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1. Introduction

Assume that I is a topological property. For a topological space X, let
I(X) denote the subspaces of X which possess the property I, and assume
that ∪I(X) /∈ I(X). Define the additivity number of I (relative to X) as

addX(I) = min
{
|F| : F ⊆ I(X) and ∪ F /∈ I(X)

}
.

I(X) is additive when addX(I) ≥ ℵ0 and σ-additive when addX(I) > ℵ0.
Sometimes it is useful to have more precise estimations of the additivity num-
ber of a property, or even better, determine it exactly in terms of well-studied
cardinals. This is the purpose of this paper. We do that for a variety of topo-
logical covering properties, but some restriction is necessary. We concentrate
on the case that X is separable, metrizable, and zero-dimensional. This restric-
tion allows for a convenient application of the combinatorial method. Having
established the results for this case, one can seek for generalizations (which are
sometimes straightforward). Each topological space as above is homeomorphic
to a set of irrational numbers. Thus, it suffices to study addR\Q(I), and we can
therefore omit the subscript.

1.1. Covering properties

Fix a space X. An open cover U of X is large if each member of X is
contained in infinitely many members of U . U is an ω-cover if X /∈ U and for
each finite F ⊆ X, there is U ∈ U such that F ⊆ U . U is a γ-cover of X if it
is infinite and for each x ∈ X, x is a member of all but finitely many members
of U .

Let O, Λ, Ω, and Γ denote the collections of all countable open covers, large
covers, ω-covers, and γ-covers of X, respectively. Similarly, let B, BΛ, BΩ, and
BΓ denote the corresponding countable Borel covers of X.1 Let A and B be
any of these classes. We consider the following three properties which X may
or may not have.

1By open cover (respectively, Borel cover) we mean a cover whose elements are open
(respectively, Borel).
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S1(A ,B): For each sequence {Un}n∈N of members of A , there exist mem-
bers Un ∈ Un, n ∈ N, such that {Un : n ∈ N} ∈ B.

Sfin(A ,B): For each sequence {Un}n∈N of members of A , there exist finite
subsets Fn ⊆ Un, n ∈ N, such that

⋃
n∈N Fn ∈ B.

Ufin(A ,B): For each sequence {Un}n∈N of members of A which do not
contain a finite subcover, there exist finite subsets Fn ⊆ Un,
n ∈ N, such that {∪Fn : n ∈ N} ∈ B.

Each of these properties, where A ,B range over O,Λ,Ω,Γ or over B, BΛ,
BΩ, BΓ, is either void or equivalent to one in Figure 1 (where an arrow denotes
implication). For these properties, O can be replaced anywhere by Λ and B by
BΛ without changing the property [24, 17, 27].

The critical cardinality of a property I (relative to a space X) is

nonX(I) = min
{
|Y | : Y ⊆ X and Y /∈ I(X)

}
.

The covering number of I (relative to X) is

covX(I) = min
{
|F| : F ⊆ I(X) and ∪ F = X

}
.

Again, since we can work in R \ Q, we remove the subscript X from both
notations. Below each property in Figure 1 appears its critical cardinality
(these cardinals are well studied, see [8]. By M we always denote the ideal of
meager, i.e. first category, sets of real numbers).

Sfin(O,O), Ufin(O,Γ), S1(O,O) are the classical properties of Menger,
Hurewicz, and Rothberger (traditionally called C ′′), respectively. S1(Ω,Γ) is
the Gerlits-Nagy γ-property. Additional properties in the diagram were studied
by Arkhangel’skǐi, Sakai, and others. Some of the properties are relatively new.

We also consider the following type of properties.

Split(A ,B): Every cover U ∈ A can be split into two disjoint subcovers V
and W, each containing some element of B as a subset.

Here too, letting A ,B range over Λ, Ω, Γ or BΛ, BΩ, BΓ, we get that some of
the properties are trivial and several equivalences hold among the remaining
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Figure 1 – The extended Scheepers Diagram

ones. The surviving properties appear in the following diagram (where again
the critical cardinality appears below each property).
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u
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No implication can be added to this diagram [31]. There are connections be-
tween the first and the second diagram, e.g., Split(Ω,Γ) = S1(Ω,Γ) [31], and
both Ufin(O,Γ) and S1(O,O) imply Split(Λ,Λ). Similarly, S1(Ω,Ω) implies
Split(Ω,Ω) [24]. Similar assertions hold in the Borel case [31].
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The situation becomes even more interesting when τ -covers are incorporated
into the framework. We will introduce this notion later.

2. Positive results

2.1. On the Scheepers diagram

The following proposition is folklore.

Proposition 2.1. Each property of the form Π(A ,O) (or Π(A ,B)), Π ∈
{S1,Sfin,Ufin}, is σ-additive.

Proof – Let A1, A2, . . . be a partition of N into disjoint infinite sets. As-
sume that X1, X2 . . . satisfy Π(A ,O). Assume that U1,U2, . . . ∈ A for X =⋃

k∈N Xk. For each k, use this property of Xk to extract from the sequence
{Un}n∈Ak

the appropriate cover Vk of Xk. Then
⋃

k∈N Vk is the desired cover
of X.

The proof for Π(A ,B) is identical.

Proposition 2.2. If I and J are collections of sets of reals such that:

X ∈ I if, and only if, for each Borel function Ψ : X → R \ Q
Ψ[X] ∈ J .

Then add(J ) ≤ add(I).

Proof – Assume that Xα, α < κ, are members of I such that X =⋃
α<κ Xα /∈ I. Take a Borel function Ψ : X → R \ Q such that Ψ[X] /∈ J .

Then Ψ[X] =
⋃

α<κ Ψ[Xα].

It is easy to see that for all x, y ∈ {Γ,Ω,O}, X satisfies Π(Bx,By) if, and
only if, every Borel image of X satisfies Π(x, y) (here BO := B) [27, 30]. Using
this and the facts that for each property I, add(I) is a regular cardinal satisfying
add(I) ≤ cf(non(I)) and add(I) ≤ cov(I), we have the following.

Corollary 2.1.

1. add(S1(O,O)) ≤ add(S1(B,B)) ≤ cf(cov(M));
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2. max{add(S1(Γ,Γ)), add(Ufin(O,Γ))} ≤ add(S1(BΓ,BΓ)) ≤ b;

3. max{add(S1(Γ,O)), add(Sfin(O,O))} ≤ add(Sfin(B,B)) ≤ cf(d);

4. add(S1(Ω,Γ)) ≤ add(S1(BΩ,BΓ)) ≤ p;

5. max{add(S1(Γ,Ω)), add(Sfin(Γ,Ω)), add(Ufin(O,Ω))} ≤

≤ add(S1(BΓ,BΩ)) ≤ cf(d).

We now look for lower bounds on the additivity numbers. Define a partial
order ≤∗ on NN by:

f ≤∗ g if f(n) ≤ g(n) for all but finitely many n.

A subset of NN is called bounded if it is bounded with respect to ≤∗. A subset
D of NN is dominating if for each g ∈ NN there exists f ∈ D such that g ≤∗ f .

View N as a discrete topological space. The Baire space is the product space
NN. Hurewicz ([16], see also Recław [23]) proved that a set of reals X satisfies
Sfin(O,O) if, and only if, every continuous image of X in NN is not dominating.
Likewise, he showed that X satisfies Ufin(O,Γ) if, and only if, every continuous
image of X in NN is bounded. Replacing “continuous image” by “Borel image”
we get characterizations of Sfin(B,B) and S1(BΓ,BΓ), respectively [27]. It is
easy to see that a union of less than b many bounded subsets of NN is bounded,
and a union of less than b many subsets of NN which are not dominating is not
dominating.

Corollary 2.2.

1. add(Ufin(O,Γ)) = add(S1(BΓ,BΓ)) = b;

2. b ≤ add(Sfin(O,O)) ≤ add(Sfin(B,B)) ≤ cf(d).

Consider an unbounded subset B of NN such that |B| = b, and define, for
each f ∈ B, Yf = {g ∈ NN : f 6≤∗ g}. Then the sets Yf are not dominating,
but

⋃
f∈B Yf = NN: For each g ∈ NN there exists f ∈ B such that f 6≤∗ g, that

is, g ∈ Yf . Thus the second assertion in Corollary 2.2 cannot be strengthened
in a trivial manner. We must work harder for that.
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Let [N]ℵ0 denote the collection of all infinite sets of natural numbers. For
a, b ∈ [N]ℵ0 , a is an almost subset of b, a ⊆∗ b, if a \ b is finite. A family
G ⊆ [N]ℵ0 is groupwise dense if it contains all almost subsets of its elements,
and for each partition of N into finite intervals (i.e., sets of the form [m, k) =
{m,m+1, . . . , k−1}), there is an infinite set of intervals in this partition whose
union is a member of G.

[N]ℵ0 is a topological subspace of P (N), where the topology on P (N) is
defined by identifying it with the Cantor space {0, 1}N. For each finite F ⊆ N
and each n ∈ N, define

OF,n =
{
a ∈ P (N) : a ∩ [0, n) = F

}
.

The sets OF,n form a clopen basis for the topology on P (N).
For a ∈ [N]ℵ0 , define an element a+ of NN by

a+(n) = min{k ∈ a : n < k}

for each n.
The following theorem is due to Tsaban and Zdomskyy [33].

Theorem 2.1. Assune that X satisfies Sfin(O,O). Then for each continuous
image Y of X in NN, the family

G =
{
a ∈ [N]ℵ0 : (∀f ∈ Y ) a+ 6≤∗ f

}
is groupwise dense.

Proof – Assume that Y is a continuous image of X in NN. Then Y satisfies
Sfin(O,O).

The following is folklore.

Lemma 2.1. Assume that X satisfies Sfin(O,O) and K is σ-compact. Then
X ×K satisfies Sfin(O,O).

Proof – This proof is as in [18]. As Sfin(O,O) is σ-additive, we may
assume that K is compact. Assume that U1,U2, . . . , are countable open covers
of X ×K. For each n, enumerate Un = {Un

m : m ∈ N}. For each n and m set

V n
m =

x ∈ X : {x} ×K ⊆
⋃

k≤m

Un
k

 .
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Then Vn = {V n
m : m ∈ N} is an open cover of X. As X satisfies Sfin(O,O), we

can choose for each n an mn such that X =
⋃

n

⋃
k≤mn

V n
k . By the definition

of the sets V n
k , X ×K ⊆

⋃
n

⋃
k≤mn

Un
k .

By Lemma 2.1, P (N)× Y satisfies Sfin(O,O).

Lemma 2.2. The set

C =
{
(a, f) ∈ [N]ℵ0 × NN : a+ ≤∗ f

}
is an Fσ subset of P (N)× NN.

Proof – Note that

C =
⋃

m∈N

⋂
n≥m

{(a, f) ∈ P (N)× NN : (n, f(n)] ∩ a 6= ∅}.

(The nonempty intersection for infinitely many n allows the replacement of
[N]ℵ0 by P (N).)

For fixed m and n, the set {(a, f) ∈ P (N)×NN : (n, f(n)]∩a 6= ∅} is clopen:
Indeed, if limk(ak, fk) = (a, f) then for all large enough k, fk(n) = f(n), and
therefore for all larger enough k, (n, fk(n)] ∩ ak = (n, f(n)] ∩ a. Thus, (ak, fk)
is in the set if, and only if, (a, f) is in the set.

As Sfin(O,O) is σ-additive and hereditary for closed subsets, we have by
Lemma 2.2 that C ∩ (P (N) × Y ) satisfies Sfin(O,O), and therefore so does
its projection Z on the first coordinate. By the definition of Z, G = Zc,
the complement of Z in [N]ℵ0 . Note that G contains all almost subsets of its
elements.

For a ∈ [N]ℵ0 and an increasing h ∈ NN, define

a/h = {n : a ∩ [h(n), h(n+1)) 6= ∅}.

For S ⊆ [N]ℵ0 , define S/h = {a/h : a ∈ S}.

Lemma 2.3. Assume that G ⊆ [N]ℵ0 contains all almost subsets of its ele-
ments. Then: G is groupwise dense if, and only if, for each increasing h ∈ NN,
Gc/h 6= [N]ℵ0 .
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Proof – For each increasing h ∈ NN and each a ∈ [N]ℵ0 ,⋃
n∈a

[h(n), h(n+1)) /∈ G ⇔
⋃
n∈a

[h(n), h(n+1)) ∈ Gc ⇔ a ∈ Gc/h.

The lemma follows directly from that.

Assume that G is not groupwise dense. By Lemma 2.3, there is an increasing
h ∈ NN such that Z/h = Gc/h = [N]ℵ0 . The natural mapping Ψ : Z → Z/h

defined by Ψ(a) = a/h is a continuous surjection. It follows that [N]ℵ0 satisfies
Sfin(O,O). But this is absurd: The image of [N]ℵ0 in NN, under the continuous
mapping assigning to each a ∈ [N]ℵ0 its increasing enumeration, is a dominating
subset of NN. Thus, [N]ℵ0 does not satisfy Sfin(O,O) – a contradiction.

We obtain the promised improvement of Corollary 2.2 – 2 , originally proved
by Zdomskyy [35].

Corollary 2.3. max{b, g} ≤ add(Sfin(O,O)) ≤ add(Sfin(B,B)) ≤ cf(d).

Proof – By Corollary 2.2, we need only show that g ≤ add(Sfin(O,O)).
Assume that κ < g and for each α < κ, Xα satisfies Sfin(O,O), and

that X =
⋃

α<κ Xα. By the Hurewicz Theorem, it suffices to show that no
continuous image of X in NN is dominating. Indeed, assume that Ψ : X → NN

is continuous. By Theorem 2.1, for each α the family

Gα =
{
a ∈ [N]ℵ0 : (∀f ∈ Ψ[Xα]) a+ 6≤∗ f

}
is groupwise dense. Thus, there exists a ∈

⋂
α<κ Gα. Then a+ witnesses that

Ψ[X] is not dominating.

Problem 2.1. Is it consistent that max{b, g} < add(Sfin(O,O))?

The methods used to obtain the last lower bound are similar to earlier
methods of Scheepers used to bound add(S1(Γ,Γ)) from below. A family D ⊆
[N]ℵ0 is open if it is closed under almost subsets. It is dense if for each a ∈ [N]ℵ0

there is d ∈ D such that d ⊆∗ a. The density number h is the minimal
cardinality of a collection of open dense families in [N]ℵ0 whose intersection is
empty. Identify [N]ℵ0 with the increasing elements of NN by taking increasing
enumerations.

The following theorem is due to Scheepers [25].



Additivity Numbers of Covering Properties 255

Theorem 2.2. Assume that X satisfies S1(Γ,Γ), and U1,U2, . . . are open γ-
covers of X. For each n, enumerate Un = {Un

m : m ∈ N}. Then the family of
all a ∈ [N]ℵ0 such that {Un

a(n) : n ∈ N} is a γ-cover of X is open dense.

Proof – By standard arguments, we may assume that the given γ-covers
are pairwise disjoint (use the fact that any countable sequence of infinite sets
can be refined to a countable sequence of pairwise disjoint infinite sets.)

For each n and m, define

V n
m = U1

m ∩ U2
m ∩ · · · ∩ Un

m.

Fix any a ∈ [N]ℵ0 . For each n, define

Vn = {V n
a(m) : m ≥ n}.

Then Vn ∈ Γ. By S1(Γ,Γ), there is f ∈ NN such that f(n) ≥ n for all n, and
{V n

a(f(n)) : n ∈ N} ∈ Γ. The image of f is infinite. Let f̃ be its increasing
enumeration. By the definition of the sets V n

m, {V n
a(f̃(n))

: n ∈ N} ∈ Γ as

well. Let d ∈ [N]ℵ0 be such that d(n) = a(f̃(n)) for all n. Then d ⊆ a, and
as {V n

d(n) : n ∈ N} ∈ Γ, we have again by the definition of the sets V n
m, that

{V n
b(n) : n ∈ N} ∈ Γ for all b ⊆ d. In particular, {Un

b(n) : n ∈ N} ∈ Γ for all
b ⊆ d.

We obtain the following (Scheepers [25]).

Corollary 2.4. h ≤ add(S1(Γ,Γ)) ≤ add(S1(BΓ,BΓ)) ≤ b.

Proof – Fix κ < h and assume that Xα, α < κ, all satisfy S1(Γ,Γ). Let
X =

⋃
α<κ Xα, and assume that for each n, Un = {Un

m : m ∈ N} is an open
γ-cover of X.

By Theorem 2.2, for each α the family

Dα = {a ∈ [N]ℵ0 : {Un
a(n) : n ∈ N} is a γ-cover of X}

is open dense. Take a ∈
⋂

α<κDα. Then {Un
a(n) : n ∈ N} is a γ-cover of X.

Problem 2.2. Is it consistent that h < add(S1(Γ,Γ))?

Problem 2.3. Is it consistent that add(S1(Γ,Γ)) < b?
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We conclude the section with the following beautiful result. Let N denote
the collection of Lebesgue null sets of reals.

The following theorem is due to Carlson [2].

Theorem 2.3. add(N ) ≤ add(S1(O,O)) ≤ add(S1(B,B)) ≤ cf(cov(M)).

Proof – The new ingredient is the first inequality. We use the following
result of Bartoszyński [3].

Lemma 2.4. add(N ) is the smallest cardinality of a family F ⊆ NN such
that there is no function S : N → [N]<ℵ0 with |S(n)| ≤ n for all n, such that
(∀f ∈ F )(∀∞n) f(n) ∈ S(n).

Assume that κ < add(N ) and Xα, α < κ, satisfy S1(O,O). Let X =⋃
α<κ Xα. Assume that Un = {Un

m : m ∈ N}, n ∈ N, are open covers of X. Let
rn = 1 + 2 + · · ·+ (n− 1). For each n, let

Ũn =
{
Ũn

s : s : [rn, rn+1) → N
}
,

where Ũn
s =

⋂rn+1
k=rn

Uk
s(k). Ũn is an open cover of X. For each α < κ, as Xα

satisfies S1(O,O), there is fα such that {Ũn
fα(n) : n ∈ N} is a cover of Xα. By

Lemma 2.4, there is S : N → [N]<ℵ0 with |S(n)| ≤ n for all n, such that

(∀α < κ)(∀∞n) fα(n) ∈ S(n).

For each n, S(n) contains at most n sequences of length n. Let g be a function
which agrees at least once on the n-element interval [rn, rn+1) with each of
these sequences. Then {Un

f(n) : n ∈ N} is a cover of X.

2.2. On splitting properties

The following theorem appears in [31].

Theorem 2.4. Split(BΩ,BΛ) and Split(Ω,Λ) are σ-additive.

Proof – We will prove the open case. The Borel case is similar.

Lemma 2.5. Assume that U is a countable open ω-cover of Y and that X ⊆ Y

satisfies Split(Ω,Λ). Then U can be partitioned into two pieces V and W such
that that W is an ω-cover of Y and V is a large cover of X.
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Proof – First assume that there does not exist U ∈ U with X ⊆ U . Then
U in an ω-cover of X. By the splitting property we can divide it into two pieces
each a large cover of X. Since U is an ω-cover of Y , one of the pieces is an
ω-cover of Y , and the lemma is proved. If there are only finitely many U ∈ U
with X ⊆ U , then Ũ = U \ {U ∈ U : X ⊆ U} is still an ω-cover of Y and we
can apply to it the above argument.

Thus, assume that there are infinitely many U ∈ U with X ⊆ U . Then take
a partition of U into two pieces such that each piece contains infinitely many
sets U with X ⊆ U . One of the pieces must be an ω-cover of Y .

Assume that Y =
⋃

n∈N Xn where each Xn satisfies Split(Ω,Λ), and let U0 be
an open ω-cover of Y . Given Un an open ω-cover of Y , apply the lemma twice
to get a partition Un = V0

n ∪ V1
n ∪ Un+1 such that Un+1 is an open ω-cover of

Y and for each i = 0, 1, each element of Xn is contained in infinitely many
V ∈ Vi

n. Then the families Vi =
⋃

n∈N Vi
n, i = 0, 1, are disjoint large covers of

Y which are subcovers of U0.

Proposition 2.2 implies the following.

Corollary 2.5.

1. add(Split(Λ,Λ)) ≤ add(Split(BΛ,BΛ)) ≤ cf(r);

2. add(Split(Ω,Λ)) ≤ add(Split(BΩ,BΛ)) ≤ cf(u);

3. add(Split(Ω,Ω)) ≤ add(Split(BΩ,BΩ)) ≤ cf(u).

However, Split(Ω,Ω) and Split(BΩ,BΩ) are not provably additive, as we shall
see in Section 3.

Concerning σ-additivity (or even just additivity, i.e. ℵ0-additivity), exactly
one question remains open.

Problem 2.4. Is Split(Λ,Λ) provably additive? What about the Borel case?
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3. Consistently negative results

Showing that a certain class is not additive is apparently harder: All known
results require axioms beyond ZFC. This is often necessary, as will be seen in
Section 4.

3.1. On the Scheepers diagram

For a sequence {Xn}n∈N of subsets of X, define lim inf Xn =
⋃

m

⋂
n≥m Xn.

For a family U of subsets of X, L(U) denotes its closure under the operation
lim inf. A set of reals X has the property (δ) if for each open ω-cover U of X,
X ∈ L(U). The property (δ) was introduced by Gerlits and Nagy in [15], where
they showed that S1(Ω,Γ) implies (δ). The converse implication is still open.
It seems that the fact that (δ) is not provably additive was not noticed before,
but if follows from a combination of results from [12], [14], as we now show.

Theorem 3.1. Assume the Continuum Hypothesis. Then no class between
S1(BΩ,BΓ) and S1(Ω,Γ) or even (δ) (inclusive) is additive.

Proof – By a theorem of Brendle [12], assuming CH there exists a set of
reals X of size continuum such that all subsets of X satisfy S1(BΩ,BΓ).

As S1(BΩ,BΓ) is closed under taking Borel (continuous is enough) images,
we may assume that X ⊆ (0, 1). For Y ⊆ (0, 1), write Y + 1 = {y + 1 : y ∈ Y }
for the translation of Y by 1. The following is essentially proved in Theorem 5
of Galvin and Miller’s paper [14].

Lemma 3.1. If Y ⊆ X ⊆ (0, 1) and Z = (X \ Y ) ∪ (Y + 1) has property (δ),
then Y is a Borel subset of X.

Proof – Let

U =
{
U ∪ (V + 1) : open U, V ⊆ (0, 1), U ∩ V = ∅

}
.

U is an open ω-cover of Z. If Un ∩ Vn = ∅ for all n, then the sets U =⋃
m

⋂
n≥m Un and V =

⋃
m

⋂
n≥m Vn are disjoint, and

⋃
m

⋂
n≥m Un∪(Vn+1) =

U ∪ (V + 1). It follows by transfinite induction, each element in L(U) has the
form U ∪(V +1) where U, V are disjoint Borel subsets of Z. Thus, if Z ∈ L(U),
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there are such U and V with Z = U ∪ (V + 1). It follows that Y = V ∩X is a
Borel subset of X.

As |X| = c and only c many out of the 2c many subsets of X are Borel, there
exists a subset Y of X which is not Borel. It follows that (X \ Y ) ∪ (Y + 1)
does not have the property (δ) (and, in particular, does not have the property
S1(Ω,Γ)). But by the choice of X, both X \Y and Y (and therefore also Y +1)
satisfy S1(BΩ,BΓ).

Except for the (δ) part, Theorem 3.1 was proved in [29]. The extension to
(δ) was noticed by Miller (personal communication).

We next show that if cov(M) = c (in particular, assuming the Continuum
Hypothesis), then no class between S1(BΩ,BΩ) and Ufin(O,Ω) (inclusive) is
additive.

For clarity of exposition, we will first treat the open case, and then explain
how to modify the constructions in order to cover the Borel case.

For convenience, we will work in ZN (with pointwise addition), which is
homeomorphic to R \Q. The notions that we will use are topological, thus the
following constructions can be translated to constructions in R \Q.

A collection J of sets of reals is translation invariant if for each real x and
each X ∈ J , x + X ∈ J . J is negation invariant if for each X ∈ J , −X ∈ J
as well. For example, M and N are negation and translation invariant (and
there are many more examples).

The following lemma is folklore.

Lemma 3.2. If J is negation and translation invariant and if X is a union
of less than cov(J ) many elements of J , then for each x ∈ ZN there exist
y, z ∈ ZN \X such that y + z = x.

Proof – (x−X) ∪X is a union of less than cov(J ) many elements of J .
Thus we can choose an element y ∈ ZN\((x−X)∪X) = (x−ZN\X)∩(ZN\X);
therefore there exists z ∈ ZN \X such that x− z = y, that is, x = y + z.

A set of reals L is κ-Luzin if |L| ≥ κ and for each meager set M , |L∩M | < κ.
The following result was obtained independently by many authors: A com-

ment on the top of Page 205 of [17] (without proof); Theorem 13 of [26] (under
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the Continuum Hypothesis); Section 3 of [18]; Theorem 4 of [4]; Theorem 2 of
[13] (under the Continuum Hypothesis).

Proposition 3.1. Assume that cov(M) = c. Then there exist c-Luzin subsets
L0 and L1 of ZN satisfying S1(Ω,Ω), such that L0 + L1 = ZN.

Proof – Assume that cov(M) = c. Let {yα : α < c} enumerate ZN; let
{Mα : α < c} enumerate all Fσ meager sets in ZN (observe that this family is
cofinal in M), and let {{Uα

n }n∈N : α < c} enumerate all countable sequences of
countable families of open sets.

Fix a countable dense subset Q ⊆ ZN. We construct L0 = {x0
β : β < c} ∪Q

and L1 = {x1
β : β < c}∪Q by induction on α < c. During the construction, we

make an inductive hypothesis and verify that it remains true after making the
inductive step.

At stage α ≥ 0 set

X0
α = {x0

β : β < α} ∪Q

X1
α = {x1

β : β < α} ∪Q

and consider the sequence {Uα
n }n∈N. For each i < 2, do the following. Call α

i-good if for each n Uα
n is an ω-cover of Xi

α. Assume that α is i-good. Since
cov(M) = non(S1(Ω,Ω)) [17] and we assume that cov(M) = c, there exist
elements Uα,i

n ∈ Uα
n such that {Uα,i

n }n∈N is an ω-cover of Xi
α. We make the

inductive hypothesis that for each i-good β < α, {Uβ,i
n }n∈N is an ω-cover of

Xi
α. For each finite F ⊆ Xi

α, and each i-good β ≤ α, define

GF,β
i =

⋃
{Uβ,i

n : n ∈ N, F ⊆ Uβ,i
n }.

Then Q ⊆ GF,β
i and thus GF,β

i is open and dense.
Set

Yα =
⋃

β<α

Mβ ∪
⋃{

ZN \GF,β
i : i < 2, β ≤ α i-good, F ⊆ Xi

α finite
}

.

Then Yα is a union of less than cov(M) many meager sets, thus by Lemma 3.2
we can pick x0

α, x1
α ∈ ZN \Yα such that x0

α +x1
α = yα. To see that the inductive
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hypothesis is preserved, observe that for each finite F ⊆ Xi
α and i-good β ≤ α,

xi
α ∈ GF,β

i and therefore F ∪ {xi
α} ⊆ Uβ,i

n for some n.
Clearly L0 and L1 are c-Luzin sets, and L0 + L1 = ZN. It remains to show

that L0 and L1 satisfy S1(Ω,Ω).
Fix i < 2. Consider, for each β < c, the sequence {Uβ

n}n∈N. If all members
of that sequence are ω-covers of Li, then in particular they ω-cover Xi

β (that
is, β is i-good). By the inductive hypothesis, {Uβ,i

n : n ∈ N} is an ω-cover of
Xi

α for each α < c, and therefore an ω-cover of Li.

For a finite subset F of NN, define max(F ) ∈ NN to be the function g such
that g(n) = max{f(n) : f ∈ F} for each n. A subset Y of NN, is finitely-
dominating if the collection

maxfin(Y ) :=
{

max(F ) : F is a finite subset of Y
}

is dominating.
The following theorem was proved independently by Tsaban [30] and by

Eisworth and Just [13].

Theorem 3.2. For a set of reals X, the following are equivalent:

1. X satisfies Ufin(O,Ω);

2. No continuous image of X in NN is finitely-dominating.

A subset Y of NN is k-dominating if for each g ∈ NN there exists a k-element
subset F of Y such that g ≤∗ max(F ) [9]. Clearly each k-dominating subset of
NN is also finitely dominating.

Proposition 3.1 and Theorem 3.2 imply that no property between S1(Ω,Ω)
and Ufin(O,Ω) (inclusive) is provably additive. Surprisingly, this was only
observed in Bartoszyński-Shelah-Tsaban [4].2

Corollary 3.1. Assume that cov(M) = c. Then there exist c-Luzin subsets
L0 and L1 of ZN satisfying S1(Ω,Ω), such that the c-Luzin set L0 ∪ L1 is 2-
dominating. In particular, L0 ∪ L1 does not satisfy Ufin(O,Ω).

2Indeed, in [26] Scheepers points out that Proposition 3.1 implies that no class be-
tween S1(Ω, Ω) and Sfin(Ω, Ω) is provably additive. The missing ingredient to upgrade
to Ufin(O, Ω) was Theorem 3.2.
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Proof – Let L0, L1 be as in Proposition 3.1. As L0 + L1 = ZN and in
general (f + g)/2 ≤ max{f, g} for all f, g ∈ ZN, we have that L0 ∪ L1 is 2-
dominating. By Theorem 3.2, the continuous image {|f | : f ∈ L0 ∪ L1} of
L0 ∪ L1 does not satisfy Ufin(O,Ω).

We now treat the Borel case. The following theorem is due to Bartoszyński,
Shelah, and Tsaban [4].

Theorem 3.3. Assume that cov(M) = c. Then there exist c-Luzin subsets
L1 and L2 of ZN satisfying S1(BΩ,BΩ), such that for each g ∈ ZN there are
f0 ∈ L0, f1 ∈ L1 satisfying f1(n) + f2(n) = g(n) for all but finitely many n.

In particular, the c-Luzin set L0 ∪ L1 is 2-dominating, and consequently
does not satisfy Ufin(O,Ω).

Proof – We follow the proof steps of Proposition 3.1. The major problem
is that here the sets GF,β

i need not be comeager. In order to overcome this, we
will consider only ω-covers where these sets are guaranteed to be comeager, and
make sure that it is enough to restrict attention to this special sort of ω-covers.
The following definition is essentially due to [27], but with a small twist that
makes it work.

Definition 3.1. A cover U of X is ω-fat if for each finite F ⊆ X and each
finite family F of nonempty open sets, there exists U ∈ U such that F ⊆ U and
for each O ∈ F , U ∩ O is not meager. (Thus each ω-fat cover is an ω-cover.)
Let Bfat

Ω denote the collection of countable ω-fat Borel covers of X.

Lemma 3.3. Assume that U is a countable collection of Borel sets of reals.
Then ∪U is comeager if, and only if, for each nonempty basic open set O there
exists U ∈ U such that U ∩O is not meager.

Proof – (⇒) Assume that O is a nonempty basic open set. Then ∪U∩O =⋃
{U ∩O : U ∈ U} is a countable union which is not meager. Thus there exists

U ∈ U such that U ∩O is not meager.
(⇐) Set B = ∪U . As B is Borel, it has the Baire property. Let O be

an open set and M be a meager set such that B = (O \M) ∪ (M \ O). For
each basic open set G, B ∩G is not meager, thus O ∩G is not meager as well.
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Thus, O is open dense. As O \M ⊆ B, we have that R \ B ⊆ (R \ O) ∪M is
meager.

Corollary 3.2. Assume that U is an ω-fat cover of some set X. Then:

1. For each finite F ⊆ X and finite family F of nonempty basic open sets,
the set ⋃

{U ∈ U : F ⊆ U and for each O ∈ F , U ∩O /∈M}

is comeager;

2. For each element x in the intersection of all sets of this form, U is an
ω-fat cover of X ∪ {x}.

Proof – Write

VF,F =
{
U ∈ U : F ⊆ U and for each O ∈ F , U ∩O /∈M

}
.

1. Assume that G is a nonempty open set. As U is ω-fat and the family
F ∪ {G} is finite, there exists U ∈ VF,F such that U ∩ G is not meager. By
Lemma 3.3, ∪VF,F is comeager.

2. Assume that F is a finite subset of X ∪ {x} and F is a finite family of
nonempty basic open sets. As x ∈ ∪VF\{x},F , there exists U ∈ U such that
x ∈ U , F \{x} ⊆ U (thus F ⊆ U), and for each O ∈ F , U∩O is not meager.

Lemma 3.4. If |X| < cov(M), then X satisfies S1(Bfat
Ω ,Bfat

Ω ).

Proof – Assume that |X| < cov(M), and let {Un}n∈N be a sequence of
countable Borel ω-fat covers of X. Enumerate each cover Un by {Un

k }k∈N. Let
{An}n∈N be a partition of N into infinitely many infinite sets. For each m, let
am ∈ NN be an increasing enumeration of Am. Let {Fn}n∈N be an enumeration
of all finite families of nonempty basic open sets.

For each finite subset F of X and each m define a function Ψm
F ∈ NN by

Ψm
F (n) = min

{
k : F ⊆ U

am(n)
k and for each O ∈ Fm, U

am(n)
k ∩O /∈M

}
Since there are less than cov(M) many functions Ψm

F , there exists by [1] a
function f ∈ NN such that for each m and F , Ψm

F (n) = f(n) for infinitely many
n. Consequently, V = {Uam(n)

f(n) : m,n ∈ N} is an ω-fat cover of X.
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The following lemma justifies our focusing on ω-fat covers.

Lemma 3.5. Assume that L is a set of reals such that for each nonempty basic
open set O, L ∩ O is not meager. Then every countable Borel ω-cover U of L

is an ω-fat cover of L.

Proof – Assume that U is a countable collection of Borel sets which is not
an ω-fat cover of L. Then there exist a finite set F ⊆ L and nonempty open
sets O1, . . . , Ok such that for each U ∈ U containing F , U ∩ Oi is meager for
some i. For each i = 1, . . . , k let

Mi =
⋃
{U ∈ U : F ⊆ U and U ∩Oi ∈M} .

Then Mi ∩ Oi is meager, thus there exists xi ∈ (L ∩ Oi) \ Mi. Then F ∪
{x1, . . . , xk} is not covered by any U ∈ U .

Let ZN = {yα : α < c}, {Mα : α < c} be all Fσ meager subsets of ZN, and
{{Uα

n }n∈N : α < c} be all sequences of countable families of Borel sets. Let
{Ok : k ∈ N} and {Fm : m ∈ N} be all nonempty basic open sets and all finite
families of nonempty basic open sets, respectively, in ZN.

We construct Li = {xi
β : β < c}, i = 0, 1, by induction on α < c as follows.

At stage α ≥ 0 set Xi
α = {xi

β : β < α} and consider the sequence {Uα
n }n∈N.

Say that α is i-good if for each n Uα
n is an ω-fat cover of Xi

α. In this case,
by Lemma 3.4 there exist elements Uα,i

n ∈ Uα
n such that {Uα,i

n }n∈N is an ω-fat
cover of Xi

α. We make the inductive hypothesis that for each i-good β < α,
{Uβ,i

n }n∈N is an ω-fat cover of Xi
α. For each finite F ⊆ Xi

α, i-good β ≤ α, and
m define

GF,β,m
i =

⋃{
Uβ,i

n : F ⊆ Uβ,i
n and for each O ∈ Fm, Uβ,i

n ∩O /∈M
}

.

By Corollary 3.2 – 1, GF,β,m
i is comeager. Set

Yα =
⋃

β<α

Mβ ∪
⋃{

ZN \GF,β,m
i :

i < 2, β ≤ α i-good,

m ∈ N, F ⊆ Xi
α Finite

}
.

and Y ∗
α = {x ∈ ZN : (∃y ∈ Yα) x =∗ y} (where x =∗ y means that x(n) = y(n)

for all but finitely many n.) Then Y ∗
α is a union of less than cov(M) many
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meager sets. Use Lemma 3.2 to pick x0
α, x1

α ∈ ZN \ Y ∗
α such that x0

α + x1
α = yα.

Let k = α mod ω, and change a finite initial segment of x0
α and x1

α so that they
both become members of Ok. Then x0

α, x1
α ∈ Ok \ Yα, and x0

α + x1
α =∗ yα. By

Corollary 3.2 – 2 , the inductive hypothesis is preserved.
Thus each Li satisfies S1(Bfat

Ω ,Bfat
Ω ) and its intersection with each nonempty

basic open set has size c. By Lemma 3.5, Bfat
Ω = BΩ for Li. Finally, L0 + L1 is

dominating, so L0 ∪ L1 is 2-dominating.

Thus, no class between S1(BΩ,BΩ) and Ufin(O,Ω) (inclusive) is provably
additive.

Remark 3.1 - As non(Ufin(O,Ω)) = d, a natural question is whether the
method of Proposition 3.1 can be generalized to work for Ufin(O,Ω) under the
weaker assumption d = c. By the forthcoming Theorem 4.2, such a trial is
doomed to fail, since u < g implies that g = d = c.

3.2. On splitting properties

It is well known that nonprincipal ultrafilters on N do not have the Baire
property, and in particular are nonmeager [3]. We can prove more than that.

The following lemma is due to Shelah [31].

Lemma 3.6. Assume that U is a nonprincipal ultrafilter on N and that M ⊆
[N]ℵ0 is meager. Then U \M is a subbase for U . In fact, for each a ∈ U there
exist a0, a1 ∈ U \M such that a0 ∩ a1 ⊆ a.

Proof – Recall that [N]ℵ0 is a subspace of P (N) whose topology is defined
by its identification with {0, 1}N. It is well known [3, 8] that for each meager
subset M of {0, 1}N there exist x ∈ {0, 1}N and an increasing h ∈ NN such that

M ⊆
{
y ∈ {0, 1}N : (∀∞n) y � [h(n), h(n+1)) 6= x � [h(n), h(n+1))

}
.

(The set on the right hand side is also meager.) Translating this to the language
of [N]ℵ0 , we get that for each n there exist disjoint sets In

0 and In
1 satisfying

In
0 ∪ In

1 = [h(n), h(n+1)), such that

(3.1) M ⊆
{
y ∈ [N]ℵ0 : (∀∞n) y ∩ In

0 6= ∅ or In
1 6⊆ y

}
.
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Assume that the sets In
0 , In

1 , n ∈ N, are chosen as in (3.1). Let a be an
infinite co-infinite subset of N. Then either x =

⋃
n∈a [h(n), h(n+1)) /∈ U ,

or else x =
⋃

n∈N\a [h(n), h(n+1)) /∈ U . We may assume that the former
case holds. Split a into two disjoint infinite sets a1 and a2. Then xi =⋃

n∈ai
[h(n), h(n+1)) /∈ U (i = 0, 1).

Assume that b ∈ U . Then b̃ = b \ x = b ∩ (N \ x) ∈ U . Define sets
y1, y2 ∈ U \M as follows.

y1 = b̃ ∪
⋃

n∈a2

In
1

y2 = b̃ ∪
⋃

n∈a1

In
1

By (3.1), y1, y2 /∈ M . As y1, y2 ⊇ b̃, y1, y2 ∈ U . Now, y1 ∩ y2 = b̃ ⊆ b.

The following theorem is due to Tsaban [31].

Theorem 3.4. Assume that add(M) = c. Then there exist two c-Luzin sets
L0 and L1 such that:

1. L0, L1 satisfy S1(BΩ,BΩ);

2. L = L0 ∪ L1 satisfies Split(BΛ,BΛ); and

3. L = L0 ∪ L1 does not satisfy Split(Ω,Ω).

Proof – We follow the footsteps of the proof of Theorem 3.3. Let U =
{aα : α < c} be a nonprincipal ultrafilter on N. Let {Mα : α < c} enumerate
all Fσ meager sets in [N]ℵ0 , and {{Uα

n }n∈N : α < c} enumerate all countable
sequences of countable families of Borel sets in [N]ℵ0 . Let {Oi : i ∈ N} and
{Fi : i ∈ N} enumerate all nonempty basic open sets and finite families of
nonempty basic open sets, respectively, in [N]ℵ0 .

We construct Li = {ai
β : β < c}, i = 0, 1, by induction on α < c as follows.

At stage α ≥ 0 set Xi
α = {ai

β : β < α} and consider the sequence {Uα
n }n∈N.

Say that α is i-good if for each n Uα
n is an ω-fat cover of Xi

α. In this case,
by the above remarks there exist elements Uα,i

n ∈ Uα
n such that {Uα,i

n }n∈N is
an ω-fat cover of Xi

α. We make the inductive hypothesis that for each i-good



Additivity Numbers of Covering Properties 267

β < α, {Uβ,i
n }n∈N is an ω-fat cover of Xi

α. For each finite F ⊆ Xi
α, i-good

β ≤ α, and m define

GF,β,m
i =

⋃{
Uβ,i

n : F ⊆ Uβ,i
n and (∀O ∈ Fm) Uβ,i

n ∩O /∈M
}

.

By the inductive hypothesis, GF,β,m
i is comeager. Set

Yα =
⋃

β<α

Mβ ∪
⋃{

[N]ℵ0 \GF,β,m
i :

i < 2, β ≤ α i-good,

m ∈ N, F ⊆ Xi
α Finite

}
,

and Y ∗
α = {x ∈ [N]ℵ0 : (∃y ∈ Yα) x =∗ y}. (Here x =∗ y means that x ⊆∗ y and

y ⊆∗ x.) Y ∗
α is a union of less than add(M) many meager sets, and is therefore

meager. Use Lemma 3.6 to pick a0
α, a1

α ∈ U \ Y ∗
α such that a0

α ∩ a1
α ⊆∗ aα. Let

k = α mod ω, and change finitely many elements of a0
α and a1

α so that they
both become members of Ok. Then a0

α, a1
α ∈ (U ∩Ok) \Yα, and a0

α ∩a1
α ⊆∗ aα.

Observe that the inductive hypothesis remains true for α. This completes the
construction.

Clearly L0 and L1 are c-Luzin sets and L0 ∪ L1 is a subbase for U . We
made sure that for each nonempty basic open set G, |L0 ∩G| = |L1 ∩G| = c,
thus BΩ = Bfat

Ω for L0 and L1. By the construction, L0, L1 ∈ S1(Bfat
Ω ,Bfat

Ω ).
As we assume that add(M) = c, every c-Luzin set (in particular, L0 ∪ L1)

satisfies S1(B,B) [27], and therefore also Split(BΛ,BΛ).
The following lemma was proved in Just-Miller-Scheepers-Szeptycki [17].

Lemma 3.7. If there is a continuous image of X in [N]ℵ0 that is a subbase for
a nonprincipal ultrafilter on N, then X does not satisfy Split(Ω,Ω).

As L0∪L1 is a subbase for a nonprincipal ultrafilter on N, it does not satisfy
Split(Ω,Ω).

It follows that no property between S1(BΩ,BΩ) and Split(Ω,Ω) is provably
additive.

4. Consistently positive results

4.1. On the Scheepers diagram

The following theorem is folklore.
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Theorem 4.1. It is consistent that all classes between S1(Ω,Γ) and S1(O,O)
(inclusive) are σ-additive.

Proof – As S1(O,O) implies strong measure zero, Borel’s Conjecture
(which asserts that every strong measure zero set is countable) implies that
all elements of S1(O,O) are countable, and thus all classes below S1(O,O) are
σ-additive. Borel’s Conjecture was proved consistent by Laver [19].

A variant of Borel’s Conjecture for Ufin(O,Ω) is false [17, 25, 5, 32]. How-
ever, we have the following.

The following theorem is proved in Bartoszyński-Shelah-Tsaban [4] and in
Zsomskyy [35, 34].

Theorem 4.2. If u < g, then add(Ufin(O,Ω)) = add(S1(BΓ,BΩ)) = c.

Proof – In [35, 34] it is proved that u < g implies that Ufin(O,Ω) =
Sfin(O,O), and the same assertion holds in the Borel case. The theorem
follows from Corollary 2.3, together with the fact that u < g implies that g = c

[8].

In the remainder of this section we will show that σ-additivity of Ufin(O,Ω)
(and S1(BΓ,BΩ)) actually follow from the weaker axiom NCF, and that a suit-
able combinatorial version of this assertion actually gives a characterization of
NCF.

In Theorem 3.2, NN can be replaced by N↑N – the (strictly) increasing
elements of NN. To see this, note that the function Φ : NN → N↑N defined by

Φ(f)(n) = n + f(0) + f(1) + . . . + f(n)

is a homeomorphism which preserves finite-dominanace in both directions.
We now consider the purely combinatorial counterpart of the question

whether Ufin(O,Ω) is additive. Let Dfin denote the collection of subsets of N↑N

which are not finitely-dominating. By the previous comment,

add(Dfin) ≤ add(Ufin(O,Ω)) ≤ add(S1(BΓ,BΩ)).
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Recall that for an increasing h ∈ NN and a filter F ⊆ [N]ℵ0 ,

F/h = {a/h : a ∈ F} =

{
a :
⋃
n∈a

[h(n), h(n+1)) ∈ F

}
.

(The first equality is the definition; the second an easy fact.) If F is an ul-
trafilter, then so is F/h. We say that filters F1 and F2 on N are compatible
in the Rudin-Keisler order (or, in short, Rudin-Keisler compatible) if there is
an increasing h ∈ NN such that F1/h ∪ F2/h satisfies the finite intersection
property (that is, it is a filter base). If F1,F2 are Rudin-Keisler compatible
ultrafilters, then there is an increasing h ∈ NN such that F1/h = F2/h.

Definition 4.1. NCF (near coherence of filters) is the assertion that every two
nonprincipal ultrafilters on N are Rudin-Keisler compatible.

NCF is independent of ZFC [10, 11], and has many equivalent forms and
implications (e.g., [6, 7]).

In the sequel, we often use the following convenient notation for f, g ∈ NN:

[f ≤ g] = {n : f(n) ≤ g(n)}.

The following theorem is proved in Bartoszyński-Shelah-Tsaban [4].

Theorem 4.3. NCF holds if, and only if, Dfin is additive.

Proof – (⇒) Assume that Y1, Y2 ∈ Dfin. We may assume that all elements
of Y1 and Y2 are strictly increasing and that Y1 and Y2 are closed under finite
maxima. Thus, it suffices to show that{

max{f1, f2} : f1 ∈ Y1, f2 ∈ Y2

}
is not dominating. For each i = 1, 2, do the following: Choose an increasing
gi ∈ NN witnessing that Yi is not dominating. The set {[f ≤ g] : f ∈ Yi} has
the finite intersection property. Extend it to a nonprincipal ultrafilter Fi.

Fix an increasing h ∈ NN such that F1/h ∪ F2/h has the finite intersection
property. Define g ∈ NN by g(n) = max{g1(h(n + 1)), g2(h(n + 1))} for each
n. Given f1 ∈ Y1, f2 ∈ Y2, let a be the infinite set [f1 ≤ g1]/h ∩ [f2 ≤ g2]/h.
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For each n ∈ a and each i = 1, 2, there is k ∈ [h(n), h(n+1)) such that
fi(k) ≤ gi(k). Thus,

fi(n) ≤ fi(h(n)) ≤ fi(k) ≤ gi(k) ≤ gi(h(n + 1)) ≤ g(n),

thus max{f1(n), f2(n)} ≤ g(n) for all n ∈ a.

(⇐) We will use the following.

Lemma 4.1. If NCF fails, then there exist ultrafilters F1 and F2 such that
for each increasing h ∈ NN there exist a1 ∈ F1/h and a2 ∈ F2/h such that for
all n ∈ a1 and m ∈ a2, |n−m| > 1.

Proof – Assume that F1 and F2 are Rudin-Keisler incompatible nonprin-
cipal ultrafilters and let h be an increasing element of NN. Define increasing
f0, f1 ∈ NN by

f0(n) = h(2n)

f1(n) = h(2n + 1)

Then there exist

X1 ∈ F1/f0 X2 ∈ F2/f0

Y1 ∈ F1/f1 Y2 ∈ F2/f1

such that the sets X1 ∩X2 = Y1 ∩ Y2 = ∅.3 For i = 1, 2 let

X̃i = 2 ·Xi ∪ (2 ·Xi + 1)

Ỹi = (2 · Yi + 1) ∪ (2 · Yi + 2)

Observe that X̃1 ∩ X̃2 = Ỹ1 ∩ Ỹ2 = ∅ either. Now,⋃
n∈Xi

[f0(n), f0(n+1)) =
⋃

n∈X̃i

[h(n), h(n+1))

⋃
n∈Yi

[f1(n), f1(n+1)) =
⋃

n∈Ỹi

[h(n), h(n+1))

3Since nonprincipal filters are closed under finite modifications, we can shrink the elements
to turn the finite intersection into an empty intersection.
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therefore X̃i, Ỹi ∈ Fi/h, thus ai = X̃i ∩ Ỹi ∈ Fi/h. If n ∈ a1 is even, then
n, n+1 ∈ X̃1, and n−1, n ∈ Ỹ1. Thus, if n is large enough, then n, n+1 /∈ X̃2,
and n − 1, n /∈ Ỹ2, therefore n − 1, n, n + 1 /∈ a2. The case that n ∈ a1 is odd
is similar.

For a filter F and an increasing g ∈ NN, define

YF,g =
{
f ∈ NN : [f ≤ g] ∈ F

}
.

Then YF,g ∈ Dfin. It therefore suffices to prove the following.

Lemma 4.2. If F1 and F2 are as in Lemma 4.1, and g(n) ≥ 2n for each n,
then YF1,g ∪ YF2,g is 2-dominating.

Proof – Let f ∈ NN be any increasing function. Define by induction

h(0) = 0

h(n + 1) = f(h(n)) + 1

By the assumption, there exist a1 ∈ F1/h and a2 ∈ F2/h such that for each
n ∈ a1 and m ∈ a2, |n−m| > 1.

Fix i < 2. For each n, define

fi(n) =



f(h(k − 1)) + n− h(k − 1) n ∈ [h(k), h(k+1)) for k ∈ ai

f(h(k)) + n− h(k)
n ∈ [h(k), h(k+1))

where k /∈ ai, k + 1 ∈ ai

f(n) otherwise

It is not difficult to verify that fi is increasing.
For each k ∈ ai and n ∈ [h(k), h(k+1)),

fi(n) = f(h(k − 1)) + n− h(k − 1) ≤

≤ h(k) + n− h(k − 1) ≤ h(k) + n ≤ 2n ≤ g(n).

Therefore fi ∈ YFi,g.
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For each n let k be such that n ∈ [h(k), h(k+1)). If n is large enough, then
either k, k + 1 /∈ a1, and therefore f1(n) = f(n), or else k, k + 1 /∈ a2, and
therefore f2(n) = f(n), that is, f(n) ≤ max{f1(n), f2(n)}.4

This completes the proof of Theorem 4.3.

Let add(Dfin,D) denote the minimal cardinality of a collection of members
of Dfin whose union is dominating. It is immediate that b ≤ add(Dfin,D).

The following lemma is due to Blass [9].

Lemma 4.3. max{b, g} ≤ add(Dfin,D).

Proof – We need only prove that g ≤ add(Dfin,D). Assume that κ < g

and Yα ∈ Dfin, α < κ. We may assume each Yα is closed under pointwise
maxima of its finite subsets. For each α, let gα be a witness for Yα not being
dominating, and extend {[f ≤ gα] : f ∈ Yα} to a nonprincipal ultrafilter Fα on
N.

We will use the following “morphism”.
The following lemma is due to Mildenberger [20, 21].

Lemma 4.4. For each f ∈ NN and each ultrafilter U ,

GU,f = {a ∈ [N]ℵ0 : f ≤U a+}

is groupwise dense.

Proof – Clearly, GU,f is closed under taking almost subsets. Assume that
{[h(n), h(n+1)) : n ∈ ω} is an interval partition of ω. By merging consecutive
intervals we may assume that for each n, and each k ∈ [h(n), h(n+1)), f(k) ≤
h(n + 2).

Since U is an ultrafilter, there exists ` ∈ {0, 1, 2} such that

a` =
⋃
n

[h(3n + `), h(3n + `+1)) ∈ U

Take a = a`+2 mod 3. For each k ∈ a`, let n be such that k ∈ [h(3n + `),
h(3n + ` + 1)). Then f(k) ≤ h(3n + ` + 2) = a+(k). Thus a ∈ GU,f .

4In fact we get equality here.
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Thus, we can take a ∈
⋂

α<κ GUα,gα
, and g = a+ will witness that

⋃
α<κ Yα is

not dominating.

Theorem 4.4. If Dfin is additive (equivalently, NCF holds), then it is add

(Dfin,D)-additive and therefore max{b, g}-additive. In particular, in this case
it is σ-additive.

Proof – Assume that κ < add(Dfin,D) and Yα ∈ Dfin, α < κ. We may
assume that each Yα is closed under pointwise maxima of finite subsets, and
that the family {Yα : α < κ} is additive. It follows that

maxfin

(⋃
α<κ

Yα

)
=
⋃

α<κ

Yα

and is therefore not dominating. Thus,
⋃

α<κ Yα ∈ Dfin.
The second assertion follows from Lemma 4.3.

Corollary 4.1. If NCF holds, then

max{b, g} ≤ add(Ufin(O,Ω)) ≤ add(S1(BΓ,BΩ)) ≤ cf(d) = d.

Added in proof: Banakh and Zdomskyy improved Theorem 4.4 and Corol-
lary 4.1 by showing that NCF implies that the mentioned additivity numbers
are equal to d.

Problem 4.1. Is any of the classes Sfin(Ω,Ω), S1(Γ,Ω), and Sfin(Γ,Ω) con-
sistently additive?

For the Borel case there remains only one unsolved class.

Problem 4.2. Is Sfin(BΩ,BΩ) consistently additive?

4.2. On splitting properties

The following theorem is due to Zdomskyy [35, 34].

Theorem 4.5. It is consistent that add(Split(Λ,Λ)) = add(Split(BΛ,BΛ)) =
b = u.
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Proof – In [35, 34] it is proved that u < g implies that Split(Λ,Λ) =
Ufin(O,Γ), and the same assertion holds in the Borel case. The theorem follows
from Corollary 2.2, together with the fact that u < g implies that b = u [8].

The last theorem implies that one cannot obtain a negative solution to
Problem 2.4 in ZFC.

5. τ-covers

U is a τ -cover of X if it is a large cover of X (that is, each member of X

is contained in infinitely many members of the cover), and for all x, y ∈ X, (at
least) one of the sets {U ∈ U : x ∈ U, y /∈ U} and {U ∈ U : y ∈ U, x /∈ U} is
finite. τ -covers are motivated by the tower number t [28] and were incorporated
into the framework of selection principles in [29]. Every open τ -cover of a set
of reals contains a countable τ -cover of that set [31]. Let T and BT denote the
collections of countable open and Borel τ -covers of X, respectively.

5.1. On the Scheepers diagram

Taking T into account and removing trivial properties and known equiva-
lences, we obtain the diagram in Figure 2 [29, 22]. In this diagram too, the
critical cardinality of each property appears below it. A similar diagram, with
several additional equivalences, is available in the Borel case [29].

Proposition 5.1. S1(T,O) and S1(BT,B) are σ-additive.

Proof – As in Proposition 2.1.

Definition 5.1. For each countable cover of X enumerated bijectively as U =
{Un}n∈N we associate the Marczewski function hU : X → P (N), defined by
hU (x) = {n : x ∈ Un} for each x ∈ X.

U is a large cover of X if, and only if, hU [X] ⊆ [N]ℵ0 . Let Y ⊆ [N]ℵ0 . Y is
centered if for each finite F ⊆ Y , ∩F is infinite. A set a ∈ [N]ℵ0 is a pseudo-
intersection of Y if a ⊆∗ y for all y ∈ Y . Y is linearly quasiordered by ⊆∗ if



Additivity Numbers of Covering Properties 275

Ufin(O, Γ)
b

// Ufin(O, T)
max{b, s}

// Ufin(O, Ω)
d

// Sfin(O,O)
d

Sfin(Γ, T)
b

//

77ppp
Sfin(Γ, Ω)

d

88pppp

S1(Γ, Γ)
b

88ppppppppppppp
// S1(Γ, T)

b

88qqq
// S1(Γ, Ω)

d

77ooo
// S1(Γ,O)

d

99rrrrrrrrrrrr

Sfin(T, T)
min{b, s}

//

OO

Sfin(T, Ω)
d

OO

S1(T, Γ)
t

//

OO

S1(T, T)
t

OO

88qqq
// S1(T, Ω)

od

OO

77pppp
// S1(T,O)

od

OO

Sfin(Ω, T)
p

OO

// Sfin(Ω, Ω)
d

OO

S1(Ω, Γ)
p

OO

// S1(Ω, T)
p

OO

88qqq
// S1(Ω, Ω)

cov(M)

OO

77ppp
// S1(O,O)

cov(M)

OO

Figure 2 – The Scheepers diagram, enhanced with τ -covers

for all y, z ∈ Y , y ⊆∗ z or z ⊆∗ y. Note that if Y has a pseudo-intersection or
is linearly quasiordered by ⊆∗, then Y is centered.

The following lemma is due to Tsaban [28].

Lemma 5.1. Assume that U is a countable large cover of X.

1. U is an ω-cover of X if, and only if, hU [X] is centered;

2. U contains a γ-cover of X if, and only if, hU [X] has a pseudo-intersection;

3. U is a τ -cover of X if, and only if, hU [X] is linearly quasiordered by ⊆∗.

For families B ⊆ A of covers of a space X, define the property A choose
B as follows.(

A
B

)
: For each U ∈ A , there is V ⊆ U such that V ∈ B.

This is a prototype for many classical topological notions, most notably com-
pactness and being Lindelöf.

The following theorem is due to Tsaban [29].

Theorem 5.1. add(
(
T
Γ

)
) = add(

(BT
BΓ

)
) = t.
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Proof – We prove the open case. Assume that κ < t, and let Xα, α < κ,
be sets satisfying

(
T
Γ

)
. Let U be a countable open τ -cover of X =

⋃
α<κ Xα.

By Lemma 5.1, hU [X] =
⋃

α<κ hU [Xα] is linearly quasiordered by ⊆∗. Since
each Xα satisfies

(
T
Γ

)
, for each α U contains a γ-cover of Xα, that is, hU [Xα]

has a pseudo-intersection.
The following lemma is due to Tsaban [28].

Lemma 5.2. Assume that Y ⊆ [N]ℵ0 is linearly quasiordered by ⊆∗, and for
some κ < t, Y =

⋃
α<κ Yα where each Yα has a pseudo-intersection. Then Y

has a pseudo-intersection.

Proof – If for each α < κ Yα has a pseudo-intersection yα ∈ Y , then a
pseudo-intersection of {yα : α < κ} is also a pseudo-intersection of Y . Other-
wise, there exists α < κ such that Yα has no pseudo-intersection y ∈ Y . That
is, for all y ∈ Y there exists a z ∈ Yα such that y 6⊆∗ z; thus z ⊆∗ y. Therefore,
a pseudo-intersection of Yα is also a pseudo-intersection of Y .

By Lemma 5.2, hU [X] has a pseudo-intersection, that is, U contains a γ-cover
of X.

Corollary 5.1. add(S1(T,Γ)) = add(S1(BT,BΓ)) = t.

Proof – Note that

S1(T,Γ) =
(

T
Γ

)
∩ S1(Γ,Γ).

It follows that add(S1(T,Γ)) is at least the minimum of the additivity numbers
of
(
T
Γ

)
and S1(Γ,Γ), which are t (Theorem 5.1) and h (Theorem 2.2), respec-

tively. As t ≤ h [8], add(S1(T,Γ)) ≥ t. On the other hand, add(S1(T,Γ)) ≤
non(S1(T,Γ)) = t (Figure 2).

In the Borel case use add(S1(BΓ,BΓ)) = b ≥ t (Theorem 2.2).

Note that Sfin(Ω,T) implies
(
Ω
T

)
.

The following corollary is due to Tsaban [29].

Corollary 5.2. Assume the Continuum Hypothesis. Then no class between
S1(BΩ,BΓ) and

(
Ω
T

)
(inclusive) is additive.
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Proof – By Theorem 3.1, there are sets A and B satisfying S1(BΩ,BΓ),
such that A ∪B does not satisfy S1(Ω,Γ). Now,

S1(Ω,Γ) =
(

Ω
T

)
∩ S1(T,Γ),

and by Corollary 5.1, A ∪ B satisfies S1(T,Γ). Thus, A ∪ B does not satisfy(
Ω
T

)
.

Problem 5.1. Is any of the properties S1(T,T), Sfin(T,T), S1(Γ,T), Sfin

(Γ,T), and Ufin(O,T) (or any of their Borel versions) provably (or at least
consistently) additive?

Zdomskyy [36] proved that Ufin(O,T) is consistently additive.

Problem 5.2. Is any of the classes Sfin(Ω,T), S1(T,Ω), and Sfin(T,Ω) con-
sistently additive?

5.2. On splitting properties

Here, taking T into account and removing trivialities and equivalences, we
obtain the following diagram (in the open case, and a similar one in the Borel
case) [31]:

Split(Λ, Λ)
r

// Split(Ω, Λ)
u

// Split(T, T)
undefined

Split(Ω, Ω)
u

OO

Split(Ω, T)
p

OO

Split(Ω, Γ)
p

OO

::uuuuuuuuu
// Split(T, Γ)

t

OO

We also have that Split(T,Γ) =
(
T
Γ

)
[31]. By Theorem 5.1, add(Split(T,Γ)) = t.

The following theorem is due to Tsaban [31].
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Theorem 5.2. u ≤ add(Split(T,T)).

Proof – A nonprincipal ultrafilter U on N is called a simple P -point if
there exists a base B for U such that B is linearly quasiordered by ⊆∗. We call
such a base a simple P -point base.

Lemma 5.3. X satisfies Split(T,T) if, and only if, for each countable open
τ -cover U of X, hU [X] is not a simple P -point base.

Thus, our theorem follows from the following Ramseyan property.

Lemma 5.4. Assume that λ < u and B =
⋃

α<λ Bα is a simple P -point base.
Then there exists α < λ such that Bα is a simple P -point base.

Proof – Assume that B is a simple P -point base and U is the simple P -
point it generates. In particular, B is linearly ordered by ⊆∗. We will show that
some Bα is a base for U . Assume otherwise. For each α < λ choose aα ∈ U

that witnesses that Bα is not a base for U , and ãα ∈ B such that ãα ⊆∗ aα.
As B is linearly ordered by ⊆∗, ãα is a pseudo-intersection of Bα.

The cardinality of the linearly ordered set Y = {ãα : α < λ} is smaller than
u. Thus it is not a base for U and we can find again an element a ∈ F which
is a pseudo-intersection of Y , and therefore of B; a contradiction.

This completes the proof of Theorem 5.2.

Consistently, there are no P -points [3]. By Lemma 5.3, in such a model
Split(T,T) = P (R) and therefore add(Split(T,T)) is undefined.

Note that Split(Ω,T) implies
(
Ω
T

)
, and since Split(BΩ,BΓ) =

(BΩ
BΓ

)
=

S1(BΩ,BΓ), we have by Corollary 5.2 that no class between Split(BΩ,BΓ) and
Split(Ω,T) (inclusive) is provably additive.

Thus, Split(Ω,Λ), Split(T,T), and Split(T,Γ) are (provably) σ-additive,
whereas Split(Ω,Ω), Split(Ω,T), and Split(Ω,Γ) are not provably additive. The
situation for Split(Λ,Λ) is Problem 2.4.

Problem 5.3. Improve the lower bound or the upper bound in the inequality
ℵ1 ≤ add(Split(Ω,Λ)) ≤ c.

Problem 5.4. Can the lower bound u on add(Split(T,T)) be improved?
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