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Abstract

P ∈ SN is a fast forward permutationif for each m the computational complexity o
evaluatingPm(x) is small independently ofm andx. Naor and Reingold constructed fast forwa
pseudorandom cycluses and involutions. By studying the evolution of permutation graphs, we
that the number of queries needed to distinguish a random cyclus from a random permuta
SN is �(N) if one does not use queries of the formPm(x), but is only�(1) if one is allowed to
make such queries. We construct fast forward permutations which are indistinguishable from r
permutations even when queries of the formPm(x) are allowed. This is done by introducing a
efficient method to sample the cycle structure of a random permutation, which in turn solves a
problem of Naor and Reingold.
 2003 Elsevier Science (USA). All rights reserved.
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0. Introduction and motivation

According to Naor and Reingold [1], a permutationσ ∈ SN is a fast forward
permutation if for each integerm, and eachx = 0, . . . ,N − 1, the computationa
complexity of evaluatingσm(x) is small and independent ofm and x. An important
example for such a permutation is thesuccessorpermutations defined by

s(x)= x + 1 modN,

as for eachm andx, sm(x) = x + m modN . Observe thats is acyclus, that is, its cycle
structure consists of a single cycle of lengthN .
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Throughout this paper, the termrandomis taken with respect to the uniform distributio
In [1], Naor and Reingold consider the following problem:1 Assume that we have a fa
forward permutationσ ∈ SN . Assume further we have an oracle2 P which fixes a random
permutationP ∈ SN , and for eachx can computeP(x) andP−1(x) in time which is
polynomial in logN . We wish to use this oracle in order to define a random permuta
Q such that:

(1) Q is a random element of the space of all permutations which have thesame cycle
structureasσ .

(2) Q is a fast forward permutation.

The solution to this problem is as follows [1]: DefineQ = PσP−1. Then for each intege
m we have that

Qm(x)= P
(
σm

(
P−1(x)

))
,

soQ is a fast forward permutation. Moreover,Q has the same cycle structure asσ , and it
is not difficult to see that it distributes uniformly among the permutations which hav
same cycle structure asσ .

Therefore Naor and Reingold’s construction usingσ = s yields a fast forward
random cyclus. The natural question which arises is whether this construction
a pseudorandompermutation. Here by pseudorandom permutationwe mean that the
resulting permutation is difficult to distinguish from a truly random permutation u
a limited number (under some reasonable definition of “limited”) of calls to the or
In Section 4 of [1] it is conjectured that distinguishing a random cyclus inSN from a
random permutation should require roughly

√
N evaluations. In the forthcoming Section

we prove that in the restricted model where only queries of the formP(x) or P−1(x) are
allowed (this is the usual model), the task of distinguishing a random cyclus from a ra
permutation requires roughlyN (not

√
N ) evaluations.

However, if one wants to allow the usage of the fast forward property in the ment
construction then the resulting permutation is far from being pseudorandom: In Sec
we show that a single evaluation is enough to distinguish a random cyclus from a ra
permutation in the fast forward model (where evaluations of the formPm(x) are allowed).
Therefore, the question of construction of a fast forward pseudorandom permuta
far from having a satisfactory solution. It turns out that a solution of this problem ca
obtained by solving another open problem.

After introducing their construction, Naor and Reingold ask whether it is pos
to remove the restriction on the cycle structure of the fast forward permutation, th
whether one can use the oracleP in order to define a random permutationQ such that:

1 For the sake of clarity, we will concentrate in the beginning in the (purely) random case, and lea
pseudorandom case for Part 3.

2 An oracle is an algorithm initialized by a fixed unknown initial state, which works as a “black box
accepting queries of some specific form, and making responses accordingly. (The initial state of the al
may change as it runs.) The user of such an algorithm can only know the queries and the responses to th
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(1) Q is a random element in the spaceSN of all permutations.
(2) Q is a fast forward permutation.

We give an affirmative solution which is based on an efficient method to sampl
cycle structure of a random permutation, together with an introduction of a fast for
permutation for any given cycle structure. This construction yields a fast forward ra
permutation which is indistinguishable from a random permutation even in the fast fo
model.

Part 1. Indistinguishability and distinguishability

This part deals with the evolution of permutation graphs and its applicatio
the indistinguishability of random cycluses from random permutations, and with
distinguishability of random cycles from random permutations when fast forward qu
are allowed.

1. The indistinguishability of random cycluses from random permutations

In this section we prove that the number of evaluations of the formP(x) or P−1(x)

needed in order to distinguish a random cyclus inSN from a random permutation inSN is
�(N).

Our proof is best stated in the language of graphs. We first set up the basic notati
facts. As these are fairly natural, the reader may wish to skip directly to Lemma 1.1
return to the definitions only if an ambiguity occurs.

Throughout this section,V = {0, . . . ,N − 1} andG (with or without an index) will
denote a finite directed graph withV as its set of vertices.

Fix a natural numberN . The graph of a (partial) functionf from (a subset of)N to
N is the directed graph with set of verticesV and with an edge fromx to y if, and only
if, f (x)= y (for all x, y ∈ V ). For convenience we also require that for allx, y ∈ V there
exists at most one edge fromx to y, and will writex → y when there exists an edge fro
x to y. The graph of a (partial) function will be called a (partial ) function graph. Observe
that there is a natural bijective correspondence between (partial) functions and their
A particular case of (partial) function graphs is the (partial) permutation graph, whe
require that the (partial) function of the graph is injective.

Let Φ denote the “forgetful” functor assigning to each directed graphG the
corresponding undirected graphΦ(G) (each edge fromx to y is replaced by an undirecte
edge betweenx and y.) A set C of vertices inG is a componentif it is a connected
component in the undirected graphΦ(G) (isolated vertices are also componen
A componentC is connectedif for eachx, y ∈C there exists a path fromx to y in G.

If G is a partial function graph then each connected component ofG is a cycle.
A permutation graphG of a cyclus will be called acyclus graph. Thus a cyclus grap
has a single connected component, and has the form

x0 → x1 → ·· · → xN−1 → x0.
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G is apartial cyclus graphif it can be extended to a cyclus graph. A partial cyclus gr
is proper if it is not a cyclus graph.

The following sequence of observations will play a key role in our proof. We will g
proofs only where it seems necessary.

Lemma 1.1. LetG be a directed graph. The following are equivalent:

(1) G is a proper partial cyclus graph.
(2) G is a partial permutation graph with no cycles.
(3) Each component ofG is well-ordered by→.

Thus ifG is a proper partial cyclus graph then each componentC of G contains a unique
minimal element minC and a unique maximal element maxC.

Lemma 1.2. Assume thatG is a partial cyclus graph withm components. Then there ex
exactly(m− 1)! cyclus graphs extendingG.

Proof. Let C0, . . . ,Cm−1 be the components ofG.
Fix any cyclusσ ∈ Sm. For eachi = 0, . . . ,m − 1, add an edge from maxCσi(0) to

minCσi+1(0) to obtain a cyclus graphGσ . We claim that for distinct cyclusesσ, τ ∈ Sm,
the graphsGσ andGτ are distinct. Indeed, leti ∈ {0, . . . ,m− 1} be the minimal such tha
σ i+1(0) �= τ i+1(0) (observe thatσ 0(0) = 0 = τ0(0)). Then inGσ there is an edge from
maxCσi(0) to minCσi+1(0), whereas inGτ there is not. Thus each cyclus inSm defines
a unique cyclus graph extendingG.

On the other hand, each cyclus graph extendingG defines a unique well-ordering onG
by removing the edge pointing to minC0, and this well-ordering defines, in turn, a uniq
cyclusσ ∈ Sm by lettingσ i+1(0) be the uniquek such that there is an edge from maxCσi(0)
to minCk .

It remains to recall that there exist exactly(m− 1)! cycluses inSm. ✷
Let comp(G) and cyc(G) denote the collection of components and cycles inG,

respectively. The following lemma describes the basic steps in the evolution of p
permutation graphs. We use� to denote disjoint union.

Lemma 1.3. Assume thatG is a partial permutation graph, and let̃G be the new graph
obtained by adding a new edge toG. ThenG̃ is a partial permutation graph if, and only i
there exist(not necessarily distinct) connected componentsC0 andC1 in G such that the
new edge is frommaxC0 to minC1. Moreover,

(1) If C0 and C1 are the same component thencomp(G̃) = comp(G), and cyc(G̃) =
cyc(G)�{C0}. (In particular, |comp(G̃)| = |comp(G)|, and|cyc(G̃)| = |cyc(G)|+1.)

(2) If C0 and C1 are distinct thencyc(G̃) = cyc(G), and comp(G̃) = (comp(G) \
{C0,C1}) � {C0 ∪ C1}. (In particular, |cyc(G̃)| = |cyc(G)|, and |comp(G̃)| =
|comp(G)| − 1.)
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For the following definition, recall our convention that throughout this paper, the
randomis taken with respect to the uniform distribution.

Definition 1.4. Define the following oracles:

C: Chooses a random cyclusP ∈ SN , accepts queries of the form(x, i) ∈ {0, . . . ,
N − 1} × {1,−1} and responds withy = P i(x) for each such query.

O2: Begins with the empty graphG0 onV = {0, . . . ,N − 1}, accepts queries of the for
(x, i) ∈ V × {1,−1}, and constructs a partial cyclus graph onV as follows. In thekth
query(xk, ik), the oracle responds as follows:
(1) If the query was made earlier and answered withy, or a query of the form(y,−ik)

was made earlier and answered withxk, then the oracle responds withyk = y.
(2) Otherwise, the oracle responds as follows (letCxk denote the component ofxk):

(a) If i = 1 then it chooses a randomC ∈ comp(Gk) \ {Cxk }, setsyk = minC,
adds the edgexk → yk to Gk to obtain a new graphGk+1, and respond
with yk.

(b) If i = −1 (this is the dual case) then it chooses a randomC ∈ comp(Gk) \
{Cxk }, setsyk = maxC, adds the edgeyk → xk to Gk to obtain a new grap
Gk+1, and responds withyk .

A sequence((x0, i0), y0, . . . , (xk, ik), yk) is C-consistentif the equationsP ij (xj ) = yj
have a solutionP ∈ SN which is a cyclus. It isnonrepeatingif there exists no 0� j < l � k

such that(xl, il) = (xj , ij ), or (xl, il) = (yj ,−ij ). Thus a nonrepeating sequence
a sequence where Case 1 ofO2 is never activated, that is, a sequence in which e
query answer gives new information on the permutation (or its graph). Observe th
consistent sequence can be turned into a shorter nonrepeating sequence which ind
same partial cyclus graph.

Lemma 1.5. For each nonrepeatingC-consistent sequences = ((x0, i0), y0, . . . ,

(xk−1, ik−1), yk−1),

Pr[s | C] = (N − k − 1)!/(N − 1)! = Pr[s |O2],

wherePr[s |A] is the probability that the oracleA responds withy0 to (x0, i0), then with
y1 to (x1, i1), . . . , andfinally with yk−1 to (xk−1, ik−1).

Proof. The definition ofC-consistency ensures that the sequences defines a partial cyclu
graph. The requirement thats is nonrepeating implies by Lemma 1.3 that each ans
to a query reduces the number of components in the induced partial cyclus gra
exactly 1. Thus, afterk queries the induced graph has exactlyN − k components. By
Lemma 1.2, there exist(N − k − 1)! cyclus graphs extending the given partial cyc
graph, and therefore the probability of gettings in C is (N − k − 1)!/(N − 1)!.
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Now considerO2. Again, Lemma 1.3 implies that|comp(Gj )| = N − j for all j .
GivenGj , the probability for a specific consistent answeryj in the next query toO2 is
1/(N − j − 1) (uniform choice of one out of the remainingN − j − 1 components). Thus

Pr[s |O2] = 1

N − 1
· 1

N − 2
· . . . · 1

N − k
= (N − k − 1)!

(N − 1)! . ✷
We say that two oracles areequivalentif there is no way to distinguish between the

by making queries to the oracles and analyzing their responses.

Corollary 1.6. The oraclesC andO2 are equivalent.

Definition 1.7. Define the following oracles.

O3: Initially sets a flagBad to 0, and begins with the empty graphG0 on V = {0, . . . ,
N − 1}. This oracle accepts queries of the form(x, i) ∈ V × {1,−1}, and constructs
a partialpermutationgraph onV as follows. In thekth query(xk, ik), the oracle
responds as follows:
(1) If the query was made earlier and answered withy, or a query of the form(y,−ik)

was made earlier and answered withxk, then the oracle responds withyk = y.
(2) Otherwise, the oracle responds as follows:

(a) If i = 1 then it chooses a randomC ∈ comp(Gk), setsyk = minC, adds the
edgexk → yk to Gk to obtain a new graphGk+1, and responds withyk .

(b) If i = −1 (this is the dual case) then it chooses a randomC ∈ comp(Gk), sets
yk = maxC, adds the edgeyk → xk to Gk to obtain a new graphGk+1, and
responds withyk.

If C is the component ofxk, this oracle setsBad = 1.
P : Chooses a random permutationP ∈ SN , accepts queries of the form(x, i) ∈

{0, . . . ,N − 1} × {1,−1} and responds withy = P i(x) for each such query.

A sequence((x0, i0), y0, . . . (xk, ik), yk) is P-consistentif the equationsP ij (xj ) = yj
have a solutionP ∈ SN . The proof of the following is similar to the proof of Lemma 1
(in fact, it is simpler) and we omit it.

Lemma 1.8. For each nonrepeatingP-consistent sequences which corresponds tok
queries and replies,

Pr[s |O3] = (N − k)!/N ! = Pr[s |P].
Corollary 1.9. OraclesO3 andP are equivalent.

For our purposes it seems convenient to use the following notion of a distingu
An (information theoretic)distinguisherD is a probabilistic algorithm3 with an unlimited

3 A probabilistic algorithmis an algorithm enhanced by an access to a random number generator,
at each stage the algorithm chooses which moves to make next according to some well-defined dist
Mathematically, a probabilistic algorithm is a random variable, whereas a usual algorithm is a function.
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computational power and storage space, which accepts an oracle as input (where t
two possible oracles), makesm queries (wherem is some fixed number) to that orac
(the distribution of each query depends only on the sequence of earlier queries and
responses), and outputs either 0 or 1 (again, the distribution of the answer depends
the sequence of queries and oracle responses).

The intended meaning is that the distinguisher’s output is its guess as to which of t
possible oracles made the responses. (Thus given two oraclesA andB, D(A) andD(B)
are random variables taking values in{0,1}.) The natural measure for the effectiveness
the distinguisher in distinguishing between two oraclesA andB is its advantage, defined
by ∣∣Pr

[
D(A) = 1

] − Pr
[
D(B)= 1

]∣∣.
The motivation for this measure is as follows. Assume without loss of generality
Pr[D(A) = 1] � Pr[D(B) = 1]. Then by the likelihood test we should decidex = A
if the output of D(x) is 1 and x = B otherwise. The effectiveness of this decis
procedure clearly increases as the difference between Pr[D(A) = 1] and Pr[D(B) = 1]
increases, and this (or any other) procedure is useless when the probabilities are
Moreover, it can be proved that the number of times needed to sampleD(x) in order to
decide whetherx = A or x = B with a significant level of certainty isO(1/ε2) where
ε = |Pr[D(A) = 1] − Pr[D(B)= 1]|.

Theorem 1.10. Assume thatD is a distinguisher which makesm<N queries toC or P .
Then ∣∣Pr

[
D(C)= 1

] − Pr
[
D(P) = 1

]∣∣ � m

N
.

Proof. By Corollaries 1.6 and 1.9, it suffices to show that∣∣Pr
[
D(O2)= 1

] − Pr
[
D(O3)= 1

]∣∣ � m

N
.

OraclesO2 andO3 behave identically as long asBad = 0 in O3, that is, as long as th
component ofxk was not chosen. As long as this is the case, the number of compo
in the graph reduces by at most 1 with each new query answer (we do not assume
queries are nonrepeating), and therefore the probability that the component ofxk was not
chosen for allk = 0, . . . ,m− 1 is at least

N − 1

N
· N − 2

N − 1
· . . . · N −m

N −m+ 1
= N −m

N
= 1− m

N
.

Let p = Pr[D(O2)= 1]. Thenp = Pr[D(O3)= 1 | Bad = 0], therefore

Pr
[
D(O3)= 1

] = Pr
[
D(O3)= 1 | Bad = 0

] · Pr[Bad = 0]
+ Pr

[
D(O3)= 1 | Bad = 1

] · Pr[Bad = 1]
= p · Pr[Bad = 0] + Pr

[
D(O3)= 1 | Bad = 1

] · Pr[Bad = 1].
Thus,
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∣∣Pr
[
D(O2)= 1

] − Pr
[
D(O3)= 1

]∣∣
= ∣∣p(

1− Pr[Bad = 0]) − Pr
[
D(O3) = 1 | Bad = 1

] · Pr[Bad = 1]∣∣
= ∣∣p · Pr[Bad = 1] − Pr

[
D(O3)= 1 | Bad = 1

] · Pr[Bad = 1]∣∣
= ∣∣(p − Pr

[
D(O3) = 1 | Bad = 1

]) · Pr[Bad = 1]∣∣
�

∣∣p − Pr
[
D(O3)= 1 | Bad = 1

]∣∣ · m
N

� m

N
. ✷

Corollary 1.11. For all ε > 0, the number of evaluations required to distinguish a rand
cyclus inSN from a random permutation inSN with advantage greater or equal toε is at
least�εN�.

Our bound on the distinguisher’s advantage cannot be improved. The following the
shows not only that there exists an optimal strategy (with advantagem/N ) for the
distinguisher, but that in some senseall strategies are optimal, including for example tho
which do not use queries of the form(x,−1). By “all” we mean those which do not mak
queries where the responses are known in advance, that is, strategies for which the s
of queries is nonrepeating. (As we remarked before, any strategy which makes rep
queries can be improved.)

Theorem 1.12 (Optimal strategies).Consider the followingm-step strategy(m < N) for
a distinguisherD to distinguish betweenP andC:

Queries: For eachk = 0, . . . ,m− 1, choose any pair(xk, ik) ∈ V × {1,−1} such that the
sequence((x0, i0), y0, . . . , (xk, ik)) is nonrepeating, and make the query(xk, ik).

Output: If one of the oracle responses introduced a cycle, the distinguisher outp1.
Otherwise the distinguisher outputs0.

Then the advantage of this distinguisher ism/N . In other words, any strategy whic
generates only nonrepeating sequences is optimal.

Proof. As the query sequence is nonrepeating, the probability that a cycle is not intro
given that the oracle isO3 is exactly

N − 1

N
· N − 2

N − 1
· . . . · N −m

N −m+ 1
= N −m

N
= 1− m

N
.

Thus Pr[D(P) = 0] = Pr[D(O3)= 0] = 1−m/N , and

Pr
[
D(C)= 0

] − Pr
[
D(P) = 0

] = 1−
(

1− m

N

)
= m

N
. ✷

2. Cryptanalysis of the Naor–Reingold fast forward cyclus

In this section we show that in the fast forward model (where the distinguisher is all
to make queries of the formPm(x)), random cycluses can be distinguished from rand
permutations with advantage 1− o(1), using a single query to the given oracle.
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For eachN let d(N) denote the number of divisors ofN .

Theorem 2.1. A fast forward random cyclus can be distinguished from a fast forw
random permutation with advantage1− d(N)/N , using a single query.

Proof. We will use the following important fact.

Lemma 2.2 (folklore). Fix an x ∈ {0, . . . ,N − 1}. Then the length of the cycle ofx in
a random permutation inSN distributes uniformly in{1, . . . ,N}.

Proof. For eachk = 1, . . . ,N the probability that the cycle’s length isk is

N − 1

N
· N − 2

N − 1
· . . . · N − (k − 1)

N − (k − 2)
· 1

N − (k − 1)
= 1

N
. ✷

Assume thatP is a random permutation inSN . By Lemma 2.2, the lengtha0 of the cycle
of 0 distributes uniformly in{1, . . . ,N}. As there ared(N) divisors ofN , the probability
that a0 dividesN is d(N)/N . Now, PN(0) = 0 if, and only if, a0 dividesN . Thus, the
probability thatPN(0)= 0 isd(N)/N if P is random, but 1 ifP is a cyclus. Therefore, th
single query(0,N) is enough to distinguish a random cyclus from a random permut
with advantage 1− d(N)/N . ✷
Example 2.3. If N = 2n (this is the standard case), thend(N)/N = (n + 1)/2n, which is
negligible.

d(N)/N converges to 0 quite rapidly asN → ∞. However, for our purposes, th
following easy observation is enough.

Proposition 2.4. d(N)/N = o(1).

Proof. Observe that for eachN , if the factorization ofN is p
e1
1 · . . . · pek

k , thend(N) =
(e1 + 1) · . . . · (ek + 1), thus

d(N)

N
= e1 + 1

p
e1
1

· . . . · ek + 1

p
ek
k

.

For allN > 1, as the functionf (x)= (x + 1)/Nx is decreasing forx � 0, we have that fo
all k � 1, (k + 1)/Nk � 2/N � 1.

Fix anyε > 0. If N has a prime factorp � 2/ε, thend(N)/N � 2/p � ε. Otherwise,
all prime factors ofN are smaller thanc = 2/ε. Assume thatN = p

e1
1 · . . . · pek

k . Then
k � c. Let ei = max{e1, . . . , ek}. N � ce1+···+ek , socei � e1 + · · ·+ ek � logc N , therefore
ei � h(N) = logc N/c, thusd(N)/N � (ei +1)/pei

i � (h(N)+1)/ph(N)
i which is smaller

thanε for large enoughN . ✷
Remark 2.5. One may suggest the following ad-hoc solution to the problem raise
Theorem 2.1: Simply bound the possible value ofm in queries of the formPm(x) to be
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� N/k for some fixedk. But thenPN(x) can still be computed (usingk queries instead
of 1), so this solution is not good if we do not want to restrict the value ofm too much.

Remark 2.6. Theorem 2.1 can be extended as follows: Fix a cycle structure. Leta0 be the
size of the largest cyclus in this structure, and assume thatP ∈ SN is a random permutatio
with the given cycle structure. The probability that an elementx appears in a cyclus of siz
a0 is (at least)a0/N . If k is Ω(N/a0), then with large probability one of the elemen
0, . . . , k − 1 appears in the cyclus and thereforePa0(i) = i for somei ∈ {0, . . . , k − 1}.
But if P is random, then it is conceivable that with a nonnegligible probability (it is
straightforward to quantify the term “nonnegligible” here), for alli ∈ {0, . . . , k − 1} the
cycle lengths do not dividea0 and thereforePa0(i) �= i.

Of course, ifa0 <N/a0, then one may simply verify ina0 calls that the cycle of 0 ha
size� a0. Thus our method works in complexityO(min{a0,N/a0}).
Remark 2.7. Uzi Vishne has pointed out to me that one can distinguish a ran
permutationwhich is not a cyclusfrom a random cyclus in with advantage 1 at the price
increasing the number of queries toν(N)+ 1 (whereν(N) is the number of prime divisor
of N ): One simply verifies that for each prime factorp of N , PN/p(0) �= 0, whereas
PN(0) = 0. This happens if, and only if,P is a cyclus. (Similar observations apply
Remarks 2.5 and 2.6.)

Observe that in probability 1/N , a random permutation is a cyclus and therefore
cannot hope to obtain advantage greater than 1−1/N , so this improves the advantage fro
1 − d(N)/N to 1− 1/N at the price ofν(N) additional queries. Clearlyν(N) � log2N .
In fact, by the Hardy–Ramanujan Theorem,ν(N) is asymptotically close to log logN “for
almost allN ” (we will not give the precise formulation here). Observe that whenN is
a power of 2 we get hereν(N) = 1, so two queries are enough to distinguish with advan
1− 1/N .

Part 2. Fast forward random permutations

This part introduces an efficient method to sample the cycle structure of a ra
permutation, and its application to the construction of fast forward random permutat

3. Ordered cycle structures

Definition 3.1. Assume thatΩ is a finite, well-ordered set, andP ∈ SΩ . LetC0, . . . ,Ck−1
be all (distinct) cycles ofP , ordered by

Ci < Cj ⇔ minCi < minCj .

Then theordered cycle structureof P , OCS(P ), is the sequence(|C0|, . . . , |Ck−1|).
Example 3.2. If

P =
(

0 1 2 3 4 5
5 4 1 3 1 0

)
,
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then the cycles ofP are (05), (142), (3) in this order, as the minimum elements of t
cycles are 0,1,3, respectively. Thus, OCS(P ) = (2,3,1).

Sampling the ordered cycle structure of a random permutation inP ∈ SΩ (by choosing
a randomP , finding the size of the cycle of 0, then the size of the cycle of the first ele
not in this cycle, etc.) requiresO(|Ω |) steps, which is infeasible whenΩ is a large space
The following theorem allows us to sample this distribution efficiently.

Theorem 3.3. LetΩ be a finite set of sizeN . Consider the following two random process:

Process I: Choose a random permutationP ∈ SΩ , and giveOCS(P ) as output.
Process II: (1) Sets−1 = 0.

(2) For i = 0, . . . do the following:
(a) Choose a random numbersi ∈ {1+ si−1, . . . ,N}.
(b) If si =N , then exit the loop.

(3) Output the sequence(s0, s1 − s0, s2 − s1, . . . , si − si−1).

Then these processes define the same distribution on the space of all possible order
structures of permutationsP ∈ SΩ .

Proof. We prove the theorem by induction on the size ofΩ . The theorem is evident whe
|Ω | = 1.

For |Ω |> 1, assume thatP is a random element ofSΩ , and let OCS(P ) = (a0, . . .). By
Lemma 2.2,a0 distributes uniformly in{1, . . . ,N}. Using the notation of Definition 3.1, le
C0 be the cycle of 0. AsP distributes uniformly overSΩ , an easy counting argument sho
that the restriction ofP to the remaining elements,P � Ω \C0 distributes uniformly ove
SΩ\C0. By the induction hypothesis, the output(b0, b1, . . .) of Process II forn = |Ω \C0|
distributes exactly as the output of Process I onP � Ω \C0. Thus, the sequence(a0, b0, . . .)

given by Process II distributes the same as the sequence given by Process I.✷
Definition 3.4. For ease of reference, we will call Process II of Theorem 3.3 theChoose
Cycle Lengths(CCL) process.

Observe that the running time of the CCL process in the worse case isN , which is too
large (usually, a quantity which is polynomial in logN is considered small, andΩ(Nε)

where ε > 0 is considered infeasible). We can however define an algorithm whi
probabilistically close to the CCL process but runs in timeO(logN).

Let RN denote the random variable counting the number of cycles in a permu
in SN . It is well known [3] that the expectation and varianceRN (and therefore the runnin
time of the CCL process) are both logN +O(1). By Chebyshev’s Inequality,

Pr
[
RN � (c + 1) logN

] = Pr[RN − logN � c logN]
= Pr

[
RN − logN �

(
c
√

logN
)√

logN
]

� 1√
2

= 1
2
(c logN ) c logN
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for all constantc > 0, which is�(1/ logN). We say that a functionf (N) is negligible
if it is O(1/Nε) for some positiveε. The bound given by Chebyshev’s Inequality is n
negligible. Fortunately we can improve it significantly in our case. To this end, we
to have a tight upper bound on the distributions of the random variablessi defined by the
CCL process.

Proposition 3.5. Fix l ∈ {0, . . . ,N − 1}. Then

Pr[sl = k] < |log(1− k/N)|l
l!N

if k ∈ {l + 1, . . . ,N} and is0 otherwise.

Proof. Recall that for an increasing functionf : [0, k] → R,
∑k−1

i=0 f (i) <
∫ k

0 f (x)dx.
We prove the proposition by induction onl. For l = 0 we have that Pr[s0 = k] = 1/N

as required. Assume that our assertion is true forl, and prove it forl + 1 as follows.

Pr[sl+1 = k] =
k−1∑
i=l+1

Pr[sl = i] · Pr[al+1 = k − i | sl = i] =
k−1∑
i=l+1

Pr[sl = i] · 1

N − i

<

k∫
0

(− log(1− x/N))l

l!N · 1

N − x
dx.

Substitutingt = − log(1− x/N), we have that the last integral is equal to

1

l!N

− log(1−k/N)∫
0

t l dt = (− log(1− k/N))l+1

(l + 1)!N . ✷

Theorem 3.6. Fix l ∈ {0, . . . ,N − 1}. Then for allm,

Pr[sl < m] < m

N
· |log(1−m/N)|l

l! .

Proof. By Proposition 3.5,

Pr[sl < m] <
1

l!N
m∫

0

(
− log

(
1− x

N

))l

dx <
1

l!N
m∫

0

(
− log

(
1− m

N

))l

dx

= m · |log(1−m/N)|l
l!N . ✷

Corollary 3.7. Assume thatc > e. The probability that the running time of the CCL proce
is larger thanc logN is O(

√
logN/Nc(logc−1)) and is therefore negligible. In particula

if c > e2 then this probability iso(1/Nc).
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Proof. Use Theorem 3.6 withm = n − 1 andl = c logN . Then 1−m/N = 1/N . Using
Stirling’s Formula,

Pr[sl < m] < |log1/N |l
l! ≈ logl N√

2π/l (l/e)l
. (1)

Now, asl = c logN ,

logl N

(l/e)l
=

(
e logN

l

)l

= el

cl
= Nc

Nc logc
=Nc(1−logc),

therefore the right-hand side of Eq. (1) is equal to√
c logN

2π
· 1

Nc(logc−1)
.

This implies the assertions in the theorem.✷
We can therefore define the following variant of the CCL process:

Definition 3.8 (l-truncated CCL). Fix a positive integerl and run the CCL processl − 1
steps. If the process terminated afterk < l steps, then output the sequence(s0, . . . , sk−1).
Otherwise setsl−1 =N and output(s0, . . . , sl−1).

Corollary 3.9. Fix l � 3.6 logN . Then the output of thel-truncated CCL cannot b
distinguished from the output of the CCL process with advantage greater thano(1/N).

Proof. This follows from Theorem 3.7, once we observe (numerically) that the soluti
the equationc(logc− 1)= 1 is c = 3.5911+. ✷

4. Fast forward permutations

Definition 4.1. Assume that(a0, a1, . . . , al−1) is a sequence of positive integers such t∑
k<l ak = N , and writes0 = a0 andsi = ∑

k�i ak for eachi = 1, . . . , l. Thefast forward
permutation coded by(a0, a1, . . . , al−1) is the permutationπ ∈ SN such that for each
x ∈ {0, . . . ,N − 1},

π(x)= si + (x + 1 modai+1) wheresi � x < si+1.

Example 4.2. The fast forward permutationπ ∈ S7 coded by(1,2,3,1) is

π = (0)(12)(345)(6)= (12)(345).

Heres0 = 1, s1 = 3, s2 = 6, ands3 = 7. Thus, e.g., ass1 � 4< s2, we have that

π5(4)= s1 + (4+ 5 moda2)= 3+ (9 mod 3)= 3,

as can be verified directly.
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A fast forward permutation coded by a sequence(a0, . . . , al−1) is indeed fast forward
if we can either preprocess the corresponding sequence(s0, . . . , sl−1) (this is done in time
O(l)) or have access to an oracle which can tellsi for eachi in timeO(1).

Proposition 4.3. Assume thatπ is the fast forward permutation coded by(a0, . . . , al−1).
Assume further that we have anO(1) time access to the corresponding valuessi , i ∈
{0, . . . , l−1}. Then for allx ∈ {0, . . . ,N −1} and allm, the complexity of the computatio
of πm(x) is O(logl) (and in particularO(logN)).

Proof. As the valuessi are increasing withi, we can use binary search to find thei such
thatsi � x < si+1 (this requiresO(logl) accesses to the valuessi ). Then

πm(x)= si + (
x +m mod(si+1 − si)

)
. ✷

The proof of Proposition 4.3 is written such that we can see that the seq
(a0, . . . , al−1) plays no role in the evaluations ofπm(x). This means that all neede
information is given in the sequence(s0, . . . , sl−1). We chose the sequence(a0, . . . , al−1)

rather than(s0, . . . , sl−1) as a “code” for the permutation only because this way it se
more clear how the permutationπ is computed.

Consider the following oracles.

PFF: Chooses a random permutationP ∈ SN , accepts queries of the form(x,m) ∈
{0, . . . ,N − 1} × Z, and responds withy = Pm(x) for each such query.

F : Runs thel-truncated CCL process withl = 4 logN in order to obtain a sequenc
(a0, . . . , al−1). (Letπ denote the fast forward permutation coded by(a0, . . . , al−1).)
This oracle accepts queries of the form(x,m) ∈ {0, . . . ,N − 1}×Z, and uses the or
acleP (which fixes a random permutationP ) to respond withy = P(πm(P−1(x)))

for each such query.

Theorem 4.4. (1) The space used by the oracleF is O(logN) words of sizeO(logN)

each.
(2) The preprocess ofF requiresO(logN) steps.
(3) For each query(x,m), the running time ofF isO(log logN) plus twice the running

time ofP .
(4) Assume thatD is a distinguisher which makes any number of calls to the ora

PFF or F . Then the advantage ofD is o(1/N).

Proof. (1) is evident. (2) follows from Proposition 4.3, and (3) follows from Cor
lary 3.9. ✷

This completes our solution to the Naor–Reingold Problem in the (purely) random
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Part 3. Pseudorandomness

Intuitively speaking, pseudorandom objects are ones which are easy to samp
difficult to distinguish from (truly) random objects. The assumption that we mad
the oracleP—namely, that it chooses a random permutation inSN—is not realistic
whenN is large. A more realistic assumption is that the oracle chooses apseudorandom
element ofSN . More concretely, the oracleP accepts akey k as input, and uses
to define a permutationPk in the sense that each time the oracle is asked to com
Pk(x) (or P−1

k (x)), the oracle computes it without the need to explicitly build
complete permutationPk . (P can be thought of as a key dependent block cipher.)
reader is referred to [1] for the formal definitions. Naor and Reingold [1] actually s
their problem in the pseudorandom case. We will translate our main results in
pseudorandom case.

5. Translation of results from Part 1

Let C ′ be a pseudorandom cyclus oracle. This means that for any distinguisherD which
makes a small numberm of queries, the advantagea = |Pr[D(C ′) = 1] − Pr[D(C)= 1]| is
small.

Theorem 5.1. For any distinguisherD which makesm<N queries toC ′ or P ,∣∣Pr
[
D(C ′)= 1

] − Pr
[
D(P) = 1

]∣∣ � a + m

N
,

wherea = |Pr[D(C ′)= 1] − Pr[D(C)= 1]|.

Proof. By the Triangle Inequality and Theorem 1.10,∣∣Pr
[
D(C ′)= 1

] − Pr
[
D(P) = 1

]∣∣
�

∣∣Pr
[
D(C ′)= 1

] − Pr
[
D(C) = 1

]∣∣ + ∣∣Pr
[
D(C) = 1

] − Pr
[
D(P)= 1

]∣∣
� a + m

n
. ✷

Theorem 5.2. Consider them-step strategy(m < N) for a distinguisherD which was
defined in Theorem1.12 (an arbitrary strategy which generates nonrepeating sequen).
Then ∣∣Pr

[
D(C ′)= 1

] − Pr
[
D(P) = 1

]∣∣ = m

N
.

Consequently, for allε > 0 there exists a strategyD to distinguishC ′ from P with
advantagemax{a − ε,m/N}, wherea is the supremum of all possible advantages of
m-step distinguisher to distinguishC ′ fromC.

Proof. The proof of Theorem 1.12 only uses the fact thatP chooses a random permutati
andC chooses a cyclus. The fact that the cyclusC is random is not used. This implies th
first claim in our theorem.
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To prove the second part of the theorem, fix anyε > 0. If a − ε � m/N , we choose the
strategyD and we are done. Otherwisem/N < a− ε. As a− ε < a, there exists anm-step
strategyD′ to distinguishC ′ from C with advantage at leasta − ε, so we can choose th
strategyD′. ✷

We now translate the main result in the fast forward model to the pseudorandom

Theorem 5.3. C ′ can be distinguished fromP with advantage1− d(N)/N , using a single
query.

Proof. Again, the only property ofC we used in the proof of Theorem 2.1 is its choos
a cyclus, which is also true forC ′. ✷

6. Translation of results from Part 2

In order to shift to the pseudorandom case in our construction of a fast for
permutation, we need to have some pseudorandom number generator to gene
random choices of thesi ’s in the CCL process. If we have no such generator available
can use the oracleP itself: In addition to the keyk used to generatePk , we need anothe
key k̃. The pseudorandom numberssi in the CCL process can then be derived from
valuesPk̃(0), Pk̃(1), Pk̃(2), . . . (this is the standardcounter mode[2]). We now give an
example how this can be done.

Consider the following oracles.

RND: Accepts positive integersx, k < N and returns a sequence(r0, . . . , rk−1) of
random numbers in the range{0, . . . , x − 1}.

RND1: Accepts positive integersx, k < N , callsRND with N and 2k to get a sequenc
(x0, . . . , x2k−1), and returns(r0, . . . , rk−1) whereri = (x2i +N ·x2i+1) modx for
all i = 0, . . . , k − 1.

RND2: Accepts positive integersx, k,p0 < N , callsP 2k times to obtain the sequenc
(x0 = P(p0), . . . , x2k−1 = P(p0 + 2k − 1 modN)), and returns(r0, . . . , rk−1)

whereri = (x2i +N · x2i+1) modx for all i = 0, . . . , k − 1.

Theorem 6.1. Fix positive integersx, k < N . Then:

(1) If k = c logN , thenRND andRND1 called withx andk cannot be distinguished wit
advantage greater thanc logN/N .

(2) RND1 andRND2 called withx andk cannot be distinguished with advantage grea
than2k2/N .

Proof. (1) Assume thata and b are random numbers in the range{0, . . . ,N − 1}.
Then c = a + bN is random in the range{0, . . . ,N2 − 1}. Let x ∈ {0, . . . ,N − 1}.
With probability at least 1/N , c < �N2/x� · x and thereforec mod x is random in the
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range{0, . . . , x − 1}. The probability that this happensc logN times is therefore at leas
(1− 1/N)c logN ≈ e−c logN/N > 1− c logN/N .

(2) This follows from the well known result that a random permutation i
pseudorandom function. Briefly (see [4] for more details), consider any sequencek
random numbers in the range{0, . . . ,N − 1}. The probability that all these numbers a
distinct is greater than 1− (2k)2/2N = 1 − 2k2/N , and in this case this sequence for
a random partial permutation.✷

Consider now the modificationF ′ of the oracleF which callsP with two independen
keys k and k̃, one for the evaluationsPk(π

m(P−1
k (x))) and the other for the value

P
k̃
(0),P

k̃
(1), . . . to be used byRND2 in order to generate the sequence of pseudoran

numbers required by thel-truncated CCL process (the input argumentp0 to RND2 is used
to avoid sampling the same entry ofPk̃ twice).

Theorem 6.2. OraclesF ′ and F cannot be distinguished with advantage greater th
O(log2N/N).

Proof. This follows from the Triangle Inequality and the earlier results 4.4, 6.1(1),
6.1(1) withk = 4 logN . ✷

Here too, using a pseudorandom permutation oracleP ′ instead of a random one in th
definition ofF ′ cannot increase the advantage by more thana wherea is the maximal
advantage obtainable in distinguishingP fromP ′.

7. Final remarks and open problems

Another problem is mentioned in the original paper of Naor and Reingold [1]
remains open, namely, whether one can construct a family of fast forward pseudor
functionswith graph structure distribution similar to that of pseudorandom functions.

The natural analogue of our construction for the case of pseudorandom permu
would not work for pseudorandom functions, simply because the “graph structur
a pseudorandom function carries too much information. For example, there areO(N)

points with no preimage. This was not the case with permutations, where the str
is determined by the logarithmic number of its cycles and their length. Another app
will be needed in order to solve this problem.

Our study raises some other interesting open problems, the most interesting of
seems to be the following. Consider thel-truncated CCL process withl = logN , which
uses an oracleRND3 similar toRND2 as its random number generator with the differe
that it makes onlyk calls toP to generate(x0 = P(p0), . . . , xk−1 = P(p0+k−1 modN)),
and usesri = xi mod x instead of the original definition. (So we use logN values ofP
instead of 8 logN in the current construction.) The problem is to prove or disprove
following.
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Conjecture 1. F ′ with the parameters just described cannot be distinguished fromPFF
with a nonnegligible advantage.
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