15 july 2007. Projective Geometry, 88-524-01. moed Alef. Final Exam

ALL ANSWERS MUST BE JUSTIFIED

1. Let triangle ABC be inscribed in a circle M. Let A'B'C' be a triangle such that the side A'B' is tangent to M at the point C, while the side B'C' is tangent to M at the point A, and the side C'A' is tangent to M at the point B.

- (a) make an appropriate drawing in the case when triangle *ABC* is an acute-angle triangle;
- (b) make an appropriate drawing in the case when triangle ABC is an obtuse-angle triangle;
- (c) Prove that the lines AA', BB', CC' are concurrent in case (a);
- (d) Prove that the lines AA', BB', CC' are concurrent in case (b).

2. Consider the field $F = F_5$ with 5 elements. Let A be the affine plane over F, let FP^1 be the projective line over F, and let FP^2 be the projective plane over F.

- (a) Find the number of points and the number of lines in FP^1 ;
- (b) Find the number of points and the number of lines in A;
- (c) Find the number of points and the number of lines in FP^2 ;
- (d) Calculate the number of points in the intersection between the pair of projective lines in FP^2 defined by the equations 2x + y + 3z = 0 and 3x + 4y + 2z = 0 in homogeneous coordinates;
- (e) Calculate the number of points in the intersection between the pair of projective lines in FP^2 defined by the equations x y + 3z = 0 and 2x + y z = 0 in homogeneous coordinates.
- 3. Let A, B, C be points on a line ℓ , and P point not on ℓ .
 - (a) Give a precise definition of a harmonic 4-tuple.
 - (b) Describe a geometric construction of a point D such that the 4-tuple A, B, C, D is harmonic.
 - (c) Draw a sequence of at least three careful and precise drawings illustrating each step of the construction.
 - (d) Describe the construction dual to the one in (a), starting with a triple of lines a, b, c concurrent in point L, and line p not through L.

continued on next page \rightarrow

4. Let R(A, B, C, D) be the cross-ratio (yachas hakaful) of points on the real line, when $A = \infty$, B = 0, and C = 1. Let $D = \frac{3k-8}{2}$, where k = 1, 2, 3, 4, 5.

- (a) What are the possible values of the cross ratio when k = 1?
- (a) Let f(k) be the total number of distinct values of the cross-ratio of all the permutations of the 4-tuple (A, B, C, D_k) . Calculate f(k) as an explicit function of the index $k = 1, \ldots, 5$.
- 5. This problem concerns polarity.
 - (a) Present a precise statement of Pascal's theorem on a conic \mathcal{C} .
 - (b) Formulate the theorem polar to Pascal's theorem. Here polarity is with respect to the conic C.
 - (c) Draw a careful picture illustrating the theorem dual to Pascal's.
 - (d) Formulate and prove the reciprocity theorem (mishpat hahadadiut).

GOOD LUCK!