
PROJECTIVE GEOMETRY

Abstract. Projective geometry
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1. Ceva, Menelaus

The material in this section is from the book by H. Perfect [8] (see
the bibliography).
Collinearity and concurrency.
Ceva and Menelaus Theorems.
Explain “signed length” at great length.
Concurrency of altitudes, angle bisectors, and medians in a triangle.

2. Desargues’ theorem, Pappus’s theorem, Pascal’s

theorem, Brianchon’s theorem

There are two points of view on Desargues’ theorem: the slick state-
ment: ”triangles in pespective from a point, are in perspective from a
line”, and a detailed statement in terms of specific intersections, etc.
On must insist on the explicit version, for otherwise students come

away without a true understanding of Desargues’ theorem.
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Pappus’s theorem.
Pascal’s theorem (six points on a circle).
Brianchon’s theorem.
Note that the usual statement of Brianchon’s theorem in terms of

the sides and diagonals of a hexagon, at least on the surface of it, is
less general than the polar dual of Pascal.
Students need to be able to state this duality precisely in terms of

labeled points . Here again the connection between the dual theorems
needs to be explained in detail, otherwise the students don’t learn to
translate theorems to their duals/polars.
Internal and external bisectors.
Harmonic 4-tuple.

3. Axioms of affine planes and projective planes

The material is in Hartshorne [4].
Axiomatisation of affine planes, including proofs of certain basic re-

sults derived from the axioms.
Note that a line by definition is parallel to itself (in previous years

students protested, citing Margolis).
The real case in detail, including the homogeneous coordinates, and

the equivalence of the two approaches:
(1) adding points at infinity, and (2) homogeneous coordinates.
The 4 axioms of projective planes.
The model obtained by completing the affine line by adding points

at infinity defined by pencils of parallel lines.
Proof in detail that this model satisfies the four axioms.
Definition of homogeneous coordinates.
Proof of the theorem that completion at infinity and homogeneous

coordinates give isomorphic models of real projective plane.
Affine neighborhoods

4. Cross-ratio

To complete the material from last week: Formulas for numbers of
points in finite planes.
The material on cross-ratios is in Adler [1].

Definition 4.1. Cross-ratio (yachas hakaful).

Definition 4.2. Perspectivity from a point.

Prove invariance under perspectivity, using areas.

Definition 4.3. Cross ratio of a pencil of lines.
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The 6 cross-ratios: λ, 1− λ, 1

λ
, etc.

Role of the symmetric group on 4 letters and of the Klein 4-group.
Exceptional case: the 3 cross-ratios.

Remark 4.4. Over the complex numbers: an additional exceptional
case of only 2 distinct values, when

λ = e±iπ/3.

The cross-ratio of 4 points on a circle.
Relation to polarity (which has not been treated formally yet): work

with tangent lines to a circle instead of points on a circle.
Then a variable tangent line t meets a 4-tuple of fixed tangents in a

4-tuple of points whose cross-ratio is independent of t.

5. Geometric constructions, projective transformations,

transitivity on triples, projective plane over an

arbitrary field

Exceptional values 0, 1,∞ of the cross-ratio when some of the points
collide.

Theorem 5.1. R(∞, 0, 1, λ) = λ.

Constructions in projective geometry.
An explicit geometric construction of the 4th harmonic point, using

Ceva and Menelaus.
Recall the notion of a perspectivity.

Definition 5.2. A projectivity is a transformation preserving the cross-
ratio.

The notation: a wedge under the equality sign.

Theorem 5.3. Thansitivity of projective transformations on triples of
collinear points.

Proof by composition of suitable perspectivities.

Corollary 5.4. On every line in projective plane, given a triple of
points, a fourth point is uniquely determined by the cross-ratio.

More axiomatics: prove from the 4 axioms the following:

Theorem 5.5. There is a 1-1 correspondence between points on a line ℓ
and lines through a point A not on ℓ.

Construction of the projective plane over an arbitrary field.
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6. Duality, self-dual axiom systems

Duality.
The four axioms of projective geometry give rise to a self-dual system,

i.e. the dual of each axiom can be proved from the original list of four.
Discussion the construction in homogeneous coordinates over any

field, using a generalisation of the vector product.
Counting points in a projective plane, discuss in a bit more detail

the notion of an affine neighborhood (to break the idea that the affine
plane is ”special”).
Detailed discussion of the case over the field F2, writing out the

homogeneous coordinates of all the points, and explicit equations of
some of the lines.

7. Cross-ratio in homogeneous coordinates

The definition of cross-ratio in homogeneous coordinates follows the
book by Kaplansky [7].
Here if A,B,C,D ∈ RP

1 we view A,B,C,D as 1-dimensional sub-
spaces in R

2. We choose representative nonzero vectors α ∈ A, β ∈
B, γ ∈ C, and δ ∈ D. We show that the vectors can be picked in such
a way as to satisfy the relations

γ = α + β

and

δ = kα + β, (7.1)

where k ∈ R is suitably chosen. Then the coefficent k in (7.1) is the
cross-ratio of A,B,C,D:

Theorem 7.1. The coefficient k is independent of choices made and
satisfies R(A,B,C,D) = k.

8. Conic sections

Conic sections: intersection of cone in R
3 and plane.

Ellipse, parabola, hyperbola and number of points at infinity: 0, 1,
2.

Theorem 8.1. Every nondegenerate nonempty real conic section is
projectively equivalent to the circle.

Example 8.2. To transform a circle into a parabola by a projective
transformation, consider the equation of the circle

+x2

1
+ x2

2
− x2

3
= 0. (8.1)
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Here in the affine neighborhood x3 = 1 we obtain the usual circle
equation

x2 + y2 = 1 (8.2)

where x = x1

x3

and y = x2

x3

. We would like to tranform this into a
parabola

X2X3 = X2

1
. (8.3)

Here in the affine neighborhoodX3 = 1 this becomes the usual equation
of a parabola Y = X2, where X = X1

X3

and Y = X2

X3

. We rewrite (8.3)
as

(X2 +X3)
2 − (X2 −X3)

2 = (2X1)
2,

or

+(2X1)
2 + (X2 −X3)

2 − (X2 +X3)
2 = 0. (8.4)

Note that the signs +,+,− in equations (8.1) and (8.4) are compatible.
Therefore we exploit the transformation

x1 = 2X1, x2 = X2 −X3, x3 = X2 +X3.

This is a linear transformation in homogeneous coordinates and there-
fore defines a projective transformation on the projective planes.
Next, this can be expressed in an affine neighborhood by noting that

x1

x3

=
2X1

X2 +X3

=
2X1

X3

X2

X3

+ 1

and

x2

x3

=
X2 −X3

X2 +X3

=
X2

X3

− 1
X2

X3

+ 1
.

In affine coordinates, we obtain

x =
X

Y + 1
, y =

Y − 1

Y + 1
. (8.5)

Substituting (8.5) into the circle equation (8.2) we obtain the equa-
tion of parabola Y = X2.

Example 8.3. Transform parabola into hyperbola.

Example 8.4. Transform ellipse x2 + xy + y2 = 1 into parabola Y =
X2.
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9. Polarity, reciprocity

Definition of polar line.
Metric characterisation of polar lines.
Axioms of Fano, Desargues, and Pappus.
Discussion of relation between algebraic properties and geometric

axioms:

Theorem 9.1. Suppose a projective plane π satisfies the axioms P1,
. . . P4 as well as Desargues’ axiom. Then there exists a division ring D
such that π = DP 2.

Theorem 9.2. Suppose in addition to the hypotheses above, π satisfies
Fano’s axiom (the diagonal points of a complete quadrilateral are not
collinear). Then char D 6= 2.

Theorem 9.3. Suppose in addition to the hypotheses above, π satisfies
Pappus’ axiom. Then π = DP 2 where D is a field.

This point of view may be found in the book by Kadison and Kro-
mann [6, chapter 8]. It originates with Hilbert’s book [5], see chapter
5 there, particularly paragraph 24: “Introduction of an algebra of seg-
ments based upon Desargues’s theorem and independence of the axioms
of congruence”, starting on page 79. Hilbert mentions that this was
also discussed by Moore.
1. proof of the reciprocity theorem: if Q is on p, then P is on q.
2. proof of the fact that polarity is a projective transformation, in

two stages. First one proves it for 4 points lying on a tangent to the
conic. Then one proves it for an arbitrary collinear 4-tuple.
3. A nice application is the theorem that every conic defines a pro-

jective transformation from points on a tangent, to points on another
tangent. Namely, a point B on a tangent t is sent to a point B’ on
tangent t’ if and only if the line BB’ is tangent to the conic.
4. Present another example of a construction in projective geometry.

So far the only construction we had is the construction of the fourth
harmonic point, using Menelaus theorem.
5. Using the result that polarity is a projective transformation, con-

struct a conic from 5 pieces of data. The 5 pieces are points L and L’,
the corresponding tangent lines l and l’ through them, and an addi-
tional tangent line a”. One constructs the map as in item 3 above, as
the composition of two perspectivities.
Geometric constructions using projective theorems is an important

topic in projective geometry that we have barely touched upon.
Polarity is closely related to inversion in circles. An application of in-

versions is the Peaucellier–Lipkin linkage, see https://en.wikipedia.org/wiki/Peaucellier%E2%80%93Lipkin_l

https://en.wikipedia.org/wiki/Peaucellier%E2%80%93Lipkin_linkage
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10. Construction of a generic point on a conic passing

through 5 given points

Construction of a generic point on a conic passing through 5 given
points, using Pascal’s theorem.
Translating it to a polar statement, so as to construct the polar

pencil of parallel lines to the conic.
Finding a projective map between a pair of pencils of lines through

a pair of points on a conic.

11. Mobius transformations

Every projective map from P 1 to itself is of the form

x →
ax+ b

cx+ d
.

I already mentioned the fact that projective transformations corre-
spond to linear maps when you write them in homogeneous coordinates.
The fractional-linear presentation is a consequence of this.
More material on axioms of Fano, Desargues, Pappus, related mate-

rial on the polar line, perhaps a proof of Desargues assuming existence
of imbedding in projective 3-space.
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12. Poncelet’s porism

An elementary proof was found in ’15 by Halbeisen [3].
(draw illustration of Poncelet’s porism for n = 3, a triangle that is

inscribed in one circle and circumscribes another.)
In geometry, Poncelet’s porism, named after French engineer and

mathematician Jean-Victor Poncelet, states the following.

Theorem 12.1 (Poncelet’s porism). Let C and D be two plane conics.
If it is possible to find, for a given n > 2, one n-sided polygon that is
simultaneously inscribed in C and circumscribed around D, then it is
possible to find infinitely many of them.

Definition 12.2. By an elliptic curve is a meant a 2-torus.

Remark 12.3. Poncelet’s porism can be proved via elliptic curves;
geometrically this depends on the representation of an elliptic curve as
the double cover of C with four ramification points. (Note that C is
isomorphic to the complex projective line.) The relevant ramification
is over the four points of C where the conics intersect. (There are four
such points by Bézout’s theorem.) One can also describe the elliptic
curve as a double cover of D; in this case, the ramification is over the
contact points of the four bitangents.

Sketch of proof of Theorem 12.1. Let C ⊂ CP
2, D ⊂ CP

2 be the two
conics. Let p be a point of the projective plane

P = CP
2

and ℓ a line of the dual projective plane, denoted

P ∗.

The key tool is the curve X given by the set of pairs p ∈ ℓ where p is
on the conic C and ℓ is tangent to the conic D, namely

X = {(p, ℓ) ∈ P × P ∗ : (p ∈ C) ∧ (ℓ tangent to D) ∧ (p ∈ ℓ)} .

This can be reformulated by stating that the D-polar point ℓ∗ to ℓ lies
on D, or ℓ∗ ∈ D.
Then X is smooth; more specifically X is an elliptic curve. There

is an involution σ of X mapping (p, ℓ) to (p′, ℓ) where p′ is the other
point of intersection of ℓ with C, so that

ℓ ∩ C = {p, p′}.

Thus,

σ : X → X, (p, ℓ) 7→ (p′, ℓ).
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There is another involution τ that sends (p, ℓ) to (p, ℓ′) where ℓ′ is the
other tangent from p to D, so that

τ : X → X, (p, ℓ) 7→ (p, ℓ′).

Now an elliptic curve has natural addition on it, inherited from ad-
dition on C. With respect to the natural addition on X, it turns out
that the composition τ ◦ σ is a translation. If (τ ◦ σ)n has one fixed
point, then (τ ◦ σ)n must be the identity translation, i.e., every point
is a fixed point of (τ ◦ σ)n.
Translated back into the language of the conics C and D, this means

that if one point on C gives rise to an orbit that closes up (i.e. gives
an n-gon), then every point does, as well. �

We will now present a more detailed version of the argument though
some crucial details will be left for a course in algebraic geometry.

Definition 12.4. An involution of a set S is a map

σ : S → S

such that the composition of σ with itself is the identity map of S:
σ ◦ σ = IdS.

Lemma 12.5. The number of points of intersection of a line not tan-
gent to C with a conic C in CP

2 equals 2.

Proof. The hypotheses reduce to solving a quadratic equation over C.
Therefore there are two solutions. �

Lemma 12.6. The number of tangent lines from a point p ∈ P \C to
the conic C equals 2.

Proof. The proof is similar. �

Definition 12.7. A lattice

L ⊂ C

is a subgroup generated by two nonzero numbers z1 and z2 which are
linearly independent over R. Equivalently, z1 and z2 have different
arguments, namely θ1 6= θ2, where e1 = r1e

iθ1 and e2 = r2e
iθ2 .

Definition 12.8. A torus T 2 is quotient C/L. Thus, a point [z] ∈ T 2

is an equivalence class of a point z ∈ C:

[z] = z + L,

namely the coset for the usual addition in C.

Such a torus is sometimes called an elliptic curve.
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Lemma 12.9. The torus comes equipped with a natural addition on
torus inherited from C. Namely, if [z1], [z2] ∈ T 2, then

[z1] + [z2] = [z1 + z2]

Proof. The addition is at the level of the representative complex num-
bers. �

Viewing C as R2, we can speak of orientation of a selfmap. A nonsin-
gular linear selfmap of R2 is called orientation-preserving if the determi-
nant of the matrix representing it is positive, and orientation-reversing
otherwise. An affine transformation f of the form f(x) = Ax + v is
called orientation-preserving if A is.

Example 12.10. Complex conjugation is orientation reversing; trans-
lation by z0 ∈ C is orientation preserving; multiplication by eiθ (rota-
tion) is orientation preserving.

Definition 12.11. Orientation of a selfmap σ : T 2 → T 2 is inherited
from orientation of selfmap of C.

Example 12.12. A translation on C induces a self-map of the torus
C/L.

Definition 12.13. Gaussian lattice LG is the lattice of points with
integer coordinates:

LG = {z ∈ C : z = n+ im, n,m ∈ N}.

Definition 12.14. Translation by z0 in C/LG is called rational if there
is an n ∈ N such that

nz0 ∈ LG.

A more detailed proof of Poncelet’s porism. Let C and D be the conics
of Poncelet’s porism. Let p be a point of the projective plane P = CP

2

and ℓ a line of the dual projective plane, denoted P ∗. The key tool is
the curve X ⊂ P × P ∗ defined as follows. We set

X = {(p, ℓ) ∈ P × P ∗ : p ∈ C, ℓ tangent to D, p ∈ ℓ} .

Then X is a smooth elliptic curve. We define an involution

σ : X → X σ(p, ℓ) = (p′, ℓ),

where p′ is the other point of intersection of ℓ with C. Such a point
exists by Lemma 12.5.
We define a second involution τ : X → X, by setting

σ : X → X σ(p, ℓ) = (p, ℓ′),
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where ℓ′ is the other tangent from p to D. Such a tangent exists by
Lemma 12.6. We have a natural addition on X as in Lemma 12.9. It
turns out that the composition

τ ◦ σ : X → X

is a translation. The hypothesis of Poncelet’s porism asserts that the
map (τ ◦ σ)n has a fixed point. But a translation having a fixed point,
is necessarily the identity. Thus, τσ is a rational translation of Defini-
tion 12.14.
Translated back into the language of the conics C and D, this means

that if one point on C gives rise to an orbit that closes up (i.e. gives
an n-gon), then every point does, as well. �
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