 8.8 (Shelah). For each α < ℵα, cof([ℵα]|α|) < ℵ|α|+4 .

In [1], Theorem 8.8 is stated for limit ordinals α, but taking δ = α + ω, we have 
that δ < ℵα < ℵδ, and applying Shelah’s Theorem for the limit ordinal δ, cof([ℵα]|α|) ≤
cof([ℵδ]|α|) = cof([ℵδ]|δ|) < ℵ|δ|+4 = ℵ|α|+4 .

Definition 8.9. Let π be the first fixed point of the ℵ function, i.e., the first ordinal 
(necessarily, a cardinal) π such that π = ℵπ.

π is quite big: Let π0 = ℵ0 and for each n, let πn+1 = ℵπn
. Then π = supn πn.

Shelah’s Theorem has the following immediate corollaries.

Corollary 8.10. For each α < π, cof([ℵα]ℵ0) < ℵ|α|+4 .

Proof. By induction on α. For α < ω this follows from Corollary 8.5. Assume that the 
assertion is true for all β < α, and prove it for α. First, cof([ℵα]ℵ0) ≤ cof([ℵα]|α|) ·
cof([|α|]ℵ0). As α < π, Corollary 8.8 is applicable, and thus cof([ℵα]|α|) < ℵ|α|+4 . Let β
be such that |α| = ℵβ . Then β < π, and thus β < ℵβ = |α|. By the induction hypothesis, 
cof([ℵβ ]ℵ0) < ℵ|β|+4 ≤ ℵ|α|+3 . �
Corollary 8.11. For each successor cardinal κ < π and each α with κ ≤ α < κ + ω, we 
have that cof([ℵα]ℵ0) < ℵκ+3 .

Proof. For each β ∈ {κ, κ + 1, κ + 2, . . .}, either β = κ and cof(ℵβ) = cof(κ) > ℵ0, or β
is a successor ordinal, and thus cof(ℵβ) = ℵβ > ℵ0. Thus, by Lemma 8.3,

cof
(
[ℵα]ℵ0

)
= ℵα · sup

{
cof

(
[ℵβ ]ℵ0

)
: ℵβ ≤ ℵα, cof(ℵβ) = ℵ0

}
= ℵα · sup

{
cof

(
[ℵβ ]ℵ0

)
: β < κ, cof(β) = ℵ0

}
≤ ℵα · sup

{
cof

(
[ℵβ ]ℵ0

)
: β < κ

}
.

By Corollary 8.10, for each β < κ, cof([ℵβ ]ℵ0) < ℵ|β|+4 .
ℵα < ℵ|α|+ = ℵκ+ < ℵκ+3 . Now, for each β < κ, cof([ℵβ ]ℵ0) < ℵ|β|+4 ≤ ℵκ+3 . As 

cof(ℵκ+3) = κ+3 > κ, the supremum is also smaller than ℵκ+3 . �
Corollary 8.12. For each cardinal κ with ℵ0 < cof(κ) < κ < π and each α with κ ≤ α <

κ + ω, we have that cof([ℵα]ℵ0) = ℵα.

Proof. Replace, in the proof of Corollary 8.11, the last paragraph with the following one: 
For each β < κ, |β|+4 < κ, and thus ℵ|β|+4 < ℵκ ≤ ℵα. �
Example 8.13. For each n ≥ 1:

(1) For each α < ωn + ω, cof([ℵα]ℵ0) < ℵωn+3 .
(2) cof([ℵℵω

]ℵ0) = ℵℵω
.

n n
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Combining Theorem 4.15 and the estimations provided here for cof([κ]ℵ0), we obtain 
estimations for cof(Fin(κ)N).

9. Concluding remarks

Most of the results provided here for complete groups, have natural extensions to 
incomplete groups. For these extensions, one needs to consider the dual group Ĝ with 
[P, ε] a neighborhood of the identity for each precompact P ⊆ G. The extension is 
sometimes straightforward, using Theorem 3.18.

Similarly, the results of Section 6 extend to completely regular spaces that are not 
μ-spaces. Here, one should consider functionally bounded subsets of X instead of compact 
subsets of X, and the topology of C(X, T) should be the functionally bounded-open 
topology. The main result of this section would then deal with spaces X having a cofinal 
family of functionally bounded sets, and whose topology is determined by its functionally 
bounded sets. We point out that in this case, the μ-completion of X is kω, and X is dense 
in this completion.

With some adaptation, the results presented here for kω groups also apply to locally 
convex vector spaces that have a countable cofinal family of bounded sets. For instance, 
any countable inductive limit of DF-spaces.

The present work is not the only one where pcf theory arises naturally in a study 
of a seemingly unrelated concept. Another recent example is in Feng and Gartside’s 
paper [14], where pcf theory turned out essential in a study of a problem motivated by 
Hilbert’s 13th problem.
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