Journal of

Algorithms

POWERED BY SCIENCE DIRECT®

@ WWW MATHEMATICSwEB.ORG

ACADEMIC
PRESS Journal of Algorithms 47 (2003) 104-121

www.elsevier.com/locate/jalgor

Permutation graphs, fast forward permutations,
and sampling the cycle structure of a permutation

Boaz Tsaban

Department of Mathematics and Computer Science, Bar-llan University, Ramat-Gan 52900, Israel
Received 5 July 2002

Abstract

P € Sy is a fast forward permutationif for each m the computational complexity of
evaluatingP™ (x) is small independently of: andx. Naor and Reingold constructed fast forward
pseudorandom cycluses and involutions. By studying the evolution of permutation graphs, we prove
that the number of queries needed to distinguish a random cyclus from a random permutation in
Sy is ©(N) if one does not use queries of the fo®i* (x), but is only®(1) if one is allowed to
make such queries. We construct fast forward permutations which are indistinguishable from random
permutations even when queries of the foftff (x) are allowed. This is done by introducing an
efficient method to sample the cycle structure of a random permutation, which in turn solves an open
problem of Naor and Reingold.

0 2003 Elsevier Science (USA). All rights reserved.

Keywords:Permutation graphs; Pseudorandom permutations; Fast forward permutations; Cycle structure

0. Introduction and motivation

According to Naor and Reingold [1], a permutatiene Sy is a fast forward
permutationif for each integerm, and eachx = 0,..., N — 1, the computational
complexity of evaluatings” (x) is small and independent e and x. An important
example for such a permutation is thieccessopermutatiors defined by

s(x)=x-+1 modN,

as for eachm andx, s™(x) =x + m mod N. Observe that is acyclus that is, its cycle
structure consists of a single cycle of length

E-mail addresstsaban@macs.biu.ac.il.
URL addresshttp://www.cs.biu.ac.il/~tsaban.

0196-6774/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0196-6774(03)00017-8

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 105

Throughoutthis paper, the temandomis taken with respect to the uniform distribution.
In [1], Naor and Reingold consider the following problémssume that we have a fast
forward permutatiom € Sy. Assume further we have an oratle which fixes a random
permutationP € Sy, and for eachx can computeP (x) and P~1(x) in time which is
polynomial in logh. We wish to use this oracle in order to define a random permutation
Q such that:

(1) 0 is a random element of the space of all permutations which havsatime cycle
structureaso.
(2) Q is afast forward permutation

The solution to this problem is as follows [1]: Defige= Po P~1. Then for each integer
m we have that

0" (x)=P(c™ (P 1)),

so Q is a fast forward permutation. Moreove?, has the same cycle structureasand it
is not difficult to see that it distributes uniformly among the permutations which have the
same cycle structure as

Therefore Naor and Reingold’s construction usisig= s yields a fast forward
random cyclus. The natural question which arises is whether this construction gives
a pseudorandorpermutation Here by pseudorandom permutatiowe mean that the
resulting permutation is difficult to distinguish from a truly random permutation using
a limited number (under some reasonable definition of “limited”) of calls to the oracle.
In Section 4 of [1] it is conjectured that distinguishing a random cyclu$infrom a
random permutation should require rougkiyv evaluations. In the forthcoming Section 1
we prove that in the restricted model where only queries of the #Btm) or P~1(x) are
allowed (this is the usual model), the task of distinguishing a random cyclus from a random
permutation requires roughly (not+/N) evaluations.

However, if one wants to allow the usage of the fast forward property in the mentioned
construction then the resulting permutation is far from being pseudorandom: In Section 2
we show that a single evaluation is enough to distinguish a random cyclus from a random
permutation in the fast forward model (where evaluations of the Bfhx) are allowed).
Therefore, the question of construction of a fast forward pseudorandom permutation is
far from having a satisfactory solution. It turns out that a solution of this problem can be
obtained by solving another open problem.

After introducing their construction, Naor and Reingold ask whether it is possible
to remove the restriction on the cycle structure of the fast forward permutation, that is,
whether one can use the ora@len order to define a random permutationsuch that:

1 For the sake of clarity, we will concentrate in the beginning in the (purely) random case, and leave the
pseudoandom case for Part 3.

2 An oracleis an algorithm initialized by a fixed unknown initial state, which works as a “black box” by
accepting queries of some specific form, and making responses accordingly. (The initial state of the algorithm
may change as it runs.) The user of such an algorithm can only know the queries and the responses to them.

106 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

(1) Qisarandom element in the spagg of all permutations.
(2) Q is afast forward permutation

We give an affirmative solution which is based on an efficient method to sample the
cycle structure of a random permutation, together with an introduction of a fast forward
permutation for any given cycle structure. This construction yields a fast forward random
permutation which is indistinguishable from a random permutation even in the fast forward
model.

Part 1. Indistinguishability and distinguishability

This part deals with the evolution of permutation graphs and its application to
the indistinguishability of random cycluses from random permutations, and with the
distinguishability of random cycles from random permutations when fast forward queries
are allowed.

1. Theindistinguishability of random cycluses from random permutations

In this section we prove that the number of evaluations of the fBir) or P~1(x)
needed in order to distinguish a random cyclusinfrom a random permutation ifly is
O(N).

Our proof is best stated in the language of graphs. We first set up the basic notation and
facts. As these are fairly natural, the reader may wish to skip directly to Lemma 1.1, and
return to the definitions only if an ambiguity occurs.

Throughout this sectiony = {0,..., N — 1} and G (with or without an index) will
denote a finite directed graph with as its set of vertices.

Fix a natural numbeN. The graph of a (partial) functioif from (a subset of}V to
N is the directed graph with set of vertic&sand with an edge from to y if, and only
if, f(x) =y (forall x, y € V). For convenience we also require that foraally € V there
exists at most one edge framto y, and will write x — y when there exists an edge from
x to y. The graph of a (partial) function will be called pdrtial) function graph Observe
that there is a natural bijective correspondence between (partial) functions and their graph.
A particular case of (partial) function graphs is the (partial) permutation graph, where we
require that the (partial) function of the graph is injective.

Let @ denote the “forgetful” functor assigning to each directed graphthe
corresponding undirected graph(G) (each edge from to y is replaced by an undirected
edge betweenr andy.) A setC of vertices inG is a componenif it is a connected
component in the undirected graph(G) (isolated vertices are also components).

A componen(is connectedf for eachx, y € C there exists a path fromto y in G.

If G is a partial function graph then each connected componer @& a cycle
A permutation graphG of a cyclus will be called ayclus graph Thus a cyclus graph
has a single connected component, and has the form

X0—> X1 —> -+ —> XN-1—> X0.

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 107

G is apartial cyclus graphf it can be extended to a cyclus graph. A partial cyclus graph
is properif it is not a cyclus graph.

The following sequence of observations will play a key role in our proof. We will give
proofs only where it seems necessary.

Lemma 1.1. Let G be a directed graph. The following are equivatent

(1) G is a proper partial cyclus graph.
(2) G is a partial permutation graph with no cycles.
(3) Each component af is well-ordered by—.

Thusif G is a proper partial cyclus graph then each compo6esftG contains a unique
minimal element milC and a uniqgue maximal element m@x

Lemma 1.2. Assume thaf; is a partial cyclus graph witlw components. Then there exist
exactly(m — 1)! cyclus graphs extending.

Proof. LetCo, ..., Cy,—1 be the components @f.

Fix any cycluso € S,. For eachi =0,...,m — 1, add an edge from m&;. g, to
minC,i+1, to obtain a cyclus graptv®. We claim that for distinct cycluses t € Sy,
the graphsG° andG™ are distinct. Indeed, lete {0, ..., m — 1} be the minimal such that
ot1(0) # tit1(0) (observe that%(0) = 0 = t9(0)). Then inG? there is an edge from
maxCyi (g to minCiv1), whereas inG™ there is not. Thus each cyclus §), defines
a unique cyclus graph extendigy

On the other hand, each cyclus graph extendindefines a unique well-ordering @n
by removing the edge pointing to mify, and this well-ordering defines, in turn, a unique
cycluso € S, by lettingo?1(0) be the uniqué such that there is an edge from m@x o
to minCy.

It remains to recall that there exist exactly — 1)! cyclusesinS,,. O

Let comgG) and cy€G) denote the collection of components and cyclesGin
respectively. The following lemma describes the basic steps in the evolution of partial
permutation graphs. We uggeto denote disjoint union.

Lemma 1.3. Assume thaG is a partial permutation graph, and l&f be the new graph
obtained by adding a new edge@ ThenG is a partial permutation graph if, and only if,
there existnot necessarily distintitonnected componenty and Cy in G such that the
new edge is froomaxCop to minC1. Moreover,

(1) If Co and C1 are the same component thenmp(G) = compG), and cyce(G) =
cyc(G) W{Co}. (In particular, |com|ric)|_|com|ric)| and|cyc(G)|_|cyc(G)|+1)

(2) If Co and C1 are distinct thencyc(G) = ¢yc(G), and comp(G) (compG) \
{Co, C1}) W {Co U C1}. (In particular, |cyc(G)| = |cyc(G)|, and |[compG)| =
lcompG)| — 1)

108 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

For the following definition, recall our convention that throughout this paper, the term
randomis taken with respect to the uniform distribution.

Definition 1.4. Define the following oracles:

C: Chooses a random cycluB € Sy, accepts queries of the forrgx,i) € {O,...,
N — 1} x {1, —1} and responds with = P! (x) for each such query.

O,: Begins with the empty grapioonV = {0, ..., N — 1}, accepts queries of the form
(x,i) € V x {1, —1}, and constructs a partial cyclus graphms follows. In thekth
query(xg, ix), the oracle responds as follows:

(1) Ifthe query was made earlier and answered wijtbr a query of the forndy, —ix)
was made earlier and answered wijh then the oracle responds with = y.
(2) Otherwise, the oracle responds as follows (lgt denote the component of):
(a) If i =1 then it chooses a rando@e compGy) \ {Cx,}, setsyr = minC,
adds the edge; — y; to G to obtain a new graplG;;.1, and responds
with yg.
(b) If i = —1 (this is the dual case) then it chooses a randomcomp(Gy) \
{Cy,}, setsyy = maxC, adds the edge, — x; to Gy to obtain a new graph
Gi+1, and responds witlyy.

A sequence((xo, io), Yo, - - ., (Xk, ix), yx) iS C-consistentif the equationsP'i (x;) =y;

have a solutior? € Sy which is a cyclus. Itisionrepeatingf there existsno & j <1 <k

such that(x;, i) = (x;,i;), or (x1,i;) = (y;, —i;). Thus a nonrepeating sequence is

a sequence where Case 1 @©$ is never activated, that is, a sequence in which each
guery answer gives new information on the permutation (or its graph). Observe that any
consistent sequence can be turned into a shorter nonrepeating sequence which induces the
same partial cyclus graph.

Lemma 1.5. For each nonrepeatingC-consistent sequence = ((xo, ig), Yo, - - -,
(Xk—1, Tk—1)5 Yk—1)»

Pris |Cl=(N —k—D!/(N — D! =P1s | Oy,

whereP1s | A] is the probability that the oraclel responds withyg to (xo, ig), then with
y1 to (x1, i1), ..., andfinally with y;_1 to (xz—1, ix—1).

Proof. The definition ofC-consistency ensures that the sequengefines a partial cyclus
graph. The requirement thatis nonrepeating implies by Lemma 1.3 that each answer
to a query reduces the number of components in the induced partial cyclus graph by
exactly 1. Thus, aftek queries the induced graph has exadily— k components. By
Lemma 1.2, there existN — k — 1)! cyclus graphs extending the given partial cyclus
graph, and therefore the probability of getting C is (N — k — 1)!/(N — D)!.

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 109

Now considerQ,. Again, Lemma 1.3 implies thgcompG;)| = N — j for all ;.
Given G, the probability for a specific consistent answerin the next query ta); is
1/(N — j — 1) (uniform choice of one out of the remainidg— j — 1 components). Thus,

1 1 1 (N —k-1)

N-1 N—2 ""'N—k_ (N—D

Pils | O2] =

We say that two oracles aegjuivalentif there is no way to distinguish between them
by making queries to the oracles and analyzing their responses.

Corollary 1.6. The oracle and O are equivalent.
Definition 1.7. Define the following oracles.

O3 Initially sets a flagBad to 0, and begins with the empty graglp on V = {0, .. .,
N — 1}. This oracle accepts queries of the foémi) € V x {1, —1}, and constructs
a partial permutationgraph onV as follows. In thekth query (xt, ix), the oracle
responds as follows:
(1) Ifthe query was made earlier and answered wijtbr a query of the forngy, —ix)
was made earlier and answered wijh then the oracle responds with = y.
(2) Otherwise, the oracle responds as follows:
(a) If i =1 then it chooses a randofhe compGy), setsy, = minC, adds the
edgex; — yx to Gy to obtain a new grapty,1, and responds witlyy.

(b) If i = —1 (this is the dual case) then it chooses a randoacomp(Gy), sets
yx = maxC, adds the edgg, — x; to G to obtain a new graply;,1, and
responds withyy.

If C is the component afy, this oracle setBad = 1.
P: Chooses a random permutatidh € Sy, accepts queries of the forror,i) €
{0,..., N —1} x {1, —1} and responds witlh = P’ (x) for each such query.

A sequencé (xo, io), Yo, - . - (xk, ix), yr) is P-consistenif the equationsP’i (x;) =y
have a solutiorP € Sy. The proof of the following is similar to the proof of Lemma 1.5
(in fact, it is simpler) and we omit it.

Lemma 1.8. For each nonrepeating®-consistent sequence which corresponds td
gueries and replies,

Pris | O3] = (N —k)!/N!=PHs | P].
Corollary 1.9. OraclesO3 andP are equivalent.

For our purposes it seems convenient to use the following notion of a distinguisher.
An (information theoreticylistinguisherD is a probabilistic algorithfhwith an unlimited

3A probabilistic algorithmis an algorithm enhanced by an access to a random number generator, that is,
at each stage the algorithm chooses which moves to make next according to some well-defined distribution.
Mathematically, a probabilistic algorithm is a random variable, whereas a usual algorithm is a function.

110 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

computational power and storage space, which accepts an oracle as input (where there are
two possible oracles), makes queries (wheren is some fixed number) to that oracle
(the distribution of each query depends only on the sequence of earlier queries and oracle
responses), and outputs either 0 or 1 (again, the distribution of the answer depends only on
the sequence of queries and oracle responses).

The intended meaning is that the distinguisher’s output is its guess as to which of the two
possible oracles made the responses. (Thus given two otdcesl 3, D(A) and D(B)
are random variables taking values{®) 1}.) The natural measure for the effectiveness of
the distinguisher in distinguishing between two oraceandB is its advantagedefined

by
|P{D(A) =1] — P D(B) =1]|.

The motivation for this measure is as follows. Assume without loss of generality that
PiD(A) = 1] > P{D(B) = 1]. Then by the likelihood test we should decise= A

if the output of D(x) is 1 andx = B otherwise. The effectiveness of this decision
procedure clearly increases as the difference betwegh(R) = 1] and PfD(B) = 1]
increases, and this (or any other) procedure is useless when the probabilities are equal.
Moreover, it can be proved that the number of times needed to sabplein order to

decide whether = A or x = B with a significant level of certainty i®)(1/¢?) where

€ = |P{D(A) =1] — PHD(B) =1]|.

Theorem 1.10. Assume thaD is a distinguisher which makes < N queries toC or P.
Then

P{D@© =1]-P{DP) =1] < =

Proof. By Corollaries 1.6 and 1.9, it suffices to show that

IP{D(02) =1] - P{D(03) =1]| < %
Oracles®2 andO3 behave identically as long &ad = 0 in O3, that is, as long as the
component ofc, was not chosen. As long as this is the case, the number of components
in the graph reduces by at most 1 with each new query answer (we do not assume that the
gueries are nonrepeating), and therefore the probability that the compongnivas not
chosenforalk =0,...,m — 1 is at least
N—-1 N-2 N—m N—m m

: - —1-——.
N N-1 N-m+1 N N

Let p =P D(O2) =1]. Thenp =P{D(O3) = 1| Bad = 0], therefore

P{D(03) =1] = P{D(03) =1|Bad = 0] - P{Bad = 0]
+ PI{D(03) =1|Bad=1] - Pf{Bad = 1]
= p-PrBad =0]+P{D(03) =1|Bad = 1] - P{Bad = 1].
Thus,

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 111

|P{D(02) =1] — P{D(03) = 1]
= |p(1—Pr{Bad =0]) — P{ D(O3) = 1| Bad = 1] - Pr{Bad = 1]|
= |p-PiiBad = 1] — P{D(O3) = 1| Bad = 1] - Pi{Bad = 1]

=|(p—P{D(03) =1|Bad =1]) - PBad = 1]|
m m
<|p—PDO3)=1|Bad=1|l-— < —. O
|p—P{D(Os) =1] 5<%
Corollary 1.11. For all € > 0, the number of evaluations required to distinguish a random
cyclus inSy from a random permutation iy with advantage greater or equal tois at
least|eN].

Our bound on the distinguisher’s advantage cannot be improved. The following theorem
shows not only that there exists an optimal strategy (with advantag€é) for the
distinguisher, but that in some serakstrategies are optimal, including for example those
which do not use queries of the forga, —1). By “all” we mean those which do not make
queries where the responses are known in advance, that is, strategies for which the sequence
of queries is nonrepeating. (As we remarked before, any strategy which makes repeating
queries can be improved.)

Theorem 1.12 (Optimal strategies)Consider the followingn-step strategym < N) for
a distinguisherD to distinguish betweeR® andC:

Queries Foreachk =0,...,m — 1, choose any paifxg, ix) € V x {1, —1} such that the
sequencé(xo, io), Yo, - . ., (Xk, ix)) iS nonrepeating, and make the quexy, ix).

Output If one of the oracle responses introduced a cycle, the distinguisher outputs
Otherwise the distinguisher outpuas

Then the advantage of this distinguishernig N. In other words, any strategy which
generates only nonrepeating sequences is optimal.

Proof. As the query sequence is nonrepeating, the probability that a cycle is notintroduced
given that the oracle i®3 is exactly
N—-1 N-2 N—m N—m
N N-1""""N-m+1 N N
Thus PfD(P) =0]=P{D(O3) =0]=1—m/N, and

3

m m
PD(C) =0] - P[D(P)=0] =1 (1_ ﬁ) S

2. Cryptanalysisof the Naor—Reingold fast forward cyclus

In this section we show that in the fast forward model (where the distinguisher is allowed
to make queries of the forr®™ (x)), random cycluses can be distinguished from random
permutations with advantage-1lo(1), using a single query to the given oracle.

112 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

For eachwV let d(N) denote the number of divisors of.

Theorem 2.1. A fast forward random cyclus can be distinguished from a fast forward
random permutation with advantage- d(N)/N, using a single query.

Proof. We will use the following important fact.

Lemma 2.2 (folklore). Fix an x € {0,..., N — 1}. Then the length of the cycle &fin
a random permutation i§y distributes uniformly i1, ..., N}.

Proof. Foreachk=1,..., N the probability that the cycle’s length ksis

N—-1 N-2 N—(k—1) 1 1 q
N N-1""7"N—-(k-2) N—(k-1 N’

Assume that is a random permutation ifyy. By Lemma 2.2, the lengtiy of the cycle
of 0 distributes uniformly i1, ..., N}. As there arel(N) divisors of N, the probability
thatag divides N is d(N)/N. Now, PV (0) = 0 if, and only if, ag divides N. Thus, the
probability thatP™ (0) = 0 isd(N)/N if P is random, but 1 if? is a cyclus. Therefore, the
single query(0, N) is enough to distinguish a random cyclus from a random permutation
with advantage + d(N)/N. O

Example 2.3. If N = 2" (this is the standard case), théW)/N = (n + 1)/2", which is
negligible.

d(N)/N converges to 0 quite rapidly a8 — oco. However, for our purposes, the
following easy observation is enough.

Proposition 2.4. d(N)/N = o(1).

Proof. Observe that for each, if the factorization ofN is pi* - ... p*, thend(N) =
(e1+1-...-(ex + 1), thus
d(N) e1+1 er+1
N A
Forall N > 1, as the functiornf (x) = (x + 1)/N~ is decreasing far > 0, we have that for
allk>1,(k+1)/N*F<2/N <1.

Fix anye > 0. If N has a prime factop > 2/¢, thend(N)/N < 2/p < €. Otherwise,
all prime factors ofN are smaller tham = 2/¢. Assume thatv = p7* - ... p*. Then
k <c.Lete; =maxeq, ..., ex}. N < ¢t te soce; > e1+---+ e > log, N, therefore
e; > h(N) =log, N/c, thusd(N)/N < (¢; +1)/p < (h(N)+1)/p"™ which is smaller
thane for large enoughv. O

Remark 2.5. One may suggest the following ad-hoc solution to the problem raised by
Theorem 2.1: Simply bound the possible valuermoin queries of the formP™ (x) to be

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 113

< N/k for some fixedk. But then P (x) can still be computed (using queries instead
of 1), so this solution is not good if we do not want to restrict the value tdo much.

Remark 2.6. Theorem 2.1 can be extended as follows: Fix a cycle structure:gie¢ the
size of the largest cyclus in this structure, and assumeftl@sy is a random permutation
with the given cycle structure. The probability that an elemesmppears in a cyclus of size
ap is (at leastyag/N. If k is £2(N/ag), then with large probability one of the elements
0,...,k — 1 appears in the cyclus and therefa?& (i) =i for somei € {0, ...,k — 1}.
But if P is random, then it is conceivable that with a nonnegligible probability (it is not
straightforward to quantify the term “nonnegligible” here), fora# {0, ...,k — 1} the
cycle lengths do not divideg and thereforeP?0(i) £ i.

Of course, ifag < N/ag, then one may simply verify ing calls that the cycle of 0 has
size< ap. Thus our method works in complexity(min{ag, N /ag}).

Remark 2.7. Uzi Vishne has pointed out to me that one can distinguish a random
permutatiorwhich is not a cyclufrom a random cyclus in with advantage 1 at the price of
increasing the number of queriest@V) + 1 (wherev(N) is the number of prime divisors

of N): One simply verifies that for each prime factprof N, PN/?(0) # 0, whereas

PN (0) = 0. This happens if, and only i is a cyclus. (Similar observations apply to
Remarks 2.5 and 2.6.)

Observe that in probability /IV, a random permutation is a cyclus and therefore one
cannot hope to obtain advantage greater thad AN, so this improves the advantage from
1—-d(N)/N to1l—1/N atthe price ofv(N) additional queries. Clearly(N) < log, N.

In fact, by the Hardy—Ramanujan TheoremV) is asymptotically close to log lay “for
almost allN” (we will not give the precise formulation here). Observe that wheis

a power of 2 we getheng N) = 1, so two queries are enough to distinguish with advantage
1-1/N.

Part 2. Fast forward random permutations
This part introduces an efficient method to sample the cycle structure of a random
permutation, and its application to the construction of fast forward random permutations.

3. Ordered cycle structures

Definition 3.1. Assume thaf? is a finite, well-ordered set, antl € S;. LetCo, ..., Cr_1
be all (distinct) cycles of?, ordered by

Ci<C; < minC; <minC;.
Then theordered cycle structuref P, OCY P), is the sequenc@Col, ..., |Ck-1l)-

Example 3.2. If

p_(0 1 2345
“\5 4131 0

114 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

then the cycles ofP are (05), (142), (3) in this order, as the minimum elements of the
cycles are 01, 3, respectively. Thus, OG®) = (2, 3, 1).

Sampling the ordered cycle structure of a random permutatighdnSy; (by choosing
arandomp, finding the size of the cycle of 0, then the size of the cycle of the first element
not in this cycle, etc.) require@ (|£2|) steps, which is infeasible whe® is a large space.
The following theorem allows us to sample this distribution efficiently.

Theorem 3.3. Let £2 be afinite set of siz&'. Consider the following two random processes

Process| Choose a random permutatiaghe S, and giveOCS P) as output.
Process Il (1) Sets_1 =0.
(2) Fori =0, ... do the following
(a) Choose a random numbere {1+ s;-1,..., N}.
(b) If s; = N, then exit the loop.
(3) Output the sequendey, s1 — $0, 52 — 1, ..., 8 — Si—1).

Then these processes define the same distribution on the space of all possible ordered cycle
structures of permutationB € Sg,.

Proof. We prove the theorem by induction on the sizenfThe theorem is evident when
12| =1.

For|£2| > 1, assume thak is a random element ¢f;;, and let OC%P) = (ao, ...). By
Lemma 2.24¢ distributes uniformly i1, ..., N}. Using the notation of Definition 3.1, let
Co be the cycle of 0. A® distributes uniformly ovef;, an easy counting argument shows
that the restriction o to the remaining element®, | £2 \ Co distributes uniformly over
Sa\co- By the induction hypothesis, the outpib, by, .. .) of Process Il for = |£2 \ Co|
distributes exactly as the output of Process Pohs2 \ Co. Thus, the sequenceo, bo, . . .)
given by Process Il distributes the same as the sequence given by Process .

Definition 3.4. For ease of reference, we will call Process Il of Theorem 3.3xheose
Cycle Lengthg$CCL) process.

Observe that the running time of the CCL process in the worse caégvigich is too
large (usually, a quantity which is polynomial in 18gis considered small, an® (N€)
wheree > 0 is considered infeasible). We can however define an algorithm which is
probabilistically close to the CCL process but runs in ti;d@og N).

Let Ry denote the random variable counting the number of cycles in a permutation
in Sy . Itis well known [3] that the expectation and variantg (and therefore the running
time of the CCL process) are both 1dig+ O (1). By Chebyshev's Inequality,

P{Ry = (c+1)logN] = PRy —logN > clogN]

PRy —I0gN > (cy/fog N)/iogN |

1 1
< -
(c/TOogN)2 c2logN

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 115

for all constantc > 0, which is®(1/logN). We say that a functiorf (N) is negligible

if itis O(1/N°¢) for some positives. The bound given by Chebyshev’s Inequality is not
negligible. Fortunately we can improve it significantly in our case. To this end, we need
to have a tight upper bound on the distributions of the random variabtéfined by the
CCL process.

Proposition 3.5. Fix € {0, ..., N — 1}. Then

llog(1— k/N)|'
I'N
if ke{l+1,..., N} and isO otherwise.

Pris; =k] <

Proof. Recall that for an increasing functiof: [0, k] — R, Y522 £(i) < [f(x) dx.
We prove the proposition by induction énFor! = 0 we have that Rso = k] = 1/N
as required. Assume that our assertion is trué,fand prove it for + 1 as follows.

k-1 k-1

1
Prissi =kl =) Plsi=il-Playa=k—ils=il=) Plis =il ——
i=i+1 =i+l !
k
(—log(l—x/N)! 1
. dx.
I'N N —x

Substitutingg = —log(1 — x/N), we have that the last integral is equal to

—log(1—k/N)
; (—log(1 — k/N))'+?
— t'dr = . O
IIN (I+1'N
0

Theorem 3.6. Fix [€ {0, ..., N — 1}. Then for allm,

_ !
Pils; <m] < % . —||Og(1 m/N)| .

Al

Proof. By Proposition 3.5,

S [P [G

llog(1 —m/N)|*
m. ————.
I'N

Corollary 3.7. Assume that > ¢. The probability that the running time of the CCL process
is larger thanclog N is O (y/logN/N<1°9¢=D) and is therefore negligible. In particular,
if ¢ > ¢ then this probability is)(1/N°¢).

116 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

Proof. Use Theorem 3.6 witth =n — 1 and/ = clogN. Then 1- m/N = 1/N. Using
Stirling’s Formula,

llogl/N|' _ log N

Pllst <m] < ===~ =T /o)

1)
Now, asl =clogN,

log' N elogN\' ¢ N°¢ ¢(1-loge)
a/ef 1 = = yewoge =N ’

therefore the right-hand side of Eq. (1) is equal to

clogN 1
21) Neoge=1)*

This implies the assertions in the theorenm

We can therefore define the following variant of the CCL process:

Definition 3.8 (I-truncated CCL). Fix a positive integéiand run the CCL proceds— 1
steps. If the process terminated aftet [steps, then output the sequerigs . . ., sx—1).
Otherwise setf;_1 = N and outputso, ..., s;—1).

Corollary 3.9. Fix I > 3.6logN. Then the output of thé-truncated CCL cannot be
distinguished from the output of the CCL process with advantage greateptian).

Proof. This follows from Theorem 3.7, once we observe (numerically) that the solution to
the equatior(logc — 1) =1isc=3.5911". O

4. Fast forward permutations

Definition 4.1. Assume thatao, a1, ..., a;—1) is a sequence of positive integers such that
Y k<1ax = N, and writesg = ap ands; = Zkgi ay foreachi =1, ...,1. Thefast forward
permutation coded byag, as, ...,a;—1) is the permutationr € Sy such that for each
xe€{0,...,N -1},

w(x) =s; + (x + 1 moda;11) wheres; <x < sjy1.

Example 4.2. The fast forward permutatiom € S7 coded by(1, 2,3, 1) is
7 =(0)(12)(349(6) = (12)(345).

Hereso=1,s1 = 3,52 =6, ands3 = 7. Thus, e.g., as; <4 < s2, we have that
7°(4) =51+ (4+ 5 modaz) = 3+ (9 mod 3 = 3,

as can be verified directly.

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 117

A fast forward permutation coded by a sequengg. .., a;—1) is indeed fast forward,
if we can either preprocess the corresponding sequ@sgce ., s;—1) (this is done in time
O (1)) or have access to an oracle which cangefbr eachi in time O(1).

Proposition 4.3. Assume thatr is the fast forward permutation coded lp, ..., a;-1).
Assume further that we have am(1l) time access to the corresponding valugesi €
{0,...,1—1}. Thenforallx € {0, ..., N — 1} and allm, the complexity of the computation
of 7™ (x) is O(log!l) (and in particularO (log N)).

Proof. As the values; are increasing withi, we can use binary search to find theuch
thats; < x < s;41 (this requiresO (logl) accesses to the valug$. Then

a™(x)=s; + (x + m mod(s;+1 — si)). O

The proof of Proposition 4.3 is written such that we can see that the sequence
(ao, ...,a;—1) plays no role in the evaluations af” (x). This means that all needed
information is given in the sequen¢s, . .., s;—1). We chose the sequeng®, ..., a;—1)
rather than(so, ..., s;—1) as a “code” for the permutation only because this way it seems
more clear how the permutatianis computed.

Consider the following oracles.

Pee: Chooses a random permutatigh € Sy, accepts queries of the formx,m) e
{0,..., N — 1} x Z, and responds with = P™(x) for each such query.
F: Runs thel-truncated CCL process with= 4logN in order to obtain a sequence
(ao, . ..,a;—1). (Letz denote the fast forward permutation codeddy, ..., a;-1).)
This oracle accepts queries of the fo¢mm) € {0, ..., N — 1} x Z, and uses the or-
acle’P (which fixes a random permutatia®) to respond withy = P (z” (P~ 1(x)))
for each such query.

Theorem 4.4. (1) The space used by the oracteis O(logN) words of sizeO (logN)
each.

(2) The preprocess of requiresO (log N) steps.

(3) For each query(x, m), the running time of* is O (loglogN) plus twice the running
time of P.

(4) Assume thab is a distinguisher which makes any number of calls to the oracles
Prr or F. Then the advantage @f iso(1/N).

Proof. (1) is evident. (2) follows from Proposition 4.3, and (3) follows from Corol-
lary 3.9. O

This completes our solution to the Naor—Reingold Problem in the (purely) random case.

118 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

Part 3. Pseudorandomness

Intuitively speaking, pseudorandom objects are ones which are easy to sample but
difficult to distinguish from (truly) random objects. The assumption that we made on
the oracleP—namely, that it chooses a random permutationSir—is not realistic
whenN is large. A more realistic assumption is that the oracle choopsgadorandom
element of Sy. More concretely, the oracl® accepts akey k as input, and uses it
to define a permutatio®, in the sense that each time the oracle is asked to compute
Pr(x) (or Pk_l(x)), the oracle computes it without the need to explicitly build the
complete permutatio,. (P can be thought of as a key dependent block cipher.) The
reader is referred to [1] for the formal definitions. Naor and Reingold [1] actually stated
their problem in the pseudorandom case. We will translate our main results into the
pseudorandom case.

5. Tranglation of resultsfrom Part 1

LetC’ be a pseudorandom cyclus oracle. This means that for any distingdisiikich
makes a small number of queries, the advantage= |P{D(C’) = 1] — Pi{D(C) =1]| is
small.

Theorem 5.1. For any distinguisheD which makes: < N queries taC’ or P,
PDC) =1] - PDP) =1]| <a+ 7.
wherea = [P{D(C’) = 1] — P{D(C) = 1]|.

Proof. By the Triangle Inequality and Theorem 1.10,
|P{D(C")=1]-P{D(P)=1]|
< |PD(C) =1] = P{D(C) =1]| + [P D(C) =1] — P D(P) = 1]|

m
<a+ —. O
n

Theorem 5.2. Consider them-step strategym < N) for a distinguisherD which was

defined in Theorerh.12 @n arbitrary strategy which generates nonrepeating sequégnces

Then
IP{DC)=1]-P[D(P)=1]| = %

Consequently, for alk > 0 there exists a strategy to distinguishC’ from P with

advantagemaxa — ¢, m/N}, wherea is the supremum of all possible advantages of an
m-step distinguisher to distinguisH fromC.

Proof. The proof of Theorem 1.12 only uses the fact tRathooses a random permutation
andC chooses a cyclus. The fact that the cydluis random is not used. This implies the
first claim in our theorem.

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 119

To prove the second part of the theorem, fix any 0. If a — ¢ <m/N, we choose the
strategyD and we are done. Otherwise/ N < a — €. ASa — € < a, there exists am-step
strategyD’ to distinguishC’ from C with advantage at least— ¢, so we can choose the
strategyD’. O

We now translate the main result in the fast forward model to the pseudorandom case.

Theorem 5.3. C’ can be distinguished frorR with advantagd — d(N)/N, using a single
query.

Proof. Again, the only property of we used in the proof of Theorem 2.1 is its choosing
a cyclus, which is also true faf'. O

6. Trandation of resultsfrom Part 2

In order to shift to the pseudorandom case in our construction of a fast forward
permutation, we need to have some pseudorandom number generator to generate the
random choices of the’s in the CCL process. If we have no such generator available, we
can use the oraclP itself: In addition to the key used to generat®;,, we need another
key k. The pseudorandom numbeysin the CCL process can then be derived from the
valuesP;(0), P;(1), P;(2),... (this is the standardounter modg2]). We now give an
example how this can be done.

Consider the following oracles.

RND: Accepts positive integers,k < N and returns a sequendey, ..., ry—1) Of
random numbers in the ran@, ..., x — 1}.

RNDj: Accepts positive integers, k < N, callsRND with N and Z to get a sequence
(xo0,...,Xx2¢—1), and returnsgro, ..., rxr—1) wherer; = (x2; + N - x2;4-1) modx for
alli=0,....,k—1.

RND2: Accepts positive integers, k, po < N, callsP 2k times to obtain the sequence
(xo = P(po),...,x20—1 = P(po + 2k — 1 mod N)), and returndro, ..., rx—1)
wherer; = (xg; + N - x2;+1) modx foralli =0, ...,k — 1.

Theorem 6.1. Fix positive integers, k < N. Then

(1) If k =clogN, thenRND andRND; called withx andk cannot be distinguished with
advantage greater thanlog N/N.

(2) RND1 andRND> called withx andk cannot be distinguished with advantage greater
than2k?2/N.

Proof. (1) Assume thata and b are random numbers in the rang@,..., N — 1}.
Thenc = a + bN is random in the rang¢0,..., N2 — 1}. Let x € {0,..., N — 1}.
With probability at least AN, ¢ < [N?/x| - x and therefore: mod x is random in the

120 B. Tsaban / Journal of Algorithms 47 (2003) 104-121

range{0, ..., x — 1}. The probability that this happelasog N times is therefore at least
(1—1/N)cl09N ~ g=¢logN/N ~ 1 _ ¢logN/N.

(2) This follows from the well known result that a random permutation is a
pseudorandom function. Briefly (see [4] for more details), consider any sequenge of 2
random numbers in the rang®, ..., N — 1}. The probability that all these numbers are
distinct is greater than 4 (2k)2/2N =1 — 2k%/N, and in this case this sequence forms
a random partial permutation.0

Consider now the modificatio” of the oracleF which callsP with two independent
keys k and k, one for the evaluations’k(nm(Pk‘l(x))) and the other for the values
P(0), P;(1), ... to be used byrRND> in order to generate the sequence of pseudorandom
numbers required by thetruncated CCL process (the input argumggto RND2 is used
to avoid sampling the same entry Bf twice).

Theorem 6.2. Oracles ' and F cannot be distinguished with advantage greater than
O(log? N/N).

Proof. This follows from the Triangle Inequality and the earlier results 4.4, 6.1(1), and
6.1(1) withk =4logN. O

Here too, using a pseudorandom permutation or&¢lmstead of a random one in the
definition of 7' cannot increase the advantage by more thawherea is the maximal
advantage obtainable in distinguishiRgrom P’.

7. Final remarksand open problems

Another problem is mentioned in the original paper of Naor and Reingold [1] and
remains open, namely, whether one can construct a family of fast forward pseudorandom
functionswith graph structure distribution similar to that of pseudorandom functions.

The natural analogue of our construction for the case of pseudorandom permutations
would not work for pseudorandom functions, simply because the “graph structure” of
a pseudorandom function carries too much information. For example, ther@ @rg
points with no preimage. This was not the case with permutations, where the structure
is determined by the logarithmic number of its cycles and their length. Another approach
will be needed in order to solve this problem.

Our study raises some other interesting open problems, the most interesting of which
seems to be the following. Consider théruncated CCL process with= log N, which
uses an oraclBND3 similar toRND> as its random number generator with the difference
thatit makes only calls toP to generatéxgo = P(po), ..., xk—1 = P(po+k—1modN)),
and uses; = x; mod x instead of the original definition. (So we use lggvalues of P
instead of 8logv in the current construction.) The problem is to prove or disprove the
following.

B. Tsaban / Journal of Algorithms 47 (2003) 104-121 121

Conjecture 1. F' with the parameters just described cannot be distinguished frgm
with a nonnegligible advantage.

Acknowledgments

| thank Kent E. Morrison for Ref. [3], and Uzi Vishne for reading the paper and
suggesting (the first paragraph of) Remark 2.7. A special thanks is owed to Moni Naor
for encouraging me to publish these results, and to the referee for suggesting important
improvements in the presentation of the paper.

References

[1] M. Naor, O. Reingold, Constructing pseudo-random permutations with a prescribed structure, J. Cryptol-
ogy 14 (2001), to appear.

[2] B. Schneier, Applied Cryptography, Wiley, 1996.

[3] L.A. Shepp, S.P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966)
340-357.

[4] B. Tsaban, Bernoulli numbers and the probability of a birthday surprise, Discrete Appl. Math., to appear.

