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Abstract. The linear refinement number lr is the minimal cardinality of a centered
family in [ω]ω such that no linearly ordered set in ([ω]ω,⊆∗) refines this family. The linear
excluded middle number lx is a variation of lr. We show that these numbers estimate
the critical cardinalities of a number of selective covering properties. We compare these
numbers to the classical combinatorial cardinal characteristics of the continuum. We prove
that lr = lx = d in all models where the continuum is at most ℵ2, and that the cofinality
of lr is uncountable. Using the method of forcing, we show that lr and lx are not provably
equal to d, and rule out several potential bounds on these numbers. Our results solve a
number of open problems.

1. Overview

1.1. Combinatorial cardinal characteristics of the continuum.
The definitions and basic properties not included below are available in [2].

A family F ⊆ [ω]ω is centered if every finite subset of F has an infinite
intersection. For A,B ∈ [ω]ω, B ⊆∗ A means that B \A is finite. A pseudo-
intersection of a family F ⊆ [ω]ω is an element A ∈ [ω]ω such that A ⊆∗ B
for all B ∈ F . The pseudointersection number p is the minimal cardinality
of a centered family in [ω]ω that has no pseudointersection.

Definition 1.1 ([11, Definition 61]). A family F ⊆ [ω]ω is linear if it
is linearly ordered by ⊆∗. A family G ⊆ [ω]ω is a refinement of a family
F ⊆ [ω]ω if for each A ∈ F there is B ∈ G such that B ⊆∗ A. The linear
refinement number lr is the minimal cardinality of a centered family in [ω]ω

that has no linear refinement.

2010 Mathematics Subject Classification: Primary 03E17; Secondary 03E75.
Key words and phrases: pseudointersection number, linear refinement number, forcing,
Mathias forcing, ω-cover, γ-cover, τ -cover, τ∗-cover, selection principles.
Received 3 May 2014; revised 21 July 2015.
Published online 17 February 2016.

DOI: 10.4064/fm124-8-2015 [15] c© Instytut Matematyczny PAN, 2016



16 M. Machura et al.

In [11], the ad-hoc name p∗ is used for the linear refinement number.
A tower is a linear subset of [ω]ω with no pseudointersection. The tower

number t is the minimal cardinality of a tower. It is immediate from the defi-
nitions that p = min{t, lr}. Solving a longstanding problem, Malliaris and the
second named author [5] have recently proved that p = t. We prove that, con-
sistently, p < lr < c. This settles [11, Problem 64] (quoted in [10, Problem 5]
and in [12, Problem 11.2 (311)]). Moreover, lr = d in all models of set theory
where the continuum is at most ℵ2. One of our main results is that the co-
finality of lr is uncountable. The proof uses auxiliary results of independent
interest. One striking consequence is that if p < b, then lr ≤ b.

The number defined below is a variation of lr. It first appeared in [11, Pro-
blem 57], in the form non(wX).

Definition 1.2. For functions f, g ∈ ωω, let [f ≤ g] = {n : f(n)≤ g(n)}.
The linear excluded middle number lx is the minimal cardinality of a set of
functions F ⊆ ωω such that, for each function h ∈ ωω, the family {[f ≤
h] : f ∈ F} (is either not contained in [ω]ω, or) does not have a linear
refinement (1).

If F ⊆ ωω and |F| < lx then there are a function h ∈ ωω and infinite
subsets Af ⊆∗ [f ≤ h] such that the family {Af : f ∈ F} is linear, and
for all functions f, g ∈ F , say such that Af ⊆∗ Ag, the function h excludes
middles in the sense that

f(n) ≤ h(n) < g(n)

may hold for at most finitely many n in Af .
By the forthcoming Corollary 2.13, we have lr ≤ lx ≤ d and b, s ≤ lx.
In particular, the above-mentioned result on lr implies that lx = d when-

ever the continuum is at most ℵ2. In light of the results of [6], Problem 57
in [11] asks whether lx = max{b, s}. The answer, provided here, is “No”: In
the model obtained by adding ℵ2 Cohen reals to a model of the Continuum
Hypothesis, b = s = ℵ1 < d, and thus also b = s < lx = ℵ2 in this model.
This also answers the question whether wX = X, posed in [11] before Prob-
lem 57, since the critical cardinalities (defined below) of wX and of X are lx
and max{b, s}, respectively.

For lx, an assertion finer than the above-mentioned one holds: If b = lx,
then lx = d.

We use the method of forcing (necessarily, beyond continuum of size ℵ2)
to show that, consistently, lr, lx < d, and to rule out a number of potential

(1) In [11], the ad-hoc name weak excluded middle number (wx) is used for the linear
excluded middle number. Since the excluded middle number defined in [11] turned out to
be equal to the classical cardinal max{b, s}, there is no point in preserving this name, and
consequently also the name of its weaker version.
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upper or lower bounds on these relatively new numbers in terms of classi-
cal combinatorial cardinal characteristics of the continuum. We conclude by
stating a number of open problems.

1.2. Selective covering properties. Topological properties defined by
diagonalizations of open or Borel covers have a rich history in various areas
of general topology and analysis; see [9, 4, 12, 7] for surveys on the topic and
some of its applications and open problems.

Let X be an infinite topological space. By a cover of X we mean a
family U with X /∈ U and X =

⋃
U . Let U = {Un : n < ω} be a bijectively

enumerated, countably infinite cover of X. We say that:

(1) U ∈ O(X) if each Un is open;
(2) U ∈ Ω(X) if U ∈ O(X) and each finite subset of X is contained in

some Un;
(3) U ∈ T∗(X) if U ∈ O(X), the sets

{n : x ∈ Un} (for x ∈ X)

are infinite, and the family of these sets has a linear refinement;
(4) U ∈ Γ(X) if U is a point-cofinite cover, that is, each element of X is

a member of all but finitely many Un.

We may omit the part “(X)” from these notations.
Let A and B be any of the above four types of open covers. Scheepers [8]

introduced the following selection hypotheses that the space X may satisfy:

S1(A,B): For each sequence 〈Un : n < ω〉 of members of A, there is a
selection 〈Un ∈ Un : n ∈ Un〉 such that {Un : n ∈ ω} ∈ B.

Sfin(A,B): For each sequence 〈Un : n < ω〉 of members of A, there is a se-
lection of finite sets 〈Fn ⊆ Un : n < ω〉 such that

⋃
n<ω Fn ∈ B.

Ufin(A,B): For each sequence 〈Un : n < ω〉 of members of A which do
not contain a finite subcover, there is a selection of finite sets
〈Fn ⊆ Un : n < ω〉 such that {

⋃
Fn : n ∈ ω} ∈ B.

Some of the properties are never satisfied, and many equivalences hold
among the meaningful ones. The surviving properties appear in Figure 1,
where an arrow denotes implication [11]. It is not known whether any im-
plication, that does not follow from composition of existing ones, can be
added to this diagram. Several striking results concerning this problem were
established by Zdomskyy [13].

Below each property P in Figure 1 appears its critical cardinality, non(P ),
which is the minimal cardinality of a spaceX not satisfying that property (2).

(2) The cardinal od was defined in [6]. We recall the definition in Subsection 2.2, where
it is needed.
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Ufin(O,Γ)
b

// Ufin(O,T∗)
lx

// Ufin(O,Ω)
d

// Sfin(O,O)
d

Sfin(Γ,T∗)

lx
//

77

Sfin(Γ,Ω)
d

88

S1(Γ,Γ)
b

66

// S1(Γ,T∗)

lx

77

// S1(Γ,Ω)
d

99

// S1(Γ,O)
d

;;

Sfin(T∗,T∗)
?

//

OO

Sfin(T∗,Ω)
d

OO

S1(T∗,Γ)
p

//

OO

S1(T∗,T∗)
?

OO

55

// S1(T∗,Ω)

od

OO

77
// S1(T∗,O)

od

OO

Sfin(Ω,T∗)
lr

OO

// Sfin(Ω,Ω)
d

OO

S1(Ω,Γ)
p

OO

// S1(Ω,T∗)

min{cov(M), lr}

OO

66

// S1(Ω,Ω)
cov(M)

OO

88

// S1(O,O)
cov(M)

OO

Fig. 1. The surviving properties

The boxed critical cardinalities, and several critical cardinalities of properties
not displayed here, are established in the present paper.

Putting the above-mentioned results together, we find that in models
where the continuum (or just d) is at most ℵ2, all but one of the critical car-
dinalities of the properties under study are determined in terms of classical
combinatorial cardinal characteristics of the continuum (see Figure 2).
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// S1(Ω,T∗)
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OO

77
// S1(Ω,Ω)
cov(M)

OO

77

// S1(O,O)
cov(M)

OO

Fig. 2. The critical cardinalities in models of c ≤ ℵ2

These results fix, in particular, an erroneous assertion made in [11, The-
orem 7.20] without proof, that the critical cardinality of S1(Ω,T∗) is lr.
As shown in the diagram, the correct critical cardinality is min{cov(M), lr}.
By the above-mentioned results, the inequality cov(M) < lr holds in all
models of cov(M) < d = ℵ2, in particular in the standard Laver, Mathias,
and Miller models (see [2]).



Linear refinements and selections 19

2. Results in ZFC

2.1. Combinatorial cardinal characteristics of the continuum.
All filters in this paper are on ω, and are assumed to contain all cofinite
subsets of ω. The character of a filter F is the minimal cardinality of a base
for F , that is, a set B ⊆ F such that each element of F contains some element
of B, or equivalently, the minimal cardinality of a subset B of F generating
F as a filter. Let F be a filter. A set P ⊆ ω is F-positive if P ∩A is infinite
for all A ∈ F ; in other words, F can be extended to a filter containing P .

Lemma 2.1. Let κ be an infinite cardinal such that, for each filter F of
character ≤ κ, every linear subset of F of cardinality < κ has an F-positive
pseudointersection. Then κ < lr.

Proof. Let {Aα : α < κ} be centered, and F be the filter generated
by {Aα : α < κ}. We construct, by induction on α, a linear refinement
{A−α : α < κ} of {Aα : α < κ} such that, for each α, {A−β : β < α} ∪ F is
centered and {A−β : β < α} is a linear refinement of {Aβ : β < α}.

Let A−0 = A0. For α > 0 we assume, inductively, that {A−β : β < α} is
linear and that F ∪ {A−β : β < α} is centered. Let Fα be the filter gener-
ated by F ∪ {A−β : β < α}. Let P be an Fα-positive pseudointersection of
{A−β : β < α}. Take A−α = P ∩Aα. As F is a filter, A−α is A-positive.

In the following proof, we use the fact that lr ≤ d [11]. Theorem 2.12
improves upon this inequality.

Theorem 2.2. If lr = ℵ1, then d = ℵ1.

Proof. Assume d > ℵ1. We will prove, using Lemma 2.1, that lr > ℵ1.
Let F be a filter of character ≤ ℵ1, and fix a base {Bα : α < ℵ1} of F . Let
{An : n < ω} be a linear subset of F . By the previous lemma, it suffices to
show that the family {An : n < ω} has an F-positive pseudointersection.
We may assume that An+1 ⊆ An for all n.

Let α < ℵ1. For each n, as Bα ∩ An ∈ F , we can pick fα(n) ∈ Bα ∩ An
such that the function fα is strictly increasing. As d > ℵ1, there is a function
g ∈ ωω such that, for each α < ℵ1, fα(n) < g(n) for infinitely many n. Let

P =
⋃
n<ω

An ∩ [0, g(n)).

For each n, P \ An ⊆
⋃
k<n [0, g(k)), and thus P ⊆∗ An. For each α < ℵ1

and each n with fα(n) < g(n),

fα(n) ∈ Bα ∩An ∩ [0, g(n)) ⊆ P.
As fα is strictly increasing, Bα ∩ P is infinite. Thus, P is F-positive.

As lr ≤ d (Corollary 2.13), Theorem 2.2 implies the following result.
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Corollary 2.3. If d ≤ ℵ2, then lr = d.

Thus, a large family of results about combinatorial cardinal characteris-
tics of the continuum in models of c = ℵ2 (see [2, Table 4]) are applicable.
For example, we have the following consequences.

Corollary 2.4.

(1) For each cardinal x among r, u, a, cov(N ), non(N ), and non(M),
it is consistent that x < lr, and that lr < x.

(2) For each cardinal x among p, h, s, g, e, b, add(N ), add(M), and
cov(M), it is consistent that x < lr.

(3) For each cardinal x among i, cof(M), and cof(N ), it is consistent
that lr < x.

In Subsection 3.1 we show that, consistently, lr < cov(M). In particular,
lr < d is consistent.

A tower of height κ is a set {Tα : α < κ} ⊆ [ω]ω that is ⊆∗-decreasing
with α and has no pseudointersection. There is no tower of height smaller
than p, and by the Malliaris–Shelah Theorem, p is the minimal height of a
tower.

Lemma 2.5. Let F ⊆ [ω]ω be a centered family of cardinality smaller
than lr. Then F is refined by a tower of height p.

Proof. If p = lr, then F has a pseudointersection, and we can refine the
pseudointersection by a tower of height t. In this case (or by the Malliaris–
Shelah Theorem), since p = lr, we have p = t.

Assume that p < lr. Let {Pα : α < p} ⊆ [ω]ω be a centered family with
no pseudointersection. Set

B = {A× Pα : A ∈ F , α < p} ∪ {{(n,m) : k ≤ min{n,m}} : k ∈ ω}.
Then B is a centered family of cardinality less than lr. Let R = {Rα : α < κ}
⊆ [ω × ω]ω be a ⊆∗-decreasing linear refinement of B, with κ infinite and
regular.

Let π0 and π1 be the projections of ω × ω on the first and second coor-
dinates, respectively. For each pseudointersection R of the family {{(n,m) :
k ≤ min{n,m}} : k ∈ ω}, the sets π0(R) and π1(R) are both infinite. More-
over, if R ⊆∗ A×B then π0(R) ⊆∗ A and π1(R) ⊆∗ B.

If κ < p, then R has a pseudointersection R. By the above paragraph,
the set A := π1(R) is infinite, and is a pseudointersection of the family
{Pα : α < p}; a contradiction.

Next, assume that p ≤ κ. For each k, fix αk such that Rαk ⊆∗ {(n,m) :
k ≤ min{n,m}}. As κ is uncountable and regular, we see that α :=
supk αk < κ. Removing the first α members of R, we may assume that
every member of R is a pseudointersection of the family {{(n,m) : k ≤
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min{n,m}} : k ∈ ω}, and consequently that the sets π0(R) and π1(R) are
infinite for each R ∈ R. It follows that the families {π0(Rα) : α < κ} and
{π1(Rα) : α < κ} are linear refinements of F and {Pα : α < p}, respectively.
In particular, if κ = p, then we are done.

It remains to prove that the case κ > p is impossible. Assume otherwise.
For each α < p, fix βα < κ such that π1(Rβα) ⊆∗ Pα. As κ is regular, we
have β := supα<t βα < κ, and π1(Rβ) is a pseudointersection of the family
{Pα : α < p}; again a contradiction.

Lemma 2.6 (Folklore). If b < d then there is a tower of height b.

Proof. Let {fα : α < b} ⊆ ωω be a b-scale, that is, an unbounded
set where each fα is an increasing function in ωω and the sequence fα is
≤∗-increasing with α. Let h ∈ ωω witness that this family is not dominating.
Then {[fα ≤ h] : α < b} (3) is a tower, for if P is a pseudointersection, then
{fα�P : α < b} is bounded by h�P .

Theorem 2.7. If p < b then lr ≤ b.

Proof. Assume that b < lr. Then, as lr ≤ d, we have b < d and there is
a tower {Tα : α < b} of height b. By Lemma 2.5, this tower is refined by a
tower {Pα : α < p}. Assume that p < b. For each α < p, fix βα < b with
Pα 6⊆∗ Tβα . As b is regular, β := supα<p βα < b. Then Tβ is not refined by
any Pα; a contradiction.

The argument in the last proof shows the following.

Corollary 2.8. Each tower of regular height smaller than lr must be
of height p.

A family of functions F ⊆ ωω is κ-bounded if there is a family G ⊆ ωω

of cardinality κ such that each member of F is dominated by some member
of G.

Lemma 2.9. Let F ⊆ ωω.
(1) If |F| < lr, then F is p-bounded.
(2) If cof(lr) ≤ p and |F| = lr, then F is p-bounded.

Proof. (1) Let F ⊆ ωω. We may assume that each member of F is an
increasing function.

Assume that |F| < lr. For each f ∈ F , let
Af = {(n,m) : f(n) ≤ m} ⊆ ω × ω.

The family
{Af : f ∈ F} ∪ {{(n,m) : n > k} : k ∈ ω}

is centered.

(3) Recall that [f ≤ h] = {n ∈ ω : f(n) ≤ h(n)}.
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Assume that this family has a pseudointersection A. As A is a pseudoint-
ersection of {{(n,m) : n > k} : k ∈ ω}, infinitely many columns A∩({n}×ω)
of A (for n < ω) are nonempty, and all columns of A are finite. For each n,
define gA(n) as follows: Let n′ ≥ n be minimal with the column A∩({n′}×ω)
nonempty, and let gA(n) be minimal such that (n′, gA(n)) is in that column.
For each f ∈ F , as A ⊆∗ Af and f is increasing, we have f ≤∗ gA. Thus,
F is bounded, and we are done.

Next, assume that our family does not have a pseudointersection. By
Lemma 2.5, some tower {Rα : α < p} linearly refines our family. As p is
regular, by removing an initial segment of indices we may assume that each
Rα is a pseudointersection of {{(n,m) : n > k} : k ∈ ω}. Thus, we can define
functions gRα for α < p as in the previous paragraph. As above, for each
f ∈ F , if α < p is such that Rα ⊆∗ Af , then f ≤∗ gRα . This shows that F
is p-bounded.

(2) Assume that |F| = lr. Represent F as
⋃
α<cof(lr)Fα, with |Fα| < lr

for each α. Then every Fα is p-bounded. As cof(lr) ·p = p, F is p-bounded.

Theorem 2.10. The cofinality of lr is uncountable.

Proof. As p is regular, we know that lr is regular if lr = p.
Assume that p < lr. Towards a contradiction, assume that cof(lr) = ℵ0.

Let
F = {Aα : α < lr} ⊆ [ω]ω

be a centered family. We will prove that F has a linear refinement. Represent
F as

⋃
nFn with Fn ⊆ Fn+1 and |Fn| < lr for all n. By thinning out the

sequence 〈Fn : n < ω〉, we may assume that each Fn has a pseudointersec-
tion, or no Fn has a pseudointersection.

Consider first the former case. For each n, let Rn be a pseudointersection
of Fn. For each A ∈ F , let k be the first with A ∈ Fk. For n < k let
fA(n) = 0, and for n ≥ k let

fA(n) = min{m : Rn \m ⊆ A}.
By Lemma 2.9(2), the family {fA : A ∈ F} is p-bounded. Let G ⊆ ωω be a
witness for that. For each g ∈ G and each k, let

Ug,k =
⋃
n≥k

Rn \ g(n).

The family {Ug,k : g ∈ G, k ∈ ω} is centered. Indeed, for k1, . . . , kl ∈ ω and
g1, . . . , gl ∈ ωω, let n = max{k1, . . . , kl} and m = max{g1(n), . . . , gl(n)}.
Then n ≥ k1, . . . , kl and Rn \m ⊆ Ug1,k1 ∩ · · · ∩ Ugl,kl . Since the cardinality
of this family is at most p < lr, it has a linear refinement R. Let A ∈ F , and
let g ∈ G be such that fA ≤∗ g. Fix k such that fA(n) ≤ g(n) for all n ≥ k.
Then Ug,k ⊆ A. Thus, R is also a linear refinement of F .
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It remains to consider the case where no Fn has a pseudointersection.
This is done by slightly extending the previous argument. By Lemma 2.5,
for each n, there is a tower {Tnα : α < p} that linearly refines Fn. Fix
A ∈ F , and let k be the first with A ∈ Fk. For n < k let αn = 0, and for
n ≥ k let αn < p be the first with Tnαn ⊆

∗ A. As p is regular, the ordinal
α(A) := supn αn is smaller than p. Then

Tnα(A) ⊆
∗ A

for all but finitely many n. For n < k let fA(n) = 0, and for n ≥ k let

fA(n) = min{m : Tnα(A) \m ⊆ A}.
By Lemma 2.9, the family {fA : A ∈ F} is p-bounded. Let G ⊆ ωω be a
witness for that. For each g ∈ G, α < p and k ∈ ω, let

Ug,α,k =
⋃
n≥k

Tnα \ g(n).

The family {Ug,α,k : g ∈ G, α < p, k ∈ ω} is centered, and has cardinality
p < lr. Thus, it has a linear refinement R. Let A ∈ F , and let g ∈ G be such
that fA ≤∗ g. Fix k such that fA(n) ≤ g(n) for all n ≥ k. Then Ug,α(A),k ⊆ A.
Thus, R is also a linear refinement of F .

We conclude this subsection with a result on lx that is analogous to
Theorem 2.2. Recall from Figure 1 that b ≤ lx ≤ d.

Theorem 2.11. If lx = b then d = b.

Proof. Assume that b < d. Let {fα : α < b} ⊆ ωω. We will find a
function h ∈ ωω and a linear refinement of the family {[fα ≤ h] : α < b}.

For each α < b, let gα be a ≤∗-bound of {fα}∪{gβ : β < α}. Let h ∈ ωω
witness that {gα : α < b} is not dominating. Then {[gα ≤ h] : α < b} is a
linear refinement of {fα : α < b}.

As lr ≤ lx ≤ d, Corollary 2.4 holds for lx as well. In Section 3.1 we show
that, consistently, lx < d.

2.2. Selective covering properties. For a topological space X, let
T(X) denote the family of all open covers {Un : n < ω} of X such that the
sets {n : x ∈ Un} (for x ∈ X) are infinite, and the family of these sets is
linear. Recall that T∗(X) is the family of all open covers {Un : n < ω} of X
such that the sets {n : x ∈ Un} (for x ∈ X) are infinite, and the family of
these sets has linear refinement. The first result of this section solves one of
the first problems concerning this type of covers [11, Problem 10] (quoted in
[12, Problem 7.2]).

For families of sets A and B, let
(

B
A

)
denote the property that every

element of B contains an element of A. The property
(

B
A

)
becomes stronger

if B is thinned out or A is extended.
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Theorem 2.12. Let A ⊆ T∗. Then
(

Ω
A

)
= Sfin(Ω,A). In particular:

(1)
(

Ω
T

)
= Sfin(Ω,T);

(2)
(

Ω
T∗
)

= Sfin(Ω,T∗).

Proof. Clearly, Sfin(Ω,T∗) implies
(

Ω
T∗
)
. It suffices to prove that

(
Ω
T∗
)

implies Sfin(Ω,Ω). Indeed, in this case
(

Ω
T∗
)
implies

Sfin(Ω,Ω) ∩
(

Ω
T∗
)

= Sfin(Ω,T∗).

Assume that {Unm : m ∈ ω} ∈ Ω(X) for each n < ω. Fix distinct elements
xn ∈ X for n < ω. Then

U := {Unm \ {xn} : n,m ∈ ω} ∈ Ω(X).

Let V ⊆ U be such that V ∈ T∗(X). Enumerate V as {Vn : n < ω}. For
x ∈ X, let V(x) = {n : x ∈ Vn}. By the definition of T∗, the family {V(x) :
x ∈ X} has a linear refinement R.

There is a pseudointersection P of the family {V(xn) : n < ω} such that,
for each finite F ⊆ R, P ∩

⋂
F is infinite. Indeed, if R has a pseudointer-

section then we can take P to be this pseudointersection. And if not, then
by thinning R out, we may assume that R = {Rα : α < κ} is a tower of
regular uncountable height κ. For each n, let αn < κ satisfy Rαn ⊆∗ V(xn).
Let α = supn αn, and take P = Rα.

Let W = {Vk : k ∈ P}. Fix n. As P ⊆∗ V(xn), we have xn ∈ Vk for all
but finitely many k ∈ P . Thus, the set W ∩ {Unm \ {xn} : m ∈ ω} is finite.
Let Fn ⊆ ω be a finite (possibly empty) set such that

W ∩ {Unm \ {xn} : m ∈ ω} = {Unm \ {xn} : m ∈ Fn}.

Let Y be a finite subset of X. Then the set P ∩
⋂
y∈Y V(y) is infinite, and

for each k in this set, Y ⊆ Vk. Thus, W ∈ Ω(X). As W ∈ Ω(X), the family⋃
n{Unm : m ∈ Fn} is in Ω(X), too.

Corollary 2.13.

(1) lr ≤ lx ≤ d;
(2) b, s ≤ lx.

Proof. (1) First observe lr = non
((

Ω
T∗
))
, the critical cardinality of

(
Ω
T∗
)
.

By Theorem 2.12,
(

Ω
T∗
)
implies Ufin(Ω,T∗), which is equivalent to Ufin(O,T∗).

In [11, Theorem 55] it is proved, implicitly, that non(Ufin(O,T∗)) = lx. This
shows that lr ≤ lx. Since Ufin(O,T∗) implies Sfin(O,O), whose critical cardi-
nality is d, we also have lx ≤ d.

(2) By [11, Theorem 26] and [10, Theorem 9], we have non(Ufin(O,T)) =
max{b, s}. The property Ufin(O,T) implies Ufin(O,T∗), whose critical cardi-
nality is, as mentioned above, lx.
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Theorem 2.14. The critical cardinalities of S1(Γ,T∗) and Sfin(Γ,T∗)
are both lx.

Proof. As the critical cardinality of Ufin(O,T∗) is lx [11] and the impli-
cations

S1(Γ,T∗)→ Sfin(Γ,T∗)→ Ufin(O,T∗)

hold, it suffices to prove that every topological space of cardinality smaller
than lx satisfies S1(Γ,T∗).

Let X be a topological space with |X| < lx. Assume that, for each n,
{Unm : m < ω} is a point-cofinite cover of X. For each x ∈ X, define fx ∈ ωω
by

fx(n) = min{m : ∀k ≥ m, x ∈ Unm}.
As |X| < lx, there are h ∈ ωω and infinite subsets

Ax ⊆ [fx ≤ h] (x ∈ X)

such that {Ax : x ∈ X} is linear. Then {Unh(n) : n < ω} ∈ T∗(X). Indeed,
for each x ∈ X,

Ax ⊆ [fx ≤ h] ⊆ {n : x ∈ Unh(n)},

and the family {Ax : x ∈ X} is linear.
Theorem 2.15. The critical cardinality of S1(Ω,T∗) is min{cov(M), lr}.
Proof. Notice that

S1(Ω,T∗) = S1(Ω,Ω) ∩
(

Ω
T∗

)
.

It follows that

non(S1(Ω,T∗)) = min
{

non(S1(Ω,Ω)),non
((

Ω
T∗
))}

.

By the definitions of Ω and T∗, the critical cardinality of
(

Ω
T∗
)
is lr [11]. It

is known that non(S1(Ω,Ω)) = cov(M).

Theorem 2.16. min{cov(M), lr},min{b, s} ≤ non(Sfin(T∗,T∗)) ≤ lx.

Proof. As Sfin(T∗,T∗) implies Sfin(Γ,T∗), we see that non(Sfin(T,T∗))
≤ non(Sfin(Γ∗,T∗)). By Theorem 2.14, non(Sfin(Γ∗,T∗)) ≤ lx. Thus,
non(Sfin(T∗,T∗)) ≤ lx. By Theorem 2.15, as Sfin(Ω,T∗) implies Sfin(T∗,T∗),
we deduce that min{cov(M), lr} ≤ non(Sfin(T∗,T∗)). It remains to prove
thatmin{b, s} ≤ non(Sfin(T∗,T∗)). This is done as in [6, proof of Lemma 3.4].
For the reader’s convenience, we provide a complete argument.

Let X be a topological space with |X| < min{b, s}. Assume that, for
each n, {Unm : m < ω} ∈ T∗(X). For each n, let

Ax(n) ⊆ {m : x ∈ Unm} (x ∈ X)

be a linear family. For x, y ∈ X, let

Bx,y = {n : Ax(n) ⊆∗ Ay(n)}.
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As |X| < s, there is S ∈ [ω]ω that is not split by any Bx,y. As Bx,y∪By,x = ω,
S ⊆∗ Bx,y or S ⊆∗ By,x for all x, y. For x, y ∈ X define gx,y ∈ ωω by

gx,y(n) =


min{k : Ax(n) \ k ⊆ Ay(n) \ k}, n ∈ Bx,y \By,x,
min{k : Ay(n) \ k ⊆ Ax(n) \ k}, n ∈ By,x \Bx,y,
min{k : Ax(n) \ k = Ay(n) \ k}, n ∈ Bx,y ∩By,x.

Since |X| < b, there exists g0 ∈ ωω which dominates all of the functions gx,y
for x, y ∈ X. For each x ∈ X, define gx ∈ ωω by

gx(n) = minAx(n) \ g0(n).

Choose g1 ∈ ωω which dominates the functions gx (for x ∈ X). Here too,
this is possible since |X| < b. For each n ∈ S, let

Fn = {Ung0(n), . . . , U
n
g1(n)}.

For n /∈ S let Fn = ∅. Let
U =

⋃
n∈S
Fn = {Unm : n ∈ S, g0(n) ≤ m ≤ g1(n)}.

We claim that U ∈ T∗(X). For each x ∈ X let

Ux = {Unm : n ∈ S, g0(n) ≤ m ≤ g1(n), m ∈ Ax(n)}⊆ {U ∈ U : x ∈ U}.
We may assume that the sets Unm are distinct for distinct pairs (n,m). For
all but finitely many n ∈ S, m := gx(n) ∈ Ax(n) and g0(n) ≤ gx(n) ≤ g1(n),
so x ∈ Unm ∈ Ux. Thus, Ux is an infinite subset of U . It remains to show that
the family {Ux : x ∈ X} is linear.

Let x, y ∈ X. Without loss of generality, S ⊆∗ Bx,y. We will show that
Ux ⊆∗ Uy. For all but finitely many n ∈ S, gx,y(n) ≤ g0(n). For each Unm ∈ Ux,
g0(n) ≤ m ∈ Ax(n), and thus gx,y(n) ≤ m. As n ∈ Bx,y and m ∈ Ax(n), we
have m ∈ Ay(n). Therefore, Unm ∈ Uy.

Definition 2.17 ([6]). The number od is the minimal cardinality of a
family A ⊆ ([ω]ω)ω such that:

(1) for each n, {A(n) : A ∈ A} is linear,
(2) there is no g ∈ ωω such that, for each A ∈ A, g(n) ∈ A(n) for some n.

Observe that cov(M) ≤ od, and equality holds if the continuum is at
most ℵ2 [6].

Theorem 2.18. The critical cardinalities of S1(T∗,Ω) and of S1(T∗,O)
are both od.

Proof. As T ⊆ T∗,

S1(T∗,Ω)→ S1(T∗,O)→ S1(T,O).

In [6] it is proved that non(S1(T,O)) = od. It remains to prove that od ≤
S1(T∗,Ω).
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Let X be a topological space with |X| < od. Assume that, for each n,
{Unm : m < ω} ∈ T∗(X). Fix n. By the definition of T∗, there are sets

Ax(n) ⊆ {m : x ∈ Unm}
such that {Ax(n) : x ∈ X} is contained in [ω]ω and is linear. For each finite
F ⊆ X, let

AF (n) =
⋂
x∈F

Ax(n).

Then the family
{AF (n) : F ∈ [X]<ω} ⊆ [ω]ω

is linear. As |X| < od, there is g ∈ ωω such that, for each finite F ⊆ X, there
is n with g(n) ∈ AF (n). Then {Ung(n) : n < ω} ∈ Ω(X).

Recall that p = t [5].

Theorem 2.19. The critical cardinality of
(

T∗
T

)
is t.

Proof. We use the method of [10, proof of Theorem 3].
(≥)

(
T∗
Γ

)
, which implies

(
T∗
T

)
, has critical cardinality t.

(≤) Consider P (ω) with the Cantor space topology and the open sets

Un = {A ∈ P (ω) : n ∈ A}.
For a family A ⊆ [ω]ω, viewed as a subspace of P (ω):

• {Un : n < ω} ∈ T∗(A) if and only if A has a linear refinement;
• {Un : n < ω} ∈ T(A) if and only if A is linear;
• {Un : n < ω} contains an element of T(A) if and only if there is
I ∈ [ω]ω such that {A ∩ I : A ∈ A} is a linear subset of [ω]ω.

We construct a family A ⊆ [ω]ω of cardinality t such that A has a linear
refinement, but for each I ∈ [ω]ω the family {A ∩ I : A ∈ A} is nonlinear.

Let F ⊆ [ω]ω be a tower of cardinality t. Let B be the boolean subalgebra
of P (ω) generated by F . Then |B| = t. Let

A = {B ∈ B : ∃A ∈ F , A ⊆ B}.
Then F is a linear refinement of A.

Towards a contradiction, assume that there is I ∈ [ω]ω such that {A∩ I :
A ∈ A} is a linear subset of [ω]ω. As {A ∩ I : A ∈ A} refines A, it has no
pseudointersection. Fix D0 ∈ A. There exist:

• D1 ∈ A such that D1 ∩ I ⊂∗ D0 ∩ I (i.e., such that D0 ∩ I \ D1 is
infinite);
• D2 ∈ A such that D2 ∩ I ⊂∗ D1 ∩ I.

Then the sets (D2 ∪ (D0 \D1))∩ I and D1 ∩ I, both elements of A, contain
the infinite sets (D0 ∩ I) \ (D1 ∩ I) and (D1 ∩ I) \ (D2 ∩ I), respectively, and
thus are not ⊆∗-comparable; a contradiction.
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Corollary 2.20. The critical cardinalities of S1(T∗,T) and Sfin(T∗,T)
are both t.

Proof. As

S1(T∗,T) =

(
T∗

T

)
∩ S1(T,T)

and non(S1(T,T)) = t [6], by Theorem 2.19 we have non(S1(T∗,T)) = t.
Thus, by the implications

S1(T∗,T)→ Sfin(T∗,T)→
(

T∗

T

)
and Theorem 2.19, non(Sfin(T∗,T)) = t.

3. Consistency results

3.1. A model for lx < d. For a cardinal λ, let Cλ be the forcing notion
adding λ Cohen reals.

Theorem 3.1. Let µ = c and λ > µ+. Then

Cλ lx ≤ µ+ < λ ≤ cov(M).

Proof. Let Cλ = Fn(λ × ω, ω) and let cα be the αth Cohen real added
by Cλ. For p ∈ Cλ, let supp(p) = {β : dom(p) ∩ ({β} × ω) 6= ∅}. For
β ∈ supp(p), let p(β) be the partial function from ω to ω defined by p(β)(n)
= p(β, n). Thus, if (β, n) ∈ dom(p) and p(β)(n) = m, then p  ċβ(n) = m.

For the (standard) proof of the inequality λ ≤ cov(M), we refer to
[2, p. 472].

We claim that the set {cα : α < µ+} witnesses that lx ≤ µ+. Towards
a contradiction, assume that there are: A condition p ∈ Cλ, a name ḣ for
a function in ωω, and names Ȧα (for α < µ+) of infinite subsets of ω such
that:

(i) p  Ȧα ⊆∗ {n ∈ ω : ċα(n) ≤ ḣ(n)} and Ȧα is infinite;
(ii) for all α and β, we have p  Ȧα ⊆ Ȧβ or Ȧβ ⊆ Ȧα.

Fix Uh ∈ [λ]ℵ0 and a Borel function bh : (ωω)Uh → ωω, coded in the
ground model, such that

p  ḣ = bh(〈ċβ : β ∈ Uh〉).
For each α < λ, fix a set Uα ∈ [λ]ℵ0 containing Uh and a Borel function
bα : (ωω)Uα → P (ω), coded in the ground model, such that

p  Ȧα = bα(〈ċβ : β ∈ Uα〉).

Using the ∆-System Lemma, find W ∈ [µ+]µ
+ and U∗ with Uα ∩ Uβ = U∗

for all distinct α, β ∈W . As Uh ⊆ Uα for each α, we have Uh ⊆ U∗.
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Fix distinct α, β ∈W such that
α /∈ Uβ and β /∈ Uα.

This can be done as follows: Select any α ∈ W \ U∗ and distinct β0, β1 ∈
W \ Uα. If α /∈ Uβ0 , then set β = β0. Otherwise, α /∈ Uβ1 because Uβ0 ∩ Uβ1

= U∗. In this case, set β = β1. We know that
p  Ȧα ⊆∗ Ȧβ or Ȧβ ⊆∗ Ȧα.

There is p0 ≤ p such that
(p0  Ȧα ⊆∗ Ȧβ) or (p0  Ȧβ ⊆∗ Ȧα).

Without loss of generality, we may assume that
p0  Ȧα ⊆∗ Ȧβ.

Take n1 and a condition p1 ≤ p0 such that:
• p1  Ȧα \ n1 ⊆ Ȧβ \ n1;
• α, β ∈ supp(p1).

Choose n2 and a condition p2 ≤ p1 such that:
• n2 > max{n1,max dom(p1(β))};
• p2  n2 ∈ Ȧα.
We know that p  Ȧα = bα(〈ċβ : β ∈ Uα〉), and thus Ȧα is a (Cλ)Uα-name

where
(Cλ)U := {q ∈ Cλ : supp(q) ⊆ U}.

Thus, we may assume that
p2 �λ \ Uα = p1 �λ \ Uα.

As ḣ is a (Cλ)Uh-name, there are m∗ and a condition p3 ≤ p2 such that:
• p3 �λ \ Uh = p2 �λ \ Uh;
• p3  ḣ(n2) = m∗.

Finally, choose p4 ∈ Cλ such that:
• supp(p4) = supp(p3);
• p4 �λ \ {β} = p3 �λ \ {β};
• p4(β) = σ, where σ : dom(p3(β)) ∪ {n2} → ω is defined by

σ(k) =

{
p3(β)(k), k ∈ dom(p3(β)),
m∗ + 1, k = n2.

In summary, the condition p4 forces that:
(1) Ȧα \ n1 ⊆ Ȧβ \ n1;
(2) n2 ∈ Ȧα;
(3) Ȧβ ⊆∗ {n ∈ ω : ċβ(n) ≤ ḣ(n)};
(4) ḣ(n2) = m∗;
(5) ċβ(n2) = m∗ + 1.
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Conditions (4) and (5) imply that

p4  n2 /∈ {n ∈ ω : ċβ(n) ≤ ḣ(n)}.

On the other hand p  n2 ∈ Ȧα. Taking into account (1) and the fact that
n2 > n1, we get p  n2 ∈ Ȧβ . This, together with (3), implies that

p4  n2 ∈ {n ∈ ω : ċβ(n) ≤ ḣ(n)};
a contradiction.

Corollary 3.2. Let V be a model of the Continuum Hypothesis. For
each cardinal λ > ℵ2 of uncountable cofinality,

V Cλ |= p = b = ℵ1 < lr = lx = ℵ2 < λ = cov(M) = d = c.

Proof. By Theorem 3.1, lr ≤ lx ≤ ℵ2 in V Cλ . By Theorem 2.2, lr > ℵ1

in V Cλ . The remaining assertions are well known (see, e.g., [2, §11]).

3.2. A model for p� lr. Our model will be constructed using Mathias-
type forcing notions. For a centered family F which contains all cofinite sets,
the F-Mathias forcing is the c.c.c. forcing notion

P = {〈v,A〉 ∈ [ω]<ω ×F : max v < minA},
ordered by

〈u,B〉 ≤ 〈v,A〉 if and only if u ⊇ v, B ⊆ A and u \ v ⊆ A.
This forcing notion adds a pseudointersection to F . Indeed, if G is P-generic,
then

⋃
{v : 〈v,A〉 ∈ G} is a pseudointersection of F .

Theorem 3.3. Assume the Generalized Continuum Hypothesis, and let
µ, κ and λ be uncountable cardinal numbers such that κ = cof(κ) < µ =
cof(µ) < λ = λ<µ. There is a c.c.c. forcing notion P of cardinality λ such
that

P p = b = κ < lr = µ < λ = c.

Proof. Instead of building a model directly, as in the previous section,
we will consider a transfinite sequence of classes of forcing notions, Θξ, and
with their help we will define the forcing notion we are looking for.

A forcing notion O belongs to the class Θξ if O is given by an iteration
I such that:

(1) 〈Pα, Q̇β : α ≤ λ · ξ, β < λ · ξ〉 is a finite support iteration of length
λ · ξ (ordinal product);

(2) O = Pλ·ξ;
(3) P0 is the trivial forcing;
(4) for each α < λ · ξ, Pα Q̇α is an Ḟα-Mathias forcing;
(5) Ḟα is a name for a filter generated by the cofinite sets together with

the family {Ȧα,ι : ι < ια}, where ια is an ordinal < µ;
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(6) ια = 0 for α < λ (thus Qα is isomorphic to Cohen’s forcing for
α < λ);

(7) Ȧα,ι is a Pα-name for a subset of ω;
(8) bα,ι : (2ω)ω → [ω]ω is a Borel function from the Cantor cube (2ω)ω

into [ω]ω, coded in the ground model;
(9) Pα Ȧα,ι = bα,ι(〈Ḃγ(α,ι,n) : n < ω〉), where Bγ ⊆ [ω]ω denotes the

γth generic real;
(10) if α = λ · ζ + ν (where ν < λ), then

γ(α, ι, n) < λ · ζ;

(11) for each ζ < ξ and each sequence 〈bι : ι < ι∗〉 of Borel functions
bι : (2ω)ω → [ω]ω of length ι∗ < µ, and all ordinal numbers δ(ι, n) <
λ · ζ such that P forces that the filter generated by the cofinite sets
together with the family

{bι(〈Ḃδ(ι,n) : n < ω〉) : ι < ι∗}

is proper, there are arbitrarily large α < λ · (ζ + 1) such that:

• ια = ι∗;
• bα,ι = bι for all ι < ι∗;
• γ(α, ι, n) = δ(ι, n) for all ι < ι∗ and all n.

If a forcing notion O ∈ Θξ is obtained by an iteration 〈Pα, Q̇β : α ≤ λ · ξ,
β < λ · ξ〉, then we set Oα = Qα for all α.

We say that a forcing X is the restriction of a forcing O to an ordinal ξ,
X = O�ξ, if there is ζ ≥ ξ such that X ∈ Θξ, O ∈ Θζ and Oα = Xα for all
α < λ · ξ.

To complete the proof of the theorem, we prove several lemmata.

Lemma 3.4. The classes Θξ have the following properties:

(i) if O ∈ Θξ and ζ < ξ, then O�ζ ∈ Θζ ;
(ii) Θ0 is nonempty;
(iii) if O ∈ Θξ, then there is X ∈ Θξ+1 such that X�ξ = O;
(iv) if ξ is a limit ordinal and 〈Oζ : ζ < ξ〉 is a sequence of forcing

notions such that Oζ ∈ Θζ and Oζ�η = Oη for all η < ζ < ξ, then
there is a unique Oξ ∈ Θξ such that Oξ�ζ = Oζ for all ζ < ξ.

Proof. The only nontrivial property is (iii). To define X, it suffices to
find functions bα,ι and numbers γ(α, ι, n) for α ∈ [λ · ξ, λ · (ξ + 1)) such that
conditions (10) and (11) hold. Let 〈Pα : λ · ξ ≤ α < λ · (ξ + 1)〉 be the
sequence of all possible pairs

P =
〈
〈bι : ι < ι∗〉, 〈δ(ι, n) : ι < ι∗, n < ω〉

〉
where
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(a) ι∗ < µ;
(b) 〈bι : ι < ι∗〉 is a sequence of Borel functions;
(c) 〈δ(ι, n) : ι < ι∗, n < ω〉 is a matrix of ordinal numbers δ(ι, n) < λ · ξ;
(d) the filter generated by the cofinite sets and the family

{bι(〈Ḃδ(ι,n) : n < ω〉) : ι < ι∗}
is proper.

We request that each pair appears cofinally often in this sequence. When

Pα =
〈
〈bι : ι < ι∗〉, 〈δ(ι, n) : ι < ι∗, n < ω〉

〉
,

write bα,ι = bι, γ(α, ι, n) = δ(ι, n) and ια = ι∗.

Using the above lemma, take a sequence 〈Oξ : ξ ≤ κ〉 of forcing notions
such that Oξ ∈ Θξ and Oξ�ζ = Oζ for every ζ < ξ. Let Pα = Oκ

α for all
α ≤ λ · κ. The forcing notions Pα are well defined: Oξ

α = Oκ
α for ξ < κ and

α < λ · ξ.
Lemma 3.5. Pλ·κ p = b = κ.

Proof. (p ≥ κ) Let A = {Aι : ι < ι∗} ∈ V [G] be a centered family of
cardinality < κ. Let ξ0 < λ · κ be such that A ∈ V [Gξ0 ] (ξ0 exists since we
consider finite support iteration and κ = cof(κ) > ℵ0). We claim that there
is α > ξ0 such that A ⊆ Fα. Indeed, consider functions bι : (2ω)ω → [ω]ω

and ordinals δ(ι, n) such that

bι(〈Bδ(ι,n) : n < ω〉) = Aι

for all ι < ι∗. By condition (11), there is α such that ια = ι∗, bα,ι = bι and
δ(ι, n) = γ(α, ι, n) for all ι < ι∗ and all n. Thus, Bα is a pseudointersection
of A.

(b ≤ κ) Let fξ ∈ ωω be an enumeration of Bλ·ξ in V [G]. Then the family
{fξ : ξ < κ} is unbounded in V Oλ·(ξ+1) . The family 〈ċξ : ξ < κ〉 is forced to
be unbounded.

Lemma 3.6. Pλ·κ lr ≥ µ.
Proof. Assume that some p ∈ Pλ·ξ forces that a family A = {Aι : ι < ι∗},

where ι∗ < µ, is contained in [ω]ω and closed under finite intersections. There
are numbers δ(ι, n) < λ · κ (for ι < ι∗ and n < ω) and Borel functions
bι : (2ω)ω → [ω]ω such that

p Pλ·κ Ȧι = bι(〈Ḃδ(ι,n) : n < ω〉) for all ι.

Write each δ(ι, n) in the form

δ(ι, n) = λ · ζ(ι, n) + η(ι, n),

where η(ι, n) < λ. Set

η∗ = sup{η(ι, n) : ι < ι∗, n < ω}.
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As cof(λ) ≥ µ (indeed, λ = λ<µ), we have η∗ < λ. Since, in addition, µ is
regular, there is S ⊆ λ · κ of cardinality < µ such that

• {δ(ι, n) : ι < ι∗, n < ω} ⊆ S;
• if α ∈ S then {γ(α, ι, n) : ι < ια, n < ω} ⊆ S.

Set
Sξ = S ∩ λ · ξ.

Then 〈Sξ : ξ < κ〉 is a ⊆-increasing sequence. Let Uξ = {ι < ι∗ : ∀n,
δ(ι, n) ∈ Sξ}, so that 〈Uξ : ξ < κ〉 is ⊆-increasing with union ι∗.

Choose by induction βξ and ηξ, ξ < κ, such that

• βξ = λ · ξ + ηξ where ηξ < λ,
• βξ /∈ S,
• ηξ > sup({ηζ : ζ < ξ} ∪ {η∗}), and
• Pλ·ξ {Ȧβξ,ι : ι < ιβξ} = {Ȧι : ι ∈ Uξ} ∪ {Ḃβζ : ζ < ξ}.

The induction can be carried out since

Pλ·κ Ḃβξ ⊆
∗ Ḃβζ for ζ < ξ

and

Pλ·κ Ḃβξ has infinite intersection with every member of A.

To verify that the last condition holds, it suffices to use (4) and the fact that
βξ /∈ S.

Since Pλ·κ
⋃
ξ<κ Uξ = ι∗, we conclude by (4) and the definition of Q̇βξ

that, in V Pλ·κ , the set {Bβξ : ξ < κ} is a linear refinement of {Aι : ι < ι∗}.

Lemma 3.7. If U ∈ [λ]µ is from the ground model V and γ ∈ [λ, λ · κ],
then

(∗) Pγ |{α ∈ U : Ċ ⊆∗ Ḃα}| < µ for each infinite Ċ ⊆ ω.

Proof. We prove the fact by induction on γ ∈ [λ, λ ·κ]. For each γ let Gγ
denote the Pγ-generic filter.

Assume that γ = λ. Let C ∈ V [Gλ] be an infinite subset of ω and let Ċ
be a Pλ-name for C. As C is determined by countably many Cohen reals,
we may assume by changing the order that C ∈ V [Gω]. Then

Pγ |{α ∈ U : Ċ ⊆∗ Ḃα}| < ℵ1.

We next establish the preservation of (∗) through the steps of iteration.
Assume that γ = β+ 1 is a successor ordinal. We will work in V [Gβ] and

force with Qβ . Assume that in V [Gβ], for every infinite C,

(∗∗) |{α ∈ U : C ⊆∗ Bα}| < µ.
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We force with the Fβ-Mathias forcing Qβ , where Fβ is generated by a cen-
tered family of cardinality < µ. Therefore Qβ contains a dense subset D of
cardinality < µ. Assume that

Qβ |{α ∈ U : Ċ ⊆∗ Bα}| ≥ µ for some infinite Ċ ⊆ ω.
Let

W = {α ∈ U : ∃qα, qα  Ċ ⊆∗ Bα}.
The set W belongs to the model V [Gβ]. We may assume that qα ∈ D for
each α ∈W . By the pigeonhole principle there is q∗ ∈ D and a set W1 ⊆W
of cardinality µ such that qα = q∗ for each α ∈W1. This means that for each
α ∈W1,

q∗  Ċ ⊆∗ Bα.
For each α ∈W1 there are rα ≤ q∗ and kα such that for each α ∈W1,

rα  Ċ \ [0, kα) ⊆ Bα.
Again, by the pigeonhole principle there are r∗ and k∗ and W2 ⊆ W1 of
cardinality µ such that rα = r∗ and kα = k∗ for each α ∈ W2. This means
that for each α ∈W2,

r∗  Ċ \ [0, k∗) ⊆ Bα.
It follows that

r∗ 
⋂

α∈W2

Bα is infinite.

But
⋂
α∈W2

Bα belongs to V [Gβ], contradicting (∗∗).
Assume that γ is a limit ordinal of uncountable cofinality. Let C ∈ V [Gλ]

be an infinite subset of ω and let Ċ be a Pγ-name for C. By [3, Lemma 16.14]
there is β < γ such that C ∈ V [Gβ] and β ≥ λ. By the inductive hypothesis,
we have

Pβ |{α ∈ U : Ċ ⊆∗ Ḃα}| < µ.

Since c.c.c. forcing notions preserve cardinality, we deduce that

Pγ |{α ∈ U : Ċ ⊆∗ Ḃα}| < µ.

Finally, let γ > λ be a limit ordinal with countable cofinality. Fix a sequence
〈γn : n < ω〉 increasing to γ. Towards a contradiction assume that there is
p ∈ Pγ such that

p Pγ U̇ = {α ∈ U : Ċ ⊆∗ Ḃα} has cardinality µ.

Let β̇ι be a name for the ιth element of U̇ . Let G be a Pγ-generic filter con-
taining p, and for every ι < µ let pι ∈ Gγ , αι < µ and kι < ω be such that:

(a) pι ≤ p;
(b) pι  β̇ι = αι;
(c) pι  Ċ \ Ḃαι ⊆ [0, kι).
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As supp(pι) is finite for each ι < µ, there exists nι < ω with supp(pι) ⊆ γnι .
Since there are µ many indices ι and only countably many nι and kι, there
exist n∗ and k∗ such that the set

W = {ι < µ : nι = n∗, kι = k∗}

has cardinality µ. In particular pι ∈ Gγn∗ for all ι ∈ W . Notice that
W , 〈pι : ι ∈ W 〉 ∈ V [G] (in fact they belong to V [Gγn∗ ]). Let Ḋ be a
Pγn∗ -name defined as follows: given a Pγn∗ -filter H, let Ḋ[H] be a set

{k ∈ ω : ∃q ∈ Pγn∗ ,γ , q  k ∈ Ċ ′};

then Ċ ′ is the Pγn∗ ,γ-name obtained in a standard way by “partially evalu-
ating Ċ with H”. We claim that pι  Ḋ \ Ḃαι ⊆ [0, k∗) for all ι.

Indeed, otherwise there exists r ≤ pi, r ∈ Pγn∗ , and k > k∗ such that
r Pγn∗ k ∈ Ḋ \ Ḃαι . Thus

r Pγn∗ (∃q ∈ Pγn∗ ,γ , q Pγn∗ ,γ k ∈ Ċ
′ \ Ḃαι).

Let r′ ≤ r, r′ ∈ Pγn∗ , and q ∈ Pγn∗ ,γ be such that

r Pγn∗ (q Pγn∗ ,γ k ∈ Ċ
′ \ Ḃαι).

This means that r′_q Pγ k ∈ Ċ \ Ḃαι . But this is impossible because

r′_q ≤ pι Pγ Ċ \ Ḃαι ⊆ kι.

This proves the claim.
As pι ∈ Gγn∗ , the above claim implies that, in V [Gγn∗ ],

W ⊆ {ι : Ḋ[Gγn∗ ] ⊆ Ḃαι [Gγn∗ ]},

contradicting the inductive hypothesis.

Lemma 3.8. Pλ·κ lr ≤ µ.

Proof. Assume otherwise. Then there is p ∈ P such that p  µ < lr. Take
a generic filterG containing p. We argue in V [G]. The family B={Bα : α<µ}
has a linear refinement. By Lemma 2.5, there is a tower {Tι : ι < p} refin-
ing B. Let Dι = {α : Tι ⊆∗ Bα}. Since

⋃
ι<pDι = µ, there is ι such that

|Dι| = µ. This means that Tι ⊆∗ Bα for µ many α, contradicting (∗).

This completes the proof of Theorem 3.3.

3.3. A model for lr� b = lx = d� c. Our model will be constructed
using Mathias-type forcing notions as in the previous section, together with
Hechler forcing.
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Theorem 3.9. Assume the Generalized Continuum Hypothesis, and
let κ, η and λ be uncountable cardinal numbers such that κ and η are regular
and κ < η < λ = λ<κ. There is a c.c.c. forcing notion P of cardinality λ
such that

P p = κ < lr = κ+ ≤ b = lx = d = η < λ = c.

Proof. We use the iteration of Theorem 3.3, but κ, η, and λ here stand for
µ, κ, and λ there, respectively, and we intersperse Hechler’s forcing during
the iteration. More precisely, the forcing notion P is given by the following
iteration:

(1) 〈Pα, Q̇β : α ≤ λ · η, β < λ · η〉 is a finite support iteration of length
λ · η (ordinal product);

(2) P = Pλ·η;
(3) P0 is the trivial forcing;
(4) if α ∈ {λ · ξ : ξ > 0}, then Pα Q̇α is Hechler’s forcing;
(5) if α < λ · η and α /∈ {λ · ξ : ξ > 0}, then:

(a) Pα Q̇α is an Ḟα-Mathias forcing;
(b) Ḟα is a name for a filter generated by a centered family {Ȧα,ι :

ι < ια} which contains cofinite sets, where ια is an ordinal < κ;
(c) ια = 0 for α < λ (thus Qα is isomorphic to Cohen’s forcing for

α < λ);
(d) Ȧα,ι is a Pα-name for a subset of ω;
(e) bα,ι : (2ω)ω → [ω]ω is a Borel function coded in the ground model;
(f) Pα Ȧα,ι = bα,ι(〈Ḃγ(α,ι,n) : n < ω〉), where Bα ⊆ [ω]ω denotes

the αth generic real;
(g) if α = λ · ξ + ν (where ν < λ), then

γ(α, ι, n) < λ · ξ;
(h) for each ζ < ξ and each sequence 〈bι : ι < ι∗〉 of Borel func-

tions bι : (2ω)ω → [ω]ω of length ι∗ < κ, and all ordinal numbers
δ(ι, n) < λ · ζ such that P forces that the filter generated by the
cofinite sets together with the family

{bι(〈Ḃδ(ι,n) : n < ω〉) : ι < ι∗}
is proper, there are arbitrarily large α < λ · (ζ + 1) such that:

• ια = ι∗;
• bα,ι = bι for all ι < ι∗;
• γ(α, ι, n) = δ(ι, n) for all ι < ι∗ and all n.

Observe that P b = lx = d = η since Hechler reals are added in steps
λ · ξ (ξ < η) of the iteration. Also, P 2ℵ0 = λ, since λ = λ<κ. It remains to
prove that P p = κ and P lr = κ+.
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Lemma 3.10. If U ∈ [λ]κ is from the ground model V and γ ∈ [λ, λ · κ],
then

(∗) Pγ |{α ∈ U : Ċ ⊆∗ Ḃα}| < κ for each infinite Ċ ⊆ ω.
Proof. The proof is as in Lemma 3.7, with one more case to check: γ =

β + 1 and Pβ Q̇ is Hechler’s forcing.
In V , enumerate U as {αδ : δ < κ}. Consider a family {Bα : α ∈ U}

= {Bαδ : δ < κ} in V [Gβ]. It is eventually narrow, that is, for each C ∈ [ω]ω

there is δ0 such that C *∗ Bαδ for each δ > δ0. By [1, Theorem 3.1],
eventually narrow families are preserved by Hechler’s forcing. Thus,

Pγ |{α ∈ U : Ċ ⊆∗ Ḃα}| < κ for each infinite Ċ ⊆ ω.
Lemma 3.11. P κ ≤ p.

Proof. The proof is as in Lemma 3.5.

Lemma 3.12. P p ≤ κ.
Proof. By Lemma 3.10 for U = κ, the family {Bα : α ≤ κ} of the

first κ Cohen reals is an example of a centered family in V [G] that has no
pseudointersection.

Lemma 3.13. P lr ≤ κ+.

Proof. The proof is as in Lemma 3.8. The only difference is that since
now κ = µ = p, we need to change κ to κ+ in the conclusion.

Consider the following weak version of the Martin’s Axiom M(κ): If

• A ⊆ [ω]ω is a centered family of cardinality < κ (where κ > ω) that
contains all cofinite sets;
• Q = QA is the A-Mathias forcing notion;
• Dβ is an open dense subset of Q for each β < κ,

then there is a filter H ⊆ Q such that H ∩ Dβ 6= ∅ for each β < κ.

Lemma 3.14. M(κ) implies that lr ≥ κ+.

Proof. Assume that {Aα : α < κ} is a centered family. We may further
assume that it contains all cofinite sets and is closed under finite intersec-
tions. We choose A−α by induction on α < κ such that:

• A−α ⊆∗ A−β for each β < α;
• A−α ∩Aβ is infinite for each β < κ.

Assume that A−β is defined for β < α. Let A be the closure of the family
{A−β : β < α} under finite intersections and cofinite sets. Apply M(κ) to the
family A and the dense sets Dβ,k = {〈u,B〉 : |u ∩Aβ| ≥ k} (where β < κ
and n < ω) to obtain H. Set A−α =

⋃
{u : 〈u,B〉 ∈ H}.

Lemma 3.15. P lr ≥ κ+.
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Proof. Assume that A is a centered family of cardinality < κ in the
extended model V [G], which contains all cofinite sets, and D is a family
of ≤ κ open dense subsets of Q = QA. Assume that p forces that Ȧ =
{Ȧι : ι < ι̇∗ < κ} and Ḋ = {Ḋε : ε < κ} form a counterexample. The forcing
is c.c.c., and p forces that ι̇∗ < κ. We may assume that ι∗ is in the ground
model.

As η = cof(η) > κ, we may assume that all Ȧι, Ḋε are Pλ·ξ-names for
some ξ < η. We can find α ∈ [λ · ξ, λ · (ξ + 1)) such that {Ȧα,ι : ι < ια} =

{Ȧι : ι < ι∗} is forced. We conclude as in the proof of the consistency of
Martin’s Axiom.

The proof of Theorem 3.9 is completed.

4. Open problems. One of our main results (Theorem 2.10) is that the
cofinality of lr is uncountable.

Problem 4.1. Is it consistent that lr is singular?

We introduce below two ad-hoc names for combinatorial cardinal char-
acteristics. Once progress is made on the associated problems, better names
may be introduced.

Definition 4.2. Let κ1 be the minimal cardinality of a family A ⊆
([ω]ω)ω such that:

• for each n, {A(n) : A ∈ A} is linear;
• there is no g ∈ ωω such that the sets SA := {n : g(n) ∈ A(n)} are

infinite, and the family {SA : A ∈ A} has a linear refinement.

The following assertions are proved exactly as in Section 2.2.

Lemma 4.3.

• non(S1(T∗,T∗)) = κ1;
• min{b, s, cov(M)} ≤ κ1;
• min{max{lr,min{b, s}}, cov(M)} ≤ κ1.

Problem 4.4. Can we express κ1, in ZFC, in terms of classical combi-
natorial cardinal characteristics of the continuum?

Definition 4.5. Let κfin be the minimal cardinality of a family A ⊆
([ω]ω)ω such that:

(1) for each n, {A(n) : A ∈ A} is linear;
(2) there are no finite sets F0, F1, . . . ⊆ ω such that the sets SA :=⋃

n{n}×(A(n)∩Fn) ⊆ ω×ω are infinite, and the family {SA : A ∈ A}
has a linear refinement.
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We have the following.
Lemma 4.6.
(1) non(Sfin(T∗,T∗)) = non(Sfin(T,T∗)) = κfin;
(2) min{cov(M), lr},min{b, s} ≤ κfin ≤ lx.
Problem 4.7. Can we express κfin, in ZFC, in terms of classical com-

binatorial cardinal characteristics of the continuum? If not, can we improve
the above bounds in ZFC?
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