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Algebra, selections, and additive Ramsey theory

by

Boaz Tsaban (Ramat Gan and Rehovot)

Abstract. Hindman’s celebrated Finite Sums Theorem, and its high-dimensional
version due to Milliken and Taylor, can be viewed as coloring theorems concerning count-
able covers of countable, discrete sets. These theorems are extended to covers of arbitrary
topological spaces with Menger’s classical covering property. The methods include, in addi-
tion to Hurewicz’s game-theoretic characterization of Menger’s property, extensions of the
classical idempotent theory in the Stone–Čech compactification of semigroups, and of the
more recent theory of selection principles. This provides strong versions of the mentioned
celebrated theorems, where the monochromatic substructures are large, beyond infinitude,
in an analytical sense. Reducing the main theorems to the purely combinatorial setting,
we obtain nontrivial consequences concerning uncountable cardinal characteristics of the
continuum.

The main results, modulo technical adjustments, are of the following type (definitions
provided in the main text): Let X be a Menger space, and U be an infinite open cover
of X. Consider the complete graph whose vertices are the open sets in X. For each finite
coloring of the vertices and edges of this graph there are disjoint finite subsets F1,F2, . . .
of the cover U whose unions V1 :=

⋃
F1, V2 :=

⋃
F2, . . . have the following properties:

(1) The sets
⋃

n∈F Vn and
⋃

n∈H Vn are distinct for all nonempty finite sets F < H.
(2) All vertices

⋃
n∈F Vn for nonempty finite sets F have the same color.

(3) All edges {
⋃

n∈F Vn,
⋃

n∈H Vn} for nonempty finite sets F < H have the same color.
(4) The family {V1, V2, . . . } forms a cover of X.

A self-contained introduction to the necessary parts of the needed theories is included.

1. Background. For a wider accessibility of this paper, the following is
a brief, self-contained introduction to the Stone–Čech compactification of a
semigroup and its necessary algebraic and combinatorial properties [11, 17],
including all results employed later. The reader may skip familiar parts.
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1.1. The Stone–Čech compactification and Hindman’s Theorem.
Almost throughout, S denotes an infinite semigroup. We do not assume that
S is commutative; however, with the applications in mind, we use additive
notation. The Stone–Čech compactification of S, βS, is the set of all ultra-
filters on S. We identify each element s ∈ S with the principal ultrafilter
associated to it. Thus, we view the set S as a subset of βS. A filter F on S
is free if the intersection

⋂
F of all elements of F is empty. An ultrafilter is

free if and only if it is nonprincipal.
A topology on the set βS is defined by taking the sets [A] := {p ∈ βS :

A ∈ p}, for A ⊆ S, as a basis for the topology. The function A 7→ [A] respects
finite unions, finite intersections, and complements. For an element s ∈ S
and a set A ⊆ S, we have s ∈ [A] if and only if s ∈ A. In particular, the set
S is dense in βS. The topological space βS is compact: if βS =

⋃
α∈I [Aα]

and no finite union of sets Aα is S, then the family {Ac
α : α ∈ I} extends to

an ultrafilter p ∈ βS, so p is in some set [Aα], a contradiction.
Define the sum of elements p, q ∈ βS by

A ∈ p+ q if and only if {b ∈ S : ∃C ∈ q, b+ C ⊆ A} ∈ p.
Then p + q ∈ βS. We obtain an extension of the addition operator from S
to βS, with the following continuity properties:

(1) For each x ∈ S, the function q 7→ x+ q is continuous.
(2) For each q ∈ βS, the function p 7→ p+ q is continuous.
(3) The addition function + on βS is associative, that is, (βS,+) is a semi-

group.

Associativity follows from associativity in the dense subset S of βS: Consider
the equality (x + y) + z = x + (y + z). If we fix x and y in S, the equality
is true for all z ∈ S. By (1), it is true for all z ∈ βS. If we fix z ∈ βS, the
equality holds for all y ∈ S. By (1) and (2), it holds for all y ∈ βS. If we fix
y, z ∈ βS, the equality holds for all x ∈ S. By (2), it holds for all x ∈ βS.

If e ∈ βS is an idempotent element, that is, if e+ e = e, then for each set
A ∈ e there are a setB ∈ e, and for each b ∈ B, a setC ∈ e such that b+C ⊆ A.
Conversely, the latter property of e implies that e ⊆ e+e and thus e = e+e. In
this characterization, by intersecting C with A, we may assume that C ⊆ A.

The Ellis–Numakura Lemma asserts that every closed subsemigroup T
of βS has idempotent elements. Indeed, Zorn’s Lemma provides us with
a minimal closed subsemigroup E of T , and it follows by minimality that
E = {e} for some (necessarily, idempotent) element e ∈ T (1).

(1) To see that a minimal closed subsemigroup E of βS must be of the form {e}, fix
an element e ∈ E. By the continuity of the functions p 7→ p+ e, the set E + e is a closed
subsemigroup of E, and thus E + e = E. Thus, the stabilizer of e, {t ∈ E : t+ e = e}, is
a (closed) subsemigroup of E, and is therefore equal to E, so that e+ e = e.
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Definition 1.1. For elements a1, a2, . . . in a semigroup S, and a non-
empty finite set F = {i1, . . . , ik} ⊆ N with k ≥ 1 and i1 < · · · < ik, define
aF := ai1 + · · ·+ aik . Let

FS(a1, a2, . . .) := {aF : F ⊆ N, F finite nonempty},
the set of all finite sums, in increasing order of indices, of elements ai. Sim-
ilarly, for elements a1, . . . , an ∈ S, the set FS(a1, . . . , an) consists of the
elements aF for F a nonempty subset of {1, . . . , n}.

A finite coloring of a set A is a function f : A → {1, . . . , k} for k ∈ N.
Given a finite coloring f of a set A, a set B ⊆ A is monochromatic if there
is a color i with f(b) = i for all b ∈ B.

Theorem 1.2 (Hindman [10]). For each finite coloring of N, there are
elements a1, a2, . . . ∈ N such that the set FS(a1, a2, . . .) is monochromatic.

The following strikingly elegant proof of Hindman’s Theorem is due to
Galvin and Glazer. Fix an idempotent element e ∈ βN. Let a k-coloring of
N be given. If Ci is the set of elements of color i, then C1∪ · · · ∪Ck = N ∈ e,
and thus there is a color i with A1 := Ci ∈ e. For n = 1, 2, . . . , since e is an
idempotent ultrafilter, there are an element an ∈ An and a set An+1 ⊆ An
in e such that an + An+1 ⊆ An. It then follows, considering the sums from
right to left, that every finite sum ai1 + · · ·+ aik , for i1 < · · · < ik, is in Ai1 .
Thus, the set FS(a1, a2, . . .) is a subset of the monochromatic set A1.

1.2. The Milliken–Taylor Theorem and proper sumsequences.
For a set S, let [S]2 be the set of all 2-element subsets of S, or equivalently,
the edge set of the complete graph with vertex set S.

Definition 1.3. Let S be a semigroup. For nonempty finite sets F and
H of natural numbers, we write F < H if all elements of F are smaller
than all elements of H. A sumsequence (or sum subsystem) of a sequence
a1, a2, . . . ∈ S is a sequence of the form aF1 , aF2 , . . . for nonempty finite sets
F1 < F2 < · · · of natural numbers.

A sequence b1, b2, . . . ∈ S is proper if bF 6= bH for all nonempty finite sets
F < H of natural numbers. The sum graph of a proper sequence b1, b2, . . . ∈ S
is the subset of [FS(b1, b2, . . .)]2 consisting of the edges {bF , bH} for nonempty
finite sets F < H of natural numbers.

If b1, b2, . . . is a sumsequence of a1, a2, . . . , then we have FS(b1, b2, . . .) ⊆
FS(a1, a2, . . .). The relation of being a sumsequence is transitive.

Ramsey’s Theorem [18] asserts that, for each finite coloring of an infi-
nite complete graph [V ]2 with vertex set V , there is an infinite complete
monochromatic subgraph, that is, an infinite set I ⊆ V such that the set
[I]2 is monochromatic. The Milliken–Taylor Theorem unifies Hindman’s and
Ramsey’s Theorems.
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Theorem 1.4 (Milliken–Taylor [16, 28]). Let a1, a2, . . . be a sequence
in N. For each finite coloring of the set [N]2, there is a proper sumsequence
b1, b2, . . . of a1, a2, . . . such that the sum graph of b1, b2, . . . is monochromatic.

The Milliken–Taylor Theorem can be proved by combining the proofs of
Ramsey’s and Hindman’s Theorems, as can be gleaned from the proof of the
forthcoming Theorem 3.6.

Our applications are in a setting where all elements of the semigroup S
are idempotents. In this case, stating Hindman’s Theorem for the semigroup
S instead of N yields a trivial statement: for an idempotent element e ∈ S,
the set FS(e, e, . . . ) = {e} is obviously monochromatic. The sequence e, e, . . .
is improper, and so are all of its sumsequences. Thus, the Milliken–Taylor
Theorem cannot be extended to such cases. An example of a semigroup with
all elements idempotent is Fin(N), the set of nonempty finite subsets of N,
with the operation ∪. For this semigroup, we have the following theorem.

Theorem 1.5 (Milliken–Taylor). For each finite coloring of the set
[Fin(N)]2, there are elements F1 < F2 < · · · in Fin(N) such that the sum
graph of F1, F2, . . . is monochromatic.

As every sequence of natural numbers has a proper sumsequence, and
the sequence {1}, {2}, . . . is proper, Theorems 1.4 and 1.5 are special cases
of the following one.

Theorem 1.6. Let S be a semigroup, and a1, a2, . . . ∈ S. If the se-
quence a1, a2, . . . has a proper sumsequence, then for each finite coloring of
the set [S]2, there is a proper sumsequence of a1, a2, . . . whose sum graph is
monochromatic.

Proof. By moving to a sumsequence, we may assume that the sequence
a1, a2, . . . is proper. Let χ be a finite coloring of [S]2. Define a coloring κ
of [Fin(N)]2 by κ({F,H}) = χ({aF , aH}) for F < H, and κ({F,H}) arbi-
trary otherwise, and apply Theorem 1.5, using the fact that sumsequences
of proper sequences are proper.

The hypothesis of having a proper sumsequence fails only in degenerate
cases.

Proposition 1.7. Let S be a semigroup, and a1, a2, . . . ∈ S. If the
sequence a1, a2, . . . has no proper sumsequence, then every sumsequence of
a1, a2, . . . has a sumsequence of the form e, e, . . . , where e is an idempotent
element of S, or equivalently, a sumsequence whose set of finite sums is a
singleton.

Proof. We use Theorem 1.5. Define a coloring of the set [Fin(N)]2 by

{F,H} 7→ |{aF , aH}|.
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Let F1 < F2 < · · · be elements of Fin(N) such that the sum graph of the
sequence F1, F2, . . . is monochromatic.

Consider the sumsequence b1 := aF1 , b2 := aF2 , . . . . Assume that the
color is 2. Then the sumsequence b1, b2, . . . is proper, a contradiction. Thus,
the color must be 1. Then bH1 = bH2 for all H1 < H2 in Fin(N). Let e := b1.
Then bn = b1 = e for all n > 1. For each set H ∈ Fin(N), take n > H.
Then bH = bn = e. In particular, e + e = b1 + b2 = b{1,2} = e. Therefore,
FS(b1, b2, . . .) = {e}.

2. Idempotent filters and superfilters. Superfilters provide a conve-
nient way to identify closed subsets of βS (2).

Definition 2.1. A family A of subsets of a set S is a superfilter on S
if:

(1) All sets in A are infinite.
(2) For each set A ∈ A, all subsets of S that contain A are in A.
(3) Whenever A1 ∪ A2 ∈ A, then A1 or A2 is in A; equivalently, for each

set A ∈ A and each finite coloring of A, there is in A a monochromatic
subset of A.

The simplest example of a superfilter on a set S is the family [S]∞ con-
sisting of all infinite subsets of S. Many examples of superfilters are provided
by Ramsey-theoretic theorems. For example, van der Waerden’s Theorem
asserts that monochromatic arithmetic progressions of any prescribed finite
length will be found in any long enough, finitely-colored arithmetic progres-
sion. By van der Waerden’s Theorem, the family of all sets of natural numbers
containing arbitrarily long finite arithmetic progressions is a superfilter on N.

The notions of free filter and superfilter are dual. For a family F of
subsets of a set S, define F+ := {A ⊆ S : Ac /∈ F}. The following assertions
are easy to verify.

Lemma 2.2 (Folklore). Let S be a set.

(1) For all families F1 and F2 of subsets of S, F1 ⊆ F2 implies that
F+

1 ⊇ F
+
2 .

(2) For each family F of subsets of S, F++ = F .
(3) For each free filter F on S, the set F+ is a superfilter containing F .
(4) For each superfilter A on S, the set A+ is a free filter contained in A.
(5) For each filter F , if A ∈ F+ and B ∈ F , then A ∩B ∈ F+.
(6) For each ultrafilter p on S, p+ = p.

(2) Superfilters have various names in the classical literature, including coideals, grilles,
and partition-regular families, depending on the context where they are used. Some of the
definitions in the literature are not equivalent to the one given here, but they are always
conceptually similar. The present term is adopted from [21].
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Proof of (5). Since A ⊆ Bc ∪ (A ∩ B), the latter set is in F+. Since
Bc /∈ F+, we have A ∩B ∈ F+.

Every free ultrafilter on S is a superfilter on S, and so is any union of
free ultrafilters on S. Since elements of superfilters are infinite, the filter of
cofinite subsets of S is contained in all superfilters on S. By the following
lemma, every superfilterA is a union of a closed set of free ultrafilters. Indeed,
taking F = {N} we see by the lemma that the set C := {p ∈ βS : p ⊆ A}
is closed, and for each set A ∈ A, letting F be the filter generated by A we
deduce, again by the lemma, that there is an ultrafilter p ∈ C with A ∈ p.
Thus,

⋃
C = A.

Lemma 2.3. Let S be an infinite set. For each superfilter A on S, and
each filter F ⊆ A, the set {p ∈ βS : F ⊆ p ⊆ A} is a nonempty closed subset
of βS \ S.

Proof. It is straightforward to verify that the set is closed. We prove that
it is nonempty. By Lemma 2.2(4), the set A+ is a filter. By Lemma 2.2(2, 5)
applied to the filter A+, we have A ∩ B ∈ A for all A ∈ A and B ∈ A+. In
particular, the set A ∩ B is infinite for all A ∈ F and B ∈ A+. The family
{A ∩ B : A ∈ F , B ∈ A+} is closed under finite intersections. Since its
elements are infinite, it extends to a free ultrafilter p. Necessarily, F ⊆ p. If
there were an element B ∈ p \ A, then Bc ∈ A+ ⊆ p, a contradiction.

Definition 2.4. Let S be a semigroup.

(1) For a set A ⊆ S and a family F of subsets of S, let

A?(F) := {b ∈ S : ∃C ∈ F , b+ C ⊆ A}.

(2) A filter F on S is an idempotent filter if for each set A ∈ F , the set
A?(F) is in F .

(3) A superfilter A on S is an idempotent superfilter if for each A ⊆ S such
that A?(A) is in A, we have A ∈ A.

Thus, for ultrafilters p, q on S, A ∈ p+ q if and only if A?(q) ∈ p.
Let S be a semigroup. A superfilter A on S is translation-invariant if

s + A ∈ A for all s ∈ S and A ∈ A. Every translation-invariant superfilter
on a semigroup S is an idempotent superfilter.

Since ultrafilters are maximal filters, we find that, for an ultrafilter p
on a semigroup S, being an idempotent ultrafilter, idempotent filter, and
idempotent superfilter is the same.

Lemma 2.5. Let S be a semigroup.

(1) For each free idempotent filter F on S, the superfilter F+ is idempotent.
(2) For each idempotent superfilter A on S, the free filter A+ is idempotent.
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Proof. (1) Let A ⊆ S, and assume that the set B1 := A?(F+) is in F+.
Assume that A /∈ F+. Then Ac ∈ F , and thus the set B2 := (Ac)?(F) is
in F . By Lemma 2.2(5), there is an element b ∈ B1 ∩ B2. Then there are
sets C1 ∈ F+ and C2 ∈ F such that b + C1 ⊆ A and b + C2 ⊆ Ac. Pick
c ∈ C1 ∩ C2. Then b+ c ∈ A ∩Ac, a contradiction.

(2) Similar.

Lemma 2.6. Let S be a semigroup, and F be a free idempotent filter
on S. Then the set T := {p ∈ βS : F ⊆ p} is a closed subsemigroup of βS
disjoint from S.

Proof. By Lemma 2.3, with A = [S]∞, the set T is a closed subset
of βS. Since the filter F is free, we have T ⊆ βS \ S. Let p, q ∈ T , and
A ∈ F . Since the filter F is idempotent, A?(F) ∈ F ⊆ p. Since F ⊆ q, we
have A?(F) ⊆ A?(q), and therefore A?(q) ∈ p. By the definition of sum of
ultrafilters, A ∈ p+ q.

Theorem 2.7. Let S be a semigroup, and assume that F is a free idem-
potent filter on S contained in an idempotent superfilter A on S. Then there
is a free idempotent ultrafilter e with F ⊆ e ⊆ A.

Proof. Let T1 = {p ∈ βS : F ⊆ p} and T2 := {p ∈ βS : p ⊆ A}. By
Lemma 2.6, the set T1 is a closed subsemigroup of βS, and so is the set
{p ∈ βS : A+ ⊆ p+ = p} = T2.

By Lemma 2.3, the intersection T := T1∩T2 is nonempty, and is therefore
a closed subsemigroup of βS. Pick an idempotent element in T .

3. Selection principles and an abstract partition theorem. We
use the following notions from Scheepers’s seminal paper [22]. Let A and B
be families of sets. Then S1(A,B) is the property that, for each sequence
A1, A2, . . . ∈ A, one can select one element from each set, b1 ∈ A1, b2 ∈
A2, . . . , such that {b1, b2, . . .} ∈ B. Furthermore, G1(A,B) is a game associ-
ated to S1(A,B). This game is played by two players, Alice and Bob, and
has an inning per each natural number. In the nth inning, Alice plays a set
An ∈ A, and Bob selects an element bn ∈ An. Bob wins if {b1, b2, . . .} ∈ B.
Otherwise, Alice wins.

If Alice does not have a winning strategy in the game G1(A,B), then
S1(A,B) holds. The converse implication holds in some important cases,
including the ones in our main applications. A survey of known results of
this type is provided, e.g., in [24, Section 11].

Example 3.1. Let S be a set, and F be a filter on S generated by count-
ably many sets. Then Alice does not have a winning strategy in the game
G1(F+,F+); moreover, Bob has one: Fix sets B1, B2, . . . ∈ F such that every
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member of F contains one of these sets. In each inning, by Lemma 2.2(5),
Bob can pick an element bn ∈ An ∩Bn. Then {b1, b2, . . .} ∈ F+.

For the filter F of cofinite sets, this reproduces the simple observation
that Bob has a winning strategy in the game G1([S]

∞, [S]∞).

In general, the game G1(A,B) is not determined, and the property that
Alice does not have a winning strategy is strictly weaker than Bob’s having
one. This will be the case in our main applications [24, Section 11].

Definition 3.2. A free idempotent chain in a semigroup S is a descend-
ing sequence A1 ⊇ A2 ⊇ · · · of infinite subsets of S such that:

(1)
⋂
nAn = ∅.

(2) For each n, the set A?n({A1, A2, . . .}) contains one of the sets Am, or
equivalently, there is m > n such that, for each a ∈ Am, there is k > m
with a+Ak ⊆ Am.

For a family A of subsets of S, a free idempotent chain in A is a free idem-
potent chain of elements of A.

Example 3.3. For each proper sequence a1, a2, . . . in a semigroup, the
sets FS(an, an+1, . . . ) for n ∈ N form a free idempotent chain. Thus, if a
sequence a1, a2, . . . has a proper sumsequence, then there is a free idempotent
chain A1 ⊇ A2 ⊇ · · · with An ⊆ FS(an, an+1, . . . ) for all n.

Lemma 3.4. Let S be a semigroup, and A be a superfilter on S. Every
filter generated by a free idempotent chain in A is a free idempotent filter
contained in A.

Proof. Let A1 ⊇ A2 ⊇ · · · be a free idempotent chain in A, and let F be
the filter generated by the sets A1, A2, . . . . Since

⋂
nAn = ∅, the filter F is

free. Since An ∈ A for each n, we have F ⊆ A. The filter F is idempotent:
For A ∈ F , let An be a subset of A. By the definition, there is m such that
A?(F) ⊇ A?n({A1, A2, . . .}) ⊇ Am. Since Am ∈ F , we have A?(F) ∈ F .

Our theorems can be stated for any finite dimension. For clarity, we state
them in the one-dimensional case, which extends Hindman’s Theorem, and
in the two-dimensional case, which extends the Milliken–Taylor Theorem.
The one-dimensional case always follows from the two-dimensional, for the
following reason.

Proposition 3.5. Let S be a semigroup, and χ be a finite coloring of the
sets S and [S]2. There is a finite coloring η of [S]2 such that, for each proper
sequence b1, b2, . . . with η-monochromatic sum graph, the set FS(b1, b2, . . .)
and the sum graph of b1, b2, . . . are both χ-monochromatic.

Proof. By enumerating the elements of the countable set FS(b1, b2, . . .),
we obtain an order on this set such that every element has only finitely many
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smaller elements. Define a coloring κ of [FS(b1, b2, . . .)]2 by

κ({s, t}) := χ(min{s, t}).
Extend κ to a coloring of [S]2 in an arbitrary manner.

Assume that the set FS(b1, b2, . . .) is monochromatic for κ, say green.
Being proper, the sequence b1, b2, . . . is bijective. For each nonempty finite
set F of natural numbers, since there are at most finitely many elements
in FS(b1, b2, . . .) smaller than bF , there is n > F such that bF < bn. Then
κ({bF , bn}) = χ(bF ). Thus, the element bF is green.

The finite coloring η of the set [S]2 defined by

η({s, t}) :=
(
κ({s, t}), χ({s, t})

)
is as required. If χ is a k-coloring, we may represent the range set of η in the
form {1, . . . , k2}.

The two monochromatic sets in Proposition 3.5 may be of different colors.
Moreover, this can be forced by adding a coordinate to χ(x) that is 1 if x ∈ S
and 2 if x ∈ [S]2.

The proof of the following theorem is a natural combination of a standard
proof of the Milliken–Taylor Theorem (which, in turn, is an application of
Hindman’s Theorem along a standard argument for proving Ramsey’s The-
orem) with the concept of an infinite game. The importance of this theorem
lies in its identifying important notions needed in the proofs of our main
theorems.

Theorem 3.6. Let S be a semigroup. Let A be an idempotent superfilter
on S, and B be a family of subsets of S such that Alice does not have a
winning strategy in the game G1(A,B). Let a1, a2, . . . be a sequence in S, and
A1 ⊇ A2 ⊇ · · · be a free idempotent chain in A with An ⊆ FS(an, an+1, . . . )
for all n. For each finite coloring of the sets S and [S]2, there are elements
b1 ∈ A1, b2 ∈ A2, . . . such that:

(1) The set {b1, b2, . . .} is in B.
(2) The sequence b1, b2, . . . is a proper sumsequence of a1, a2, . . . .
(3) The set FS(b1, b2, . . .) is monochromatic.
(4) The sum graph of b1, b2, . . . is monochromatic.

Proof. By Proposition 3.5, it suffices to prove the two-dimensional asser-
tion, that is, item (3) follows from (4).

By Lemma 3.4, there is a free idempotent filter F with {A1, A2, . . .} ⊆
F ⊆ A. By Theorem 2.7, there is a free idempotent ultrafilter e on S such
that F ⊆ e ⊆ A.

Let a finite coloring χ : [S]2 → {1, . . . , k} be given. For each element
s ∈ S, let

Ci(s) := {t ∈ S \ {s} : χ({s, t}) = i}.
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As C1(s) ∪ · · · ∪ Ck(s) = S \ {s} ∈ e, there is a unique i with Ci(s) ∈ e.
Define a finite coloring κ : S → {1, . . . , k} by letting κ(s) be this unique i
with Ci(s) ∈ e. Since e is an ultrafilter, there is in e a set M ⊆ S that is
monochromatic for the coloring κ. Assume that the color is green. Then, for
each finite set F ⊆M , we have

G(F ) :=
⋂
s∈F

{
t ∈ S \ {s} : {s, t} is green

}
∈ e,

and for each s ∈ F and each t ∈ G(F ), we have s 6= t and the edge {s, t} is
green.

For a set D ∈ e, define
D? := {b ∈ D : ∃B ⊆ D ∈ e, b+B ⊆ D} = D?(e) ∩D.

Then D? ⊆ D and, since e is an idempotent ultrafilter, D? ∈ e.
We define a strategy for Alice. In this strategy, Alice makes choices from

certain nonempty sets. Formally, she does that by applying prescribed choice
functions to the given nonempty sets.

• In the first inning, Alice sets D1 :=M ∩A1, and plays the set D?
1.

• Assume that Bob plays an element b1 ∈ D?
1. Then Alice chooses a set

B ⊆ D1 in e such that b1 +B ⊆ D1 and a set F1 with aF1 = b1. She then
chooses a natural number m1 > F1, and sets D2 := B ∩ G({b1}) ∩ Am1 .
Having done that, Alice plays the set D?

2.
• Assume that Bob plays an element b2 ∈ D?

2. Then b1+b2 ∈ D1 ⊆M . Alice
chooses a set B⊆D2 in e such that b2+B ⊆D2, a set F2>m1 with aF2 =b2,
and a natural number m2 > F2. She sets D3 := B ∩G(FS(b1, b2)) ∩Am2 ,
and plays D?

3.
• In the (n+1)st inning, Bob has picked elements b1 ∈ D?

1, . . . , bn ∈ D?
n. As

in the Galvin–Glazer proof of Hindman’s Theorem, by computing sums
from right to left, we see that FS(b1, . . . , bn) ⊆ D1 ⊆ M . Alice chooses
a set B ⊆ Dn in e such that bn + B ⊆ Dn, a set Fn > mn−1 with
aFn = bn, and a natural number mn > Fn. She then sets Dn+1 :=
B ∩G(FS(b1, . . . , bn)) ∩Amn , and plays the set D?

n+1.

Since Alice has no winning strategy, there is a play (D?
1, b1, D

?
2, b2, . . . ), ac-

cording to Alice’s strategy, won by Bob. By the construction, the sequence
b1, b2, . . . is a sumsequence of a1, a2, . . . . The set {b1, b2, . . .} is in B, since
Bob has won this play.

Let i1 < · · · < ik < j1 < · · · < jl, F = {i1, . . . , ik}, and H = {j1, . . . , jl}.
Then

bF ∈ FS(b1, . . . , bik) and bH = bj1 + · · ·+ bjl .

Computing the latter sum from right to left, we see that

bH ∈ Dj1 ⊆ Dik+1 ⊆ G(FS(b1, . . . , bik)).
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It follows that the elements bF and bH are distinct, and the edge {bF , bH} is
green.

To gain some intuition on Theorem 3.6, we provide several simple ex-
amples. They can also be established via somewhat more direct arguments.

Example 3.7. Let S be a semigroup. Let a1, a2, . . . be a sequence in S,
and A1 ⊇ A2 ⊇ · · · be a free idempotent chain with An ⊆ FS(an, an+1, . . . )
for all n. For each finite coloring of the sets S and [S]2, there are elements
b1 ∈ A1, b2 ∈ A2, . . . such that:

(1) The sequence b1, b2, . . . is a proper sumsequence of a1, a2, . . . .
(2) The set FS(b1, b2, . . .) is monochromatic.
(3) The sum graph of b1, b2, . . . is monochromatic.

Proof. By Lemma 3.4, with the trivial superfilter A = [S]∞, the filter
F on S generated by the sets A1, A2, . . . is a free idempotent filter. By
Lemma 2.5, the superfilter F+ is also idempotent. By Example 3.1, Bob has
a winning strategy in the game G1(F+,F+). Since F ⊆ F+, Theorem 3.6
applies with A = B = F+.

In most semigroups S one encounters, left addition is at most finite-to-
one. In this case, the superfilter [S]∞ is translation-invariant; in particular,
idempotent. In this case, the proof of Example 3.7 reduces to one short
sentence: Apply Theorem 3.6 with A = B = [S]∞.

The Milliken–Taylor Theorem in arbitrary semigroups (Theorem 1.6) fol-
lows from Example 3.7, by Example 3.3.

Example 3.8. Let F1,F2, . . . ⊆ Fin(N), and A ⊆ N. Assume that every
cofinite subset of A contains a member from each family Fn. For each finite
coloring of the sets Fin(N) and [Fin(N)]2, there are nonempty finite subsets
F1 < F2 < · · · of A such that:

(1) Each set Fn contains some element of Fn.
(2) All nonempty finite unions H of sets Fn have the same color.
(3) All sets {H1, H2}, for H1 < H2 nonempty finite unions of sets Fn, have

the same color.

Proof. We work with the semigroup Fin(A) of all nonempty finite subsets
of A. Enumerate A = {a1, a2, . . .}. For each n, let

An :=
{
F ∈ Fin({an, an+1, . . . }) : ∃H ∈ Fn, H ⊆ F

}
⊆ FS({an}, {an+1}, . . . ).

Then
⋂
nAn = ∅. Every set An is a subsemigroup of S. Thus, the sequence

A1 ⊇ A2 ⊇ · · · is a free idempotent chain. Apply Example 3.7.
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Example 3.9. Let A ⊆ N be a set containing arbitrarily long arithmetic
progressions. For each finite coloring of the sets Fin(N) and [Fin(N)]2, there
are nonempty finite subsets F1 < F2 < · · · of A such that:

(1) The set
⋃
n Fn contains arbitrarily long arithmetic progressions.

(2) All nonempty finite unions H of sets Fn have the same color.
(3) All sets {H1, H2}, for H1 < H2 nonempty finite unions of sets Fn, have

the same color.

Additional examples are provided by any notion that is captured by fi-
nite sets, e.g., entries of solutions of homogeneous systems of equations, and
entries of image vectors of matrices. The upper density of a set A ⊆ N is the
real number lim supn |A ∩ {1, . . . , n}|/n.

Example 3.10. Let A ⊆ N be a set of upper density δ. For each finite
coloring of the sets Fin(N) and [Fin(N)]2, there are nonempty finite subsets
F1 < F2 < · · · of A such that:

(1) The set
⋃
n Fn has upper density δ.

(2) All nonempty finite unions H of sets Fn have the same color.
(3) All sets {H1, H2}, for H1 < H2 nonempty finite unions of sets Fn, have

the same color.

Proof. The upper density of a set does not change on removing finitely
many elements from that set. Take a sequence δ1, δ2, . . . increasing to δ. For
each n, let Fn := {F ∈ Fin(A) : |F |/maxF > δn}. Apply Example 3.8.

An analogous assertion also holds for the so-called Banach density.

4. Menger spaces. A topological space X is a Menger space if, for each
sequence U1,U2, . . . of open covers of X, there are finite subsets F1 ⊆ U1,
F2 ⊆ U2, . . . such that the sets

⋃
F1,

⋃
F2, . . . form an open cover of X.

A property introduced by Menger [15] was proved equivalent to this covering
property by Hurewicz [12]. Thus, every compact space has Menger’s property,
and every space with Menger’s property is a Lindelöf space, that is, one where
every open cover has a countable subcover.

Every compact space is a Menger space, and every countable union of
Menger spaces is Menger. However, even among subsets of the real line
there are large families of Menger spaces that are substantially different from
countable unions of compact spaces (e.g., [30, 31]). Menger’s property, which
is central in the recent theory of selection principles (see [19] and references
therein), found applications to seemingly unrelated notions in set-theoretic
and general topology and in real analysis.

Remark 4.1. We mention two examples illustrating the importance of
Menger’s property in general and set-theoretic topology. This remark is in-
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dependent of the remainder of the present paper, and we refer the interested
reader to the cited references for definitions.

One of the major problems in set-theoretic topology asks whether every
regular Lindelöf space is a D-space. In the realm of Hausdorff spaces, the
problem was answered in the negative [27]. It turned out that all Menger
spaces are D-spaces [1]. Menger’s property still yields the most general natural
class of spaces for which a positive answer to the D-space problem is known.

In a series of papers (see [8, 9] and references therein), a number of au-
thors have studied an important type of filters with a property introduced
by Canjar. This property is related to the theory of forcing: A filter has
Canjar’s property if the Mathias forcing notion associated to the filter does
not add dominating reals. It turned out that a filter has Canjar’s property
if and only if it is Menger in the standard Cantor space topology [4]. This
made a wide body of knowledge on Menger’s property applicable to Canjar
filters. In particular, a number of earlier results follow immediately from this
characterization.

Following Hurewicz [12], we restrict Menger’s property to countable open
covers. For Lindelöf spaces, the two variations of Menger’s property coincide,
but otherwise the results obtained are more general. This will be of impor-
tance to some applications at the end of this paper.

Definition 4.2. Let X be a topological space. A countable family U of
subsets of X is an ascending cover of X if it is a cover of X and there is an
enumeration U = {V1, V2, . . .} such that V1 ( V2 ( · · · . Let Asc(X) be the
family of open covers of X that contain an ascending cover of X.

We consider the family P (X) of subsets of a setX as a semigroup with the
addition operator ∪. Thus, for a family U ⊆ P (X), the set FS(U) consists
of all finite unions of members of U . Only covers with no finite subcover
constitute a challenge to Menger’s property.

Lemma 4.3. Let X be a topological space. For each countable open cover
U with no finite subcover, we have FS(U) ∈ Asc(X).

For a topological space X, let O(X) be the family of countable open
covers of X. A cover of X is point-infinite if every point of X is contained in
infinitely many members of the cover. Let Λ(X) be the family of countable
open point-infinite covers of X. The proof of [22, Corollary 6] establishes, in
fact, that S1(Asc(X), Λ(X)) holds whenever S1(Asc(X),O(X)) does.

Corollary 4.4 (Folklore). A topological space X is Menger if and only
if S1(Asc(X), Λ(X)) holds.

Using a game-theoretic theorem of Hurewicz, Scheepers proved in [23]
that a spaceX is Menger if and only if Alice does not have a winning strategy
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in the game Gfin(Λ(X), Λ(X)), a variation of G1(Λ(X), Λ(X)) where Bob is
allowed to choose any finite number of elements in each turn. Scheepers’s
Theorem is used in the following proof.

Proposition 4.5. A topological space X is Menger if and only if Alice
does not have a winning strategy in the game G1(Asc(X), Λ(X)).

Proof. (⇐) If Alice does not have a winning strategy in G1(Asc(X),
Λ(X)), then S1(Asc(X), Λ(X)) holds. Then X is a Menger space.

(⇒) Assume that Alice has a winning strategy in G1(Asc(X), Λ(X)).
Using this strategy, define a strategy for Alice in Gfin(Asc(X), Λ(X)), as
follows. In the nth inning, Alice’s strategy proposes a cover containing an
ascending cover. Alice thins out this cover to make it ascending, and then
removes from it the finitely many elements chosen by Bob in the earlier
innings. This can only make Bob’s task harder. If Bob picks a finite subset
Fn of this ascending cover, Alice takes the largest set chosen by Bob, Bn,
and applies her original strategy, pretending that Bob chose only this set.

Assume that Bob won a play (U1,F1,U2,F2, . . . ) of Gfin(Asc(X), Λ(X)).
Then

⋃
nFn is a point-infinite cover of X. Since the sets Fn are disjoint,

the set {B1, B2, . . .} is also a point-infinite cover of X, and we obtain a play
of G1(Asc(X), Λ(X)) that is won by Bob, a contradiction. Thus, Alice has
a winning strategy in Gfin(Asc(X), Λ(X)). Since Asc(X) ⊆ Λ(X), Alice has
a winning strategy in Gfin(Λ(X), Λ(X)). By Scheepers’s Theorem, the space
X is not Menger.

With results proved thus far, we are ready to prove our main theorem. For
σ-compact spaces, that is, spaces that are countable unions of compact sets,
this theorem can be deduced directly from the Milliken–Taylor Theorem.
The case of general Menger spaces, however, cannot, and forms the core of
the proof.

Theorem 4.6. Let (X, τ) be a Menger space, and U1 ⊇ U2 ⊇ · · · be
countable point-infinite open covers of X with no finite subcover. For each
finite coloring of the sets τ and [τ ]2, there are nonempty disjoint finite sets
F1 ⊆ U1,F2 ⊆ U2, . . . such that the sets Vn :=

⋃
Fn for n ∈ N have the

following properties:

(1) The family {V1, V2, . . .} is a point-infinite cover of X.
(2) The sets

⋃
n∈F Vn and

⋃
n∈H Vn for nonempty finite sets F < H are

distinct.
(3) All sets

⋃
n∈F Vn for nonempty finite sets F ⊆ N have the same color.

(4) All sets {
⋃
n∈F Vn,

⋃
n∈H Vn} for nonempty finite sets F < H have the

same color.

Moreover, if U1 = {U1, U2, . . .}, we may require that the sets Fn := {m :
Um ∈ Fn} satisfy F1 < F2 < · · · .
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Proof. Enumerate U1 = {U1, U2, . . .}. Consider the semigroup (τ,∪). We
will work inside its subsemigroup S := FS(U1, U2, . . .). Let

A := {A ⊆ S : A ∈ Asc(X)}.
The family A is a superfilter: Since U1 has no finite subcover, the sequence
U1, U1 ∪U2, . . . has an ascending subsequence. Thus, {U1, U1 ∪U2, . . . } ∈ A.
If A∪B ∈ A, then A∪B contains an ascending cover V1 ( V2 ( · · · , and A
or B must contain a subsequence of V1, V2, . . . . Thus, A ∈ A or B ∈ A. The
superfilter A is translation-invariant. In particular, A is idempotent.

For each n, using the fact that U1 has no finite subcover, fix an element
xn ∈ X \

⋃n
i=1 Ui. For each n, let

Vn :=
{
V ∈ FS({Um ∈ Un : m ≥ n}) : x1, . . . , xn−1 ∈ V

}
.

Note that V1 = S, and Vn ⊆ FS(Un, Un+1, . . . ) for all n. For each n, the set
{Um ∈ Un : m ≥ n}, being a cofinite subset of the point-infinite cover Un,
is a (point-infinite) cover of X. Since Un has no finite subcover, we see
that Vn ∈ Asc(X). In particular, the sets Vn are infinite. We deduce that
V1 ⊇ V2 ⊇ · · · , and

⋂
n Vn = ∅. For each n, Vn is a subsemigroup of S. Thus,

V1,V2, . . . is a free idempotent chain in A.
By Proposition 4.5, Alice does not have a winning strategy in the game

G1(A, Λ(X)). By Theorem 3.6, for each finite coloring of the sets S and [S]2,
there are elements V1 ∈ V1, V2 ∈ V2, . . . such that:

• The set {V1, V2, . . .} is in Λ(X).
• The sequence V1, V2, . . . is a proper sumsequence of U1, U2, . . . .
• The set FS(V1, V2, . . .) is monochromatic.
• The sum graph of V1, V2, . . . is monochromatic.

The last assertion in the theorem is clear from the proof of Theorem 3.6.

The assumption in Theorem 4.6 that the space is Menger is necessary.
It is proved in [22] that being a Menger space is equivalent to the following
property: For each descending sequence U1 ⊇ U2 ⊇ · · · of countable point-
infinite open covers of X with no finite subcover, there are nonempty finite
sets F1 ⊆ U1,F2 ⊆ U2, . . . such that the family {

⋃
Fn : n ∈ N} is a cover

of X.
The following example shows that the Milliken–Taylor Theorem, and thus

Hindman’s Theorem, is an instance of Theorem 4.6 where Menger’s property
is trivial: a countable, discrete space.

Example 4.7. Consider Theorem 1.5. Let X be the set Fin(N) with the
discrete topology. Since the space X is countable, it is a Menger space.

For each n, let On := {F ∈ X : n /∈ F}. The family {O1, O2, . . .} is
a point-infinite open cover of X with no finite subcover. According to our
conventions, for a set F ∈ Fin(N) we have OF =

⋃
n∈F On.
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Let S := FS(O1, O2, . . .). Then S is a semigroup, and the map Fin(N)
→ S defined by F 7→ OF is a semigroup isomorphism. Thus, a finite coloring
of the set [Fin(N)]2 may be viewed as a finite coloring of the set [S]2. Let
F1 < F2 < · · · be nonempty finite sets such that the sets Vn := OFn satisfy
Theorem 4.6(4), and the sets Fn are as requested in Theorem 1.5.

The deduction of the classical theorems in Example 4.7 uses a twist:
It would have been more natural to consider the cover of N by singletons, but
there are 2-colorings of Fin(N) with no monochromatic cover of N by disjoint
finite sets.

According to Example 4.7, the Milliken–Taylor (or Hindman) Theorem
may be viewed as a theorem about countable open covers of countable sets,
and Theorem 4.6 may be viewed as an extension of these theorems from
countable spaces to Menger spaces of arbitrary cardinality. It is illustrative to
compare this interpretation with Fernández Bretón’s impossibility result [6]:
for every set S, there is a 2-coloring of the semigroup Fin(S) of finite subsets
of S such that no uncountable subsemigroup of Fin(S) is monochromatic.
This demonstrates that any improvement over Hindman’s Theorem must be
on the qualitative side. In our case, we color a countable object induced by
a countable cover; it is the covered space that is uncountable.

5. Richer covers. LetX be a topological space, andA and B be families
of covers of X. Let Ufin(A,B) be the property that, for covers U1,U2, . . . ∈ A
with no finite subcover, there are finite sets F1 ⊆ U1,F2 ⊆ U2, . . . such that
{
⋃
F1,

⋃
F2, . . .} ∈ B.

Menger’s covering property is the same as Ufin(O(X),O(X)). A num-
ber of important covering properties are of the form Ufin(O(X),B). Some
examples are provided in the survey [19] and in the references therein. By
Lemma 4.3, we have the following observation.

Proposition 5.1. Let X be a topological space, and B be a family of cov-
ers of X. The assertions Ufin(O(X),B) and S1(Asc(X),B) are equivalent.

Let Ω(X) be the family of open covers U of X such that X /∈ U and every
finite subset of X is contained in some member of the cover. This family,
introduced by Gerlits and Nagy [7], is central to the study of local properties
in function spaces. The property Ufin(O(X), Ω(X)) was first considered by
Scheepers [22]. By the requirement that X does not belong to any member
of Ω(X), the members of Ω(X) are infinite. Moreover, Ω(X) is a superfilter
on the topology τ of X. If a cover U ∈ Ω(X) is finer than another open
cover V (in the sense that every member of U is contained in some member
of V) with X /∈ V, then V ∈ Ω(X). To cover additional important cases, we
generalize these properties.
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Definition 5.2. Let (X, τ) be a topological space. A family B of open
covers of X is regular if it has the following properties:

(1) Whenever U ∪ V ∈ B, we have U ∈ B or V ∈ B.
(2) For each cover U ∈ B and each finite-to-one function f : U → τ \ {X}

with U ⊆ f(U) for all U ∈ U , the image of f is in B.

Most of the important families of rich covers are regular.

Example 5.3. LetX be a topological space. The family Ω(X) is regular.
The family Λ(X) satisfies the second, but not the first, regularity condition.
Let Γ (X) be the family of infinite open covers ofX such that each point inX
is contained in all but finitely many members of the cover. The family Γ (X)
is regular. The property Ufin(O(X), Γ (X)) was introduced by Hurewicz [12].
Another well-studied regular family, denoted T∗(X), was introduced in [29].

In the next proof, we use the following observation. It extends, by induc-
tion, to any finite number of ascending covers.

Lemma 5.4. Let {U1, U2, . . .} and {V1, V2, . . .} be ascending covers of a
set X, enumerated as such. Then the set {U1∩V1, U2∩V2, . . . } is an ascending
cover of X.

Theorem 5.5. Let (X, τ) be a topological space, and B be a regular family
of open covers of X. The following assertions are equivalent:

(1) Ufin(O(X),B).
(2) S1(Asc(X),B).
(3) Alice does not have a winning strategy in the game G1(Asc(X),B).
(4) Alice does not have a winning strategy in the game associated to

Ufin(O(X),B).

Proof. Proposition 5.1 asserts the equivalence of (1) and (2). It is imme-
diate that (4) implies (1).

(3)⇒(4). Assume that Alice has a winning strategy in the game associ-
ated to Ufin(O(X),B). By the definition of the selection principle Ufin(A,B),
Alice’s covers must not have finite subcovers. By taking finite unions, turn
every cover in Alice’s strategy into an ascending one. This only restricts the
possible moves of Bob, and turns them into moves in the game G1(Asc(X),B).
Thus, we obtain a winning strategy for Alice in the latter game.

(2)⇒(3). Assume that Alice has a winning strategy in G1(Asc(X),B).
We encode this strategy as follows. Let U = {U1, U2, . . .} be Alice’s first
move. For each choice Um1 of Bob, let Um1 = {Um1

1 , Um1
2 , . . .} be Alice’s

next move. For each choice Um1
m2

of Bob, let Um1,m2 = {Um1,m2
1 , Um1,m2

2 , . . .}
be Alice’s next move, etc. Thus, for each sequence m1, . . . ,mk ∈ N we have
a cover Um1,...,mk

= {Um1,...,mk
1 , Um1,...,mk

2 , . . .} ∈ Asc(X).
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Thinning out the covers Alice plays will only restrict Bob’s moves. Thus,
we may assume that Alice plays ascending covers, and that no cover played
by Alice contains any of the finitely many elements played by Bob in the
earlier innings. For a natural number n, let {1, . . . , n}≤n :=

⋃n
i=0{1, . . . , n}i,

the set of all sequences of length at most n taking values in {1, . . . , n},
where the only sequence in {1, . . . , n}0 is the empty sequence ε. We define
U εm := Um for all m. For each n, set

Vn :=
{ ⋂
σ∈{1,...,n}≤n

Uσ1 ,
⋂

σ∈{1,...,n}≤n

Uσ2 , . . .
}
.

Then Vn is an ascending cover of X. By the property S1(Asc(X),B), there
are elements V1 ∈ V1, V2 ∈ V2, . . . such that {V1, V2, . . .} ∈ B.

The cover {V1, V2, . . .} refines U . Since U has no finite subcover, the set
{V1, V2, . . .} is infinite. We construct two parallel plays,

(U , Um1 ,Um1 , U
m1
m3
,Um1,m3 , . . . ) and (U , Um2 ,Um2 , U

m2
m4
,Um2,m4 , . . . ),

according to Alice’s strategy. We use the fact that Alice’s covers are ascend-
ing.

• Pick a natural number m1 > 1 such that

V1 ⊆ Um1 ∈ U , {V2, . . . , Vm1} \ {V1} 6= ∅.
• Each of the sets V2, . . . , Vm1 is contained in some member of the cover U .

Pick a natural number m2 > m1 such that Um2 6= Um1 and

V2 ∪ · · · ∪ Vm1 ⊆ Um2 ∈ U , {Vm1+1, . . . , Vm2} \ {V1, . . . , Vm1} 6= ∅.
• For n = 3, 4, . . . :

– If n is odd: Each of the sets Vmn−2+1, . . . , Vmn−1 is contained in some
member of the cover Um1,m3,...,mn−2 . Pick a natural number mn > mn−1

such that the set U := U
m1,m3,...,mn−2
mn is distinct from all sets picked

earlier and

Vmn−2+1 ∪ · · · ∪ Vmn−1 ⊆ U ∈ Um1,m3,...,mn−2 ,

{Vmn−1+1, . . . , Vmn} \ {V1, . . . , Vmn−1} 6= ∅.
– If n is even: Each of the sets Vmn−2+1, . . . , Vmn−1 is contained in some

member of the cover Um2,m4,...,mn−2 . Pick a natural number mn > mn−1

such that the set U := U
m2,m4,...,mn−2
mn is distinct from all sets picked

earlier and

Vmn−2+1 ∪ · · · ∪ Vmn−1 ⊆ U ∈ Um2,m4,...,mn−2 ,

{Vmn−1+1, . . . , Vmn} \ {V1, . . . , Vmn−1} 6= ∅.
Define a function

f : {V1, V2, . . .} → {Um1 , Um2 , U
m1
m3
, Um2

m4
, . . . }
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as follows:

• Map V1 to Um1 .
• Map each element of {V2, . . . , Vm1} \ {V1} to Um2 .
• For n = 3, 4, . . . map each element of the set {Vmn−2+1, . . . , Vmn−1} \
{V1, . . . , Vmn−2} to U

m1,m3,...,mn−2
mn if n is odd, and to Um2,m4,...,mn−2

mn if n
is even.

The function f is as needed in Definition 5.2(2), and is surjective. Since the
family {V1, V2, . . .} is in B and B is regular, the set {Um1 , Um2 , U

m1
m3
, Um2

m4
, . . . }

is in B. By Definition 5.2(1), one of the families {Um1 , U
m1
m3
, . . . } or

{Um2 , U
m2
m4
, . . . } is in B. It follows that Bob wins one of these two games

against Alice’s winning strategy, a contradiction.

Theorem 5.6. Let (X, τ) be a topological space, and B be a regular
family of open covers of X (e.g., Ω(X), T∗(X), or Γ (X)). Assume that
Ufin(O(X),B) holds. Let U1 ⊇ U2 ⊇ · · · be countable point-infinite open
covers of X with no finite subcover. For each finite coloring of the sets τ
and [τ ]2, there are nonempty disjoint finite sets F1 ⊆ U1,F2 ⊆ U2, . . . such
that the sets Vn :=

⋃
Fn for n ∈ N have the following properties:

(1) The family {V1, V2, . . .} is in B.
(2) The sets

⋃
n∈F Vn and

⋃
n∈H Vn for nonempty finite sets F < H are

distinct.
(3) All sets

⋃
n∈F Vn for nonempty finite sets F ⊆ N have the same color.

(4) All sets {
⋃
n∈F Vn,

⋃
n∈H Vn} for nonempty finite sets F < H have the

same color.

Moreover, if U1 = {U1, U2, . . .}, we may require that the sets Fn := {m :
Um ∈ Fn} satisfy F1 < F2 < · · · .

Proof. The proof is identical to that of Theorem 4.6, upon replacing
Λ(X) by B and using Theorem 5.5 instead of Proposition 4.5.

In all of our theorems, the converse implications also hold.

Proposition 5.7. Let X be a topological space, and B be a regular
family of open covers of X. Assume that, for each descending sequence
U1 ⊇ U2 ⊇ · · · of countable point-infinite open covers of X with no finite
subcover, there are nonempty disjoint finite sets F1 ⊆ U1,F2 ⊆ U2, . . . with
{
⋃
F1,

⋃
F2, . . .} ∈ B. Then Ufin(O(X),B) holds.

Proof. Let (B)ג be the family of open covers U of X with no finite
subcover, such that there are disjoint finite sets F1,F2, . . . ⊆ U for which
{
⋃
F1,

⋃
F2, . . .} ∈ B. By the first regularity property of B, we have Λ(X) ⊇

,(B)ג and by the premise of the proposition, Λ(X) ⊆ .(B)ג By Scheepers’s
Theorem, quoted after the proof of Theorem 4.6, the space X is Menger. By
[20, Corollary 10 and Lemma 11], Ufin(O(X),B) holds.
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6. Covers by more general sets

6.1. Borel covers. Consider the variation of Menger’s property where
covers by Borel sets are considered. Here, the restriction to countable covers
is necessary to make the property nontrivial (3). This property has its own
history and applications (see, e.g., [26] and the papers citing it). As a rule,
the results known for Menger’s property extend to its Borel version [26],
and thus Theorem 4.6 and its consequences also hold with “open” replaced
by “Borel”. The same assertion holds for the Borel versions of the other
covering properties considered above.

In addition to open or Borel, one may consider other types of sets. As
long as these types are preserved by the basic operations used in the proof
(mainly, finite intersections), the results obtained here apply to countable
covers by sets of the type considered.

6.2. A combinatorial theorem. Order the set NN by coordinatewise
comparison: f ≤ g if f(n) ≤ g(n) for all n. Let d be the minimal cardinality
of a dominating family D ⊆ NN, that is, such that for each function f ∈ NN

there is a function g ∈ D with f ≤ g. It is known that ℵ1 ≤ d ≤ 2ℵ0 , but
it is consistent that the cardinal d is strictly greater than ℵ1 (more details
are available in [3]). Let D ⊆ NN be a dominating family of cardinality d.
Then the property Ufin(O(D),O(D)) fails [13]. On the other hand, since
we consider countable covers only, the property Ufin(O(X),O(X)) holds for
spaces X of cardinality smaller than d [13]. Thus, thinking of a cardinal
number κ as a discrete space of cardinality κ, the following assertions are
equivalent:

(1) κ < d.
(2) Ufin(O(κ), Ω(κ)) holds.
(3) Ufin(O(κ),O(κ)) holds.

By Theorem 5.6, we have the following purely combinatorial result. In the
case κ = ℵ0, this is a straightforward consequence of the Milliken–Taylor
Theorem. Uncountable cardinals necessitate the application of the main the-
orems of the present paper.

Theorem 6.1. Let κ be a cardinal smaller than d. Let U1 ⊇ U2 ⊇ · · · be
countable point-infinite covers of κ with no finite subcover. For each finite
coloring of the sets P (κ) and [P (κ)]2, there are nonempty disjoint finite sets
F1 ⊆ U1,F2 ⊆ U2, . . . such that the sets An :=

⋃
Fn for n ∈ N have the

following properties:

(1) Every finite subset of κ is contained in some An.

(3) Otherwise, the space could be covered by singletons, and then being Menger would
be the same as being countable.
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(2) The sets
⋃
n∈F An and

⋃
n∈H An for nonempty finite sets F < H are

distinct.
(3) All sets

⋃
n∈F An for nonempty finite sets F ⊆ N have the same color.

(4) All sets {
⋃
n∈F An,

⋃
n∈H An} for nonempty finite sets F < H have the

same color.

Moreover, if U1 = {B1, B2, . . .}, we may require that the sets Fn := {m :
Bm ∈ Fn} satisfy F1 < F2 < · · · .

7. Comments

7.1. Higher dimensions. Our theorems also hold in dimensions larger
than 2, with minor modifications in the proofs. For a natural number d, let
[S]d be the family of all d-element subsets of S. We state the d-dimensional
versions of Theorems 3.6 and 4.6. For brevity, the last part of Theorem 7.2
is omitted.

Theorem 7.1. Let S be a semigroup, and d be a natural number. Let A
be an idempotent superfilter on S, and B be a family of subsets of S such that
Alice does not have a winning strategy in the game G1(A,B). Let a1, a2, . . .
be a sequence in S, and A1 ⊇ A2 ⊇ · · · be a free idempotent chain in A
with An ⊆ FS(an, an+1, . . . ) for all n. For each finite coloring of the set [S]d,
there are elements b1 ∈ A1, b2 ∈ A2, . . . such that:

(1) The set {b1, b2, . . .} is in B.
(2) The sequence b1, b2, . . . is a proper sumsequence of a1, a2, . . . .
(3) The set {{bF1 , . . . , bFd

} : F1, . . . , Fd ∈ Fin(N), F1 < · · · < Fd} is mono-
chromatic.

Theorem 7.2. Let (X, τ) be a Menger space, and d be a natural number.
For each descending sequence U1 ⊇ U2 ⊇ · · · of countable point-infinite open
covers of X with no finite subcover, and each finite coloring of the set [τ ]d,
there are nonempty disjoint finite sets F1 ⊆ U1,F2 ⊆ U2, . . . such that the
sets Vn :=

⋃
Fn for n ∈ N have the following properties:

(1) The family {V1, V2, . . .} is a point-infinite cover of X.
(2) The sets

⋃
n∈F Vn and

⋃
n∈H Vn for nonempty finite sets F < H are

distinct.
(3) All sets {

⋃
n∈F1

Vn, . . . ,
⋃
n∈Fd

Vn} for nonempty finite sets F1 < · · ·
< Fd have the same color.

The d-dimensional versions of Theorems 5.6 and 6.1 are similar.

7.2. Proper sequences. We have taken the approach of proper se-
quences, or having proper sumsequences, to avoid pathological cases in the-
orems of Milliken–Taylor type. Hindman and Strauss propose an uncondi-
tional approach in [11]. Corollary 18.9 in [11] allows loops in the sum graph
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and considers colorings of the set [S]1∪ [S]2. In a manner similar to the proof
of Proposition 1.7, we obtain the following observation.

Proposition 7.3. Let S be a semigroup, and consider the coloring χ of
[S]1∪ [S]2 defined by χ({a, b}) := |{a, b}|. If a sequence a1, a2, . . . ∈ S has no
proper sumsequence, then every monochromatic sum graph of a sumsequence
of a1, a2, . . . is a singleton.

Since we may assume that any given finite coloring of the set [S]1∪ [S]2 is
finer than the one of Proposition 7.3, there is no advantage in this approach
over that of Theorem 1.6.

7.3. New covering properties. Our results suggest a number of new
covering properties that were not considered thus far, and it remains unclear
how exactly these relate to the classical ones. For example, the property in
Theorem 4.6 in the case where Un = U for all n is formally weaker than
Menger’s property. Is it equivalent to it?

7.4. Additional directions. Using the selection principle Sfin and its
corresponding game, one obtains an abstract version of a theorem of Deuber
and Hindman [5], and stronger forms of this theorem, in the spirit of the
main theorem in Bergelson and Hindman [2]. This direction may be pursued
further.
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