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CHAPTER 1

Analytic geometry

(1) At http://u.math.biu.ac.il/~katzmik/88-201.html you
will find the course site.

(2) There you will find this choveret in English as well as tirgul
notes by Atia in Hebrew.

(3) The final exam is 90% of the grade, bochan and targil 10%.
(4) The homework assignments can be found at the course site.
(5) Feel free to ask questions via email: katzmik@math.biu.ac.il

1.1. Circle, sphere, great circle distance

We will deal with classical geometric results including

(1) the theorema egregium of Gauss, and
(2) the Gauss–Bonnet theorem.

We will first review some familiar objects from classical geometry
and try to point out the connection with important themes in modern
mathematics.

Definition 1.1.1. The unit circle S1 in the plane is the locus of
the equation

x2 + y2 = 1

in the (x, y)-plane.

In set-theoretic notation, we write

S1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
.

The circle solves the isoperimetic problem in the plane. Namely, con-
sider simple (non-self-intersecting) closed curves of equal perimeter, for

9
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10 1. ANALYTIC GEOMETRY

instance a polygon. Among all such curves, the circle is the curve that
encloses the largest area.1 2 3

Definition 1.1.2. The 2-sphere S2 is a surface that is the collection
of unit vectors in 3-sphace:

S2 =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
.

Definition 1.1.3 (Great circle). A great circle of S2 is the inter-
section of the sphere with a plane passing through the origin.

Example 1.1.4. The equator is an example of a great circle.

Definition 1.1.5 (Great circle distance on S2). Let p, q ∈ S2. The
great circle distance d(p, q) on S2 is the distance measured along the
arcs of great circles connecting a pair of points p, q ∈ S2:

d(p, q) = arccos (p · q),
where p · q is the usual dot product in Euclidean space.

Then (S2, d) is a metric space in the sense of the course Infi 3.

Remark 1.1.6. The distance between a pair of points p, q ∈ S2

is the length of the smaller of the two arcs of the great circle passing
through p and q. In Theorem 6.10.10 we will prove that this arc is the
minimal distance between p and q among all curves on S2 joining p
and q. In other words, the arc is length-minimizing among all paths
between a pair of points on the sphere.

1metzula
2In other words, the circle satisfies the boundary case of equality in the following

inequality, known as the isoperimetric inequality. Let L be the length of the Jordan
curve and A the area of the finite region bounded by the curve.

Theorem. Every Jordan curve in the plane satisfies the inequality
(

L
2π

)2−A
π ≥

0, with equality if and only if the curve is a round circle.
3The round circle is the subject of Gromov’s filling area conjecture. The Rie-

mannian circle of length 2π is a great circle of the unit sphere, equipped with
the great-circle distance. The emphasis is on the fact that the distance is mea-
sured along arcs rather than chords (straight line intervals). For all the apparent
simplicity of the Riemannian circle, it turns out that it is the subject of a still-
unsolved conjecture of Gromov’s, namely the filling area conjecture. A surface
with a single boundary circle will be called a filling of that circle. We now con-
sider fillings of the Riemannian circles such that the ambient distance does not
diminish the great-circle distance (in particular, filling by the flat unit disk is not
allowed). M. Gromov conjectured that Among all fillings of the Riemannian circles
by a surface, the hemisphere is the one of least area. Partial progress was obtained
in [BCIK05].
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Remark 1.1.7. Key concepts of differential geometry that we hope
to clarify in our course are the notions of

(1) geodesic curve and
(2) curvature.

Remark 1.1.8. In relativity theory, one uses a framework similar
to classical differential geometry, with a technical difference having to
do with the basic quadratic form being used. Nonetheless, some of
the key concepts, such as geodesic and curvature, are common to both
approaches. In the first approximation, one can think of relativity
theory as the study of 4-manifolds with a choice of a

“light cone”4

at every point. Albert Einstein gave a strong impetus to the develop-
ment of differential geometry, as a tool in studying general relativity.
We will systematically use

Einstein’s summation convention;

see Section 1.3. See also Sachs and Wu [Sachs]. More sources can be
found at https://mathoverflow.net/questions/217565.

1.2. Linear algebra, dual viewpoint, index notation

Linear algebra provides an indispensable foundation for our subject.
Key concepts here are

(1) linear map, and
(2) bilinear form

(see Remark 1.2.3). It is important to develop a facility with Einstein
summation convention (treated in detail in Section 1.3). This notation
will be exploited throughout the course.

Let Rn denote the Euclidean n-space. Its vectors will be denoted

v, w ∈ Rn.

Definition 1.2.1 (Column vectors). A vector in Rn is a column
vector v. To obtain a row vector we take the transpose, vt.

Definition 1.2.2. Let Mn,n(R) be the space of n by n matrices.

Let B ∈Mn,n(R) be an n by n matrix.

Remark 1.2.3 (Two ways). There are two ways of viewing a ma-
trix B, either as

(1) a linear map (see Definition 1.2.4) or
(2) a bilinear form (see Section 1.5).

4konus ha’or

https://mathoverflow.net/questions/217565


12 1. ANALYTIC GEOMETRY

Developing suitable notation to capture this distinction helps simplify
differential-geometric formulas down to readable size, and also to mo-
tivate the important distinction between a vector and a covector.

We start with the viewpoint of bilinear form, less familiar from the
course Linearit 2.

Definition 1.2.4 (Matrix B as a bilinear form B(v, w)). Consider
a bilinear form

B(v, w) : Rn × Rn → R, (1.2.1)

sending the pair of vectors (v, w) to the real number

vtBw. (1.2.2)

Here vt is the row vector given by transpose of v. We write

B =
(
bij
)
i=1,...n
j=1,...,n

Remark 1.2.5 (Notation). Here bij is an individual entry, whereas (bij),
with parentheses, denotes the matrix itself.

Example 1.2.6. In the 2 by 2 case, we have

v =

(
v1

v2

)
, w =

(
w1

w2

)
, B =

(
b11 b12
b21 b22

)
.

Then we multiply B by w to obtain

Bw =

(
b11 b12
b21 b22

)(
w1

w2

)
=

(
b11w

1 + b12w
2

b21w
1 + b22w

2

)
.

Note that the transpose vt = (v1 v2) is a row vector. We therefore
calculate the product (1.2.2) to obtain

B(v, w) = vtBw

= (v1 v2)

(
b11w

1 + b12w
2

b21w
1 + b22w

2

)

= b11v
1w1 + b12v

1w2 + b21v
2w1 + b22v

2w2,

and hence vtBw =
∑2

i=1

∑2
j=1 bijv

iwj.

We would like to simplify this notation by suppressing the summa-
tion symbols “Σ”. The details appear in Section 1.3.
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1.3. Einstein summation convention

The following useful notational device was originally introduced by
Albert Einstein.

Definition 1.3.1 (Repeated upper and lower index). The rule is
that

whenever a product contains a symbol with a certain
lower index and another symbol with the same upper
index, take summation over this repeated index

(even though the summation symbol Σ is not present).

Example 1.3.2. Using this notation, the bilinear form (1.2.1) de-
fined by the matrix B can be written as follows:

B(v, w) = bijv
iwj,

with implied summation over both indices i and j.

To avoid any risk of ambiguity when using the Einstein summation
convention, we use underlining as follows. When we wish to consider
a specific term such as ai times vi rather than the sum over a dummy
index i, we use the underline notation as follows:

Definition 1.3.3 (Underlining). The expression

aiv
i

denotes a specific term with specific index value i (rather than sum-
mation over a dummy index i).

1.4. Symmetric matrices, quadratic forms, polarisation

Definition 1.4.1 (Quadratic form associated with a matrix). LetB
be a symmetric matrix: Bt = B. The associated quadratic form Q is a
quadratic form associated with a bilinear form B(v, w) by the following
rule:

Q(v) = B(v, v)

for all vectors v.

Let (ei)i=1,...,n = (e1, . . . , en) be the standard basis of Rn. Given a
vector v ∈ Rn, we write it as

v = viei

(with implied summation over the index i, as in Section 1.3). Each of
the components vi is a real number.
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Lemma 1.4.2. Given a symmetric bilinear form as above, the asso-
ciated quadratic form Q satisfies

Q(v) = bijv
ivj

in terms of the Einstein summation convention.

Proof. To compute Q(v), we must introduce an extra index j and
use it for the second occurrence of the vector v:

Q(v) = B(v, v) = B(viei, v
jej) = B(ei, ej)v

ivj = bijv
ivj, (1.4.1)

proving the lemma. �

Theorem 1.4.3 (Polarisation formula). The polarisation formula
asserts that

B(v, w) =
1

4
(Q(v + w)−Q(v − w)).

The polarisation formula allows one to reconstruct the symmetric
bilinear form from the quadratic form.5 For an application, see Sec-
tion 13.10.

1.5. Matrix as a linear map; staggering indices

In the previous section, we worked with a bilinear form associated
with a symmetric matrix B. We now change our point of view, and
work with the endomorphism of Rn defined by B.

Given a real n×n matrix B, consider the associated endomorphism

BR : Rn → Rn, v 7→ Bv.

In order to distinguish this case from the case of the bilinear form, we
will develop a different convention for the coefficients of the matrix.
Namely, we raise the first index of the matrix coefficients. Thus, we
write B as

B = (bij)i=1,...,n; j=1,...,n

where it is important to s t a g g e r the indices as follows.

Definition 1.5.1. Staggering the indices meaning that we do not
place j under i as in

bij,

but, rather, leave a blank space (in the place were j used to be), as in

bij.

5This is true whenever the characteristic of the background field is not 2. Our
base field R has characteristic 0 and therefore the formula applies in this case.
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Consider vectors v = (vj)j=1,...,n and w = (wi)i=1,...,n. Then the
equation w = Bv can be written as a system of n scalar equations,

wi = bijv
j for each i = 1, . . . , n

using the Einstein summation convention (here the repeated index is j).

Definition 1.5.2 (Trace). The usual formula for the trace is given
by Tr(B) = b11 + b22 + · · ·+ bnn. In Einstein notation, this becomes

Tr(B) = bii

(here the repeated index is i).

Remark 1.5.3 (Individual coefficient). If we wish to specify an
individual i-th diagonal coefficient of our matrix B we use the underline
notation

bii

as in Definition 1.3.3 (so as to avoid ambiguity).

1.6. Symmetrisation and antisymmetrisation

In this section, we will deal with symmetrisation and antisymmetri-
sation of a matrix. For this purpose, it is appropriate to return to the
framework of bilinear forms (i.e., both indices are lower indices).

Definition 1.6.1. The transpose Bt of a matrix B = (bij) is the
matrix whose (i, j)-th coefficient is bji.

Remark 1.6.2 (Reflection in diagonal). Geometrically the passage
from B to Bt corresponds to reflection in the main diagonal of the
matrix B.

Definition 1.6.3. Let B = (bij). Its symmetric part S is by defi-
nition

S =
B + Bt

2
=
(
bij+bji

2

)
i=1,...,n
j=1,...,n

The antisymmetric (or skew-symmetric) part A is

A =
B − Bt

2
=
(bij − bji

2

)
i=1,...,n
j=1,...,n

.

Theorem 1.6.4. For each square matrix B, we have B = S + A.

Another useful notation is that of symmetrisation and antisym-
metrisation expressed at the level of indices.
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Definition 1.6.5. Symmetrisation is defined by setting

b{ij} =
1

2
(bij + bji) (1.6.1)

with curly braces,6 and antisymmetrisation by setting

b[ij] =
1

2
(bij − bji). (1.6.2)

Thus, S =
(
b{ij}

)
while A =

(
b[ij]
)
.

Lemma 1.6.6. A matrix B = (bij) is symmetric if and only if for
all indices i and j one has b[ij] = 0.

Proof. We have b[ij] = 1
2
(bij − bji) = 0 since symmetry of B

means bij = bji. �

1.7. Matrix multiplication in index notation

The usual way to define matrix multiplication is as follows. A triple
of matrices

A = (aij), B = (bij), and C = (cij)

satisfy the product relation C = AB if, introducing an additional
summation index k (cf. formula (1.4.1)), we have the relation cij =∑

k

aikbkj.

Example 1.7.1 (Skew-symmetrisation of matrix product). Let us
express the antisymmetric part of the product of two matrices, at the
level of indices. By commutativity of multiplication of real numbers,
we have

aikbkj = bkjaik.

Then the coefficients c[ij] of the skew-symmetrisation of the matrix C =
AB satisfy

c[ij] =
∑

k

bk[jai]k.

Here by definition

bk[jai]k =
1

2
(bkjaik − bkiajk).

Remark 1.7.2. This notational device will be particularly useful
in writing down the theorema egregium of Gauss (see Section 10.10).

Example 1.7.3. Examples of symmetrisation and antisymmetrisa-
tion notation:

6Sograyim mesulsalim or metultalim
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• See Section 6.3, where we will use formulas of type

gmjΓ
m
ik + gmiΓ

m
jk = 2gm{jΓ

m
i}k;

• See Section 9.5 for Li[jL
k
ℓ];

• See Section 10.9 for Γki[jΓ
n
ℓ]m.

We now turn to composition of maps. Recall that a real matrix A
naturally defines an endomorphism AR : Rn → Rn.

Theorem 1.7.4. If A = (aij), B = (bij), and C = (cij) then the
product relation C = AB corresponding to the composition of linear
maps

CR = AR ◦BR

simplifies to the relation

cij = aikb
k
j for all i, j. (1.7.1)

The proof is immediate from the definition of matrix multiplication.

Remark 1.7.5 (Naturality of product of matrices). The index no-
tation we have described reflects the fact that the natural products of
matrices are the ones which correspond to composition of maps.

1.8. Two types of indices: summation index and free index

In expressions of type (1.7.1) it is important to distinguish between
two types of indices: a free index or an summation index.

Definition 1.8.1. An index appearing both as a subscript and a
superscript is called an summation index. The remaining indices are
called free.

A summation index is often referred to as a dummy index in the
literature.

Example 1.8.2. In formula (1.7.1) the index k is a summation
index whereas indices i and j are free indices.

1.9. Kronecker delta and the inverse matrix

The Kronecker delta function δij defined as follows.

Definition 1.9.1. The expression

δij =

{
1 if i = j
0 if i 6= j

is called the Kronecker delta function.

Consider a matrix B = (bij).



18 1. ANALYTIC GEOMETRY

Definition 1.9.2. The inverse matrix B−1 is the matrix

B−1 =
(
bij
)
i=1,...,n
j=1,...,n

where both indices have been raised. This formula serves as the defi-
nition of the indices bij of the inverse matrix.

The identity matrix is denoted I = (δij). Then the equationB−1B =
I becomes

bikbkj = δij for all i, j (1.9.1)

in Einstein notation with repeated index k.

Remark 1.9.3. In (1.9.1) the index k is a summation index whereas i
and j are free indices.

Example 1.9.4. The identity endomorphism I = (δij) by definition

satisfies AI = A = IA for all endomorphisms A = (aij), or equivalently

aijδ
j
k = aik = δija

j
k, (1.9.2)

using the Einstein summation convention.

Remark 1.9.5. In expression (1.9.2) the index j is a summation
index whereas indices i and k are free indices.

Example 1.9.6. Let δij be the Kronecker delta function on Rn,
where i, j = 1, . . . , n. We view the Kronecker delta function as a linear
transformation Rn → Rn.

(1) Simplify the expression δijδ
j
k paying attention to which the

summation indices are;
(2) Simplify the expression δijδ

j
i paying attention to which the

summation indices are.

Remark 1.9.7 (Preservation of free indices: Tip for the exam).
When simplifying an expression involving free and summation indices,
it is important to check that the final expression has the same free
indices as the original expression. It is a common mistake on exams
that can easily be avoided by performing a simple check.

1.10. Vector product in 3-space

We briefly review the following material from linear algebra.

Definition 1.10.1. Given a pair of vectors v = viei and w = wjej
in R3, their vector product is a vector v ×w ∈ R3 satisfying one of the
following two equivalent conditions.
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(1) (algebraic) Let i = e1, j = e2, k = e3. We have v × w =

det



i j k
v1 v2 v3

w1 w2 w3


, in other words,

v × w = (v2w3 − v3w2)i− (v1w3 − v3w1)j + (v1w2 − v2w1)k.

(2) (geometric) the vector v×w is perpendicular to both v and w,
of length equal to the area of the parallelogram spanned by
the two vectors, and furthermore satisfying the right hand
rule,7 meaning that the 3 by 3 matrix formed by the three
vectors v, w, and v × w has positive determinant.

Theorem 1.10.2. We have an identity

a× (b× c) = (a · c)b− (a · b)c (1.10.1)

for every triple of vectors a, b, c in R3.

Note that both sides of (1.10.1) vanish if a is perpendicular to both b
and c.

1.11. Eigenvalues, symmetry

Properly understanding surface theory and related key concepts
such as the Weingarten map (see Section 8.6) depends on certain linear-
algebraic background. Such background is related to diagonalisation.
Diagonalisation can be performed for

(1) a symmetric matrice or, more generally,
(2) a selfadjoint endomorphism.

The following phenomenon was discussed in linear algebra.

Proposition 1.11.1. A real matrix may have no real eigenvector
or eigenvalue.

Example 1.11.2. The matrix of a 90 degree rotation in the plane,
(
0 −1
1 0

)

does not have a real eigenvector for obvious geometric reasons (no
direction is preserved but rather rotated).

In Section 2.1 we will prove the existence of a real eigenvector (and
hence, a real eigenvalue) for a real symmetric matrix as well as a self-
adjoint endomorphism.

7Klal yad yamin
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This fact has important ramifications in surface theory, since the
various notions of curvature of a surface are defined in terms of the
eigenvalues of a selfadjoint endomorphism called the Weingarten map
(see Sections 8.1 and 9.10). Selfadjointness is a coordinate-independent
formulation of the notion of a symmetric matrix. Let

I =



1 0

. . .
0 1




be the (n, n) identity matrix. For the purposes of this section, it will
be convenient to write both indices as subscripts. Thus

I = (δij) i=1,...,n
j=1,...,n

where δij is the Kronecker delta.

Definition 1.11.3. Let B be an (n, n)-matrix. A scalar λ is called
an eigenvalue of B if

det(B − λI) = 0.

Theorem 1.11.4. If λ ∈ R is an eigenvalue of B, then there is a
vector v ∈ Rn, v 6= 0, such that

Bv = λv. (1.11.1)

The proof was given in linear algebra and is not reproduced here.

Definition 1.11.5. A nonzero vector satisfying (1.11.1) is called
an eigenvector belonging to λ.

1.12. Euclidean inner product

Definition 1.12.1. The Euclidean inner product of vectors v, w ∈
Rn is defined by

〈v, w〉 = v1w1 + · · ·+ vnwn =
n∑

i=1

viwi.

Recall that all of our vectors are column vectors.

Lemma 1.12.2. The inner product can be expressed in terms of
matrix multiplication as follows:

〈v, w〉 = vt w.

Recall the following theorem from basic linear algebra.

Theorem 1.12.3. The transpose has the following property:

(AB)t = BtAt.
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Recall the following definition (see Section 1.6).

Definition 1.12.4. A square matrixA is called symmetric ifAt = A.

Lemma 1.12.5. Let B be a real matrix. Then the following two
conditions are equivalent:

(1) B symmetric;
(2) for all v, w ∈ Rn, one has 〈Bv,w〉 = 〈v,Bw〉.
Proof. We have

〈Bv,w〉 = (Bv)tw = vtBtw = 〈v,Btw〉 = 〈v,Bw〉,
proving the direction (1) =⇒ (2). Conversely, if v = ei and w = ej
then 〈Bv,w〉 = bij while 〈v,Bw〉 = bji, proving the other direction
(1)⇐= (2). �





CHAPTER 2

Eigenvalues of symmetric matrices, conic sections

2.1. Finding an eigenvector of a symmetric matrix

In this section we continue with linear-algebraic preliminaries for
the theory of surfaces in Euclidean space. Eigenvalues and eigenvectors
were reviewed in Section 1.11. Let Cn be the standard complex vector
space.

Definition 2.1.1 (Hermitian product). The Hermitian product
on Cn is the product

〈z, w〉 =
n∑

i=1

ziwi ∀z, w ∈ Cn, (2.1.1)

where wi is the complex conjugate of wi.

Thus the Hermitian inner product on Cn is linear in one variable
and skew-linear in the other.1

Lemma 2.1.2. The Hermitian product extends the scalar product
on Rn ⊆ Cn.

Proof. If w is a vector with real components, then w = w. �

Theorem 2.1.3. Every real symmetric matrix possesses a real eigen-
vector.

We will give two proofs of this important theorem. The first proof
is simpler, more algebraic, and passes via complexification. The second
proof is more geometric.

First proof. Let n ≥ 1. Let B ∈ Matn,n(R) be an n × n real
symmetric matrix. As such, it defines a linear map

BR : Rn → Rn, v 7→ Bv

sending a vector v ∈ Rn to the vector Bv. We prove the theorem in
five steps.

1The sum appearing in (2.1.1) is our convention. Some texts adopt the alter-

native convention 〈z, w〉 =∑n
i=1 z

iwi which we will not use.

23
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Step 1. Consider the field extension R →֒ C. Via such an inclusion,
we can view B as a complex matrix B ∈ Matn,n(C). Then the matrix B
defines a complex endomorphism

BC : Cn → Cn

sending a vector v ∈ Cn to the vector Bv.

Step 2. Let 〈 , 〉 be the standard Hermitian inner product in Cn

as in (2.1.1), extending the scalar product in Rn as in Lemma 2.1.2.
Since the matrix B has real coefficients, by Lemma 1.12.5, we obtain
for all z ∈ Cn,

〈Bz, z〉 = 〈z, Bz〉 (2.1.2)

by symmetry B = Bt.

Step 3. Consider the characteristic polynomial

pB(λ) = det(B − λI)

of the endomorphism BC of Cn. Then pB is a polynomial of positive
degree n > 0. By the Fundamental Theorem of Algebra, the polyno-
mial pB possesses a root λ0 ∈ C which is an eigenvalue of B.

Step 4. Let z ∈ Cn be an eigenvector belonging to the eigen-
value λ0, so that Bz = λ0z. Since the Hermitian inner product is
skew-linear in the second variable, equality (2.1.2) gives

〈λ0z, z〉 = 〈z, λ0z〉 = λ0〈z, z〉.

Therefore λ0〈z, z〉 = λ̄0〈z, z〉. Since 〈z, z〉 = |z|2 6= 0, we obtain λ0 =
λ̄0. Thus λ0 is a real eigenvalue.

Step 5. Since λ0 is a real root of pB, there exists a real eigenvec-
tor v ∈ Rn such that Bv = λ0v, as required. �

2.1.1. A geometric proof. The material in this subsection is optional.
The second proof is somewhat longer but has the advantage of being more
geometric, as well as more concrete in the construction of the desired eigen-
vector. Let S ⊆ Rn be the unit sphere S = {v ∈ Rn : |v| = 1}. Given a
symmetric matrix B, define a function f(v) = 〈v,Bv〉. We are interested in
its restriction to S, i.e., f : S → R. Let v0 be a maximum of f restricted
to S. We will show that v0 is an eigenvector of B. Let V ⊥

0 ⊆ Rn be the
orthogonal complement of the line spanned by v0. Let w ∈ V ⊥

0 . Consider
the curve v0+ tw, t ≥ 0 (see also a different choice of curve in Remark 2.1.4
below). Then d

dt

∣∣
t=0

f(v0 + tw) = 0 since v0 is a maximum and w is tangent
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to the sphere. Now

d

dt

∣∣∣
0
f(v0 + tw) =

d

dt

∣∣
0
〈v0 + tw,B(v0 + tw)〉

=
d

dt

∣∣
0
(〈v0, Bv〉+ t〈v0, Bw〉+ t〈w,Bv0〉+ t2〈w,Bv〉)

= 〈v0, Bw〉+ 〈w,Bv0〉
= 〈Bw, v0〉+ 〈Bv0, w〉
= 〈Btv0, w〉+ 〈Bv0, w〉
= 〈(Bt +B)v0, w〉
= 2〈Bv0, w〉 by symmetry of B.

Thus 〈Bv0, w〉 = 0 for all w ∈ V ⊥
0 . Hence Bv0 is proportional to v0 and

so v0 is an eigenvector of B.

Remark 2.1.4. Our calculation used the curve v0 + tw which, while
tangent to S at v0 (see section 6.9), does not lie on S. Therefore one needs
to use instead the curve (cos t)v0 + (sin t)w lying on S. Then

d

dt

∣∣∣
t=0
〈(cos t)v0 + (sin t)w,B((cos t)v0 + (sin t)w)〉 = · · · = 〈(Bt +B)v0, w〉

and one argues by symmetry as before. Alternatively, one could note that
the derivative is independent of the choice of curve representing the vector
and therefore the original choice of linear curve is valid, as well.

2.2. Trace of product of matrices in index notation

First we reinforce the material on index notation and Einstein sum-
mation convention defined in Section 1.3. The following result is impor-
tant in its own right. We reproduce it here because its proof is a good
illustration of the uses of the Einstein index notation. Recall (Defini-
tion 1.5.2) that the trace of a square matrix A = (aij) is tr(A) = akk.
Here k is a summation index (any other letter could have been used in
place of k).

Theorem 2.2.1. Square matrices A and B of the same size sat-
isfy tr(AB) = tr(BA).

Proof. Let A = (aij) and B = (bij). Then

AB =
(
aikb

k
j

)
i=1,...,n
j=1,...,n

By definition of trace (see Definition 1.5.2), we obtain

tr(AB) = aikb
k
i. (2.2.1)

Similarly,
tr(BA) = tr

(
bkia

i
j

)
= bkia

i
k = aikb

k
i. (2.2.2)
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Comparing the outcomes of calculations (2.2.1) and (2.2.2) we conclude
that tr(AB) = tr(BA). �

Further exercises are in the note.2

2.3. Inner product spaces and self-adjoint endomorphisms

In Section 2.1 we worked with real matrices and showed that the
symmetry of a matrix guarantees the existence of a real eigenvector.
In a more general situation where a natural basis is not available, a
similar statement holds for a special type of endomorphism of a real
vector space with an inner product.

Definition 2.3.1 (selfadjoint endomorphism). Let (V, 〈 , 〉) be
a real inner product space. An endomorphism B : V → V is called
selfadjoint if one has

〈Bv,w〉 = 〈v,Bw〉 ∀v, w ∈ V. (2.3.1)

The following is a consequence of Theorem 2.1.3.

Corollary 2.3.2. Every selfadjoint endomorphism of a real inner
product space admits a real eigenvector.

Proof. The selfadjointness was the relevant property in the proof
of Theorem 2.1.3 on symmetric matrices. �

We will apply Corollary 2.3.2 to the Weingarten map in Section 8.8.

2.4. Orthogonal diagonalisation of symmetric matrices

Our goal is to orthogonally diagonalize a real symmetric matrix,
viewed as a self-adjoint endomorphism of Euclidean space. More gen-
erally, let (V, 〈 , 〉) be a real inner product space. Consider an endo-
morphism E : V → V .

Definition 2.4.1 (invariant subspace). A subspace U ⊆ V is in-
variant under E if E(U) ⊆ U .

In other words, for every x ∈ U , one has E(x) ∈ U , as well.
2Exercises on idempotent and similar matrices:

Exercise 2.2.2. A matrix A is called idempotent if A2 = A. Write down
the idempotency condition in indices with Einstein summation convention (with-
out Σ’s), keeping track of free indices and internal summation indices.

Exercise 2.2.3. Matrices A and B are similar if there exists an invertible
matrix P such that AP −PB = 0. Write the similarity condition in indices, as the
vanishing of each (i, j)th coefficient of the difference AP − PB.
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Definition 2.4.2. The orthogonal complement O ⊆ V of a sub-
space U ⊆ V is defined by O = {x ∈ V : 〈x, u〉 = 0 ∀u ∈ U}.

Definition 2.4.3 (Orthogonal decomposition). Such a situation is
represented by the formula

V = U +O

referred to as an orthogonal decomposition of V .

Example 2.4.4. Let U ⊆ R3 be the (x, y)-plane. Then its orthog-
onal complement is the z-axis: O = Re3, and R3 = U +O.

The following theorem is known from linear algebra.

Theorem 2.4.5. If U and O are orthogonal complements of each
other in V then dimV = dimU + dimO.

Example 2.4.6 (Generalisation of Example 2.4.4). Assume that
a, b, c ∈ R are not all 0. The orthogonal complement of the plane

U = {(x, y, z) : ax+ by + cz = 0}
in R3 is the line O spanned by the vector (a, b, c)t 6= 0.

Lemma 2.4.7. Let E : V → V be a selfadjoint endomorphism of an
inner product space V . Suppose U ⊆ V is an E-invariant subspace.
Then the orthogonal complement of U in V is also E-invariant.

Proof. Let w be orthogonal to the subspace U ⊆ V . We need to
show that E(w) also belongs to the orthogonal complement O. Let u ∈
U be an arbitrary vector. Then by selfadjointness,

〈E(w), u〉 = 〈w,E(u)〉 = 0

since E(u) ∈ U by E-invariance. Therefore the vector E(w) is also
orthogonal to the vector u. Since this is valid for all u ∈ U , we ob-
tain E(w) ∈ O. Hence O is E-invariant, as required. �

Definition 2.4.8 (Orthogonal matrices). A real square matrix P
is orthogonal if PP t = I, i.e., P−1 = P t.

Theorem 2.4.9. Every real symmetric matrix can be orthogonally
diagonalized.

Proof. The proof will use self-adjoint endomorphisms and invari-
ant subspaces. A symmetric n × n matrix S ∈ Matn,n(R) defines a
selfadjoint endomorphism SR of the real inner product space V = Rn.
The endomorphism is given by

SR : V → V, v 7→ Sv.
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We will give a proof in five steps.

Step 1. By Corollary 2.3.2, every selfadjoint endomorphism has a real
eigenvector v1 ∈ V , which we can assume to be a unit vector:

|v1| = 1.

Let λ1 ∈ R be its eigenvalue.

Step 2. We inductively construct a sequence of nested invariant sub-
spaces as follows. Let V1 = V . We let

V2 ⊆ V1

be the orthogonal complement of the line Rv1 ⊆ V1. Thus we have an
orthogonal decomposition

V1 = Rv1 + V2.

By Lemma 2.4.7, the subspace V2 is invariant under the endomor-
phism SR.

Step 3. Consider the restriction

SR⇂V2

of SR to V2. Note that V2 does not possess a natural basis (it is for this
reason that we needed to formulate the proof in the greater generality
of inner product spaces). The restriction SR⇂V2 is still selfadjoint by
inheriting the property (2.3.1) restricted to V2. Namely, since prop-
erty (2.3.1) holds for all vectors v, w ∈ V , in particular it holds if these
vectors are constrained to vary in a subspace V2 ⊆ V . Thus we have

〈SRv, w〉 = 〈v, SRw〉 ∀v, w ∈ V2. (2.4.1)

Since the restricted endomorphism SR⇂V2 is still selfadjoint, we can

apply Corollary 2.3.2 to SR⇂V2 : V2 → V2. As in Step 2, we find a unit

eigenvector v2 ∈ V2 of SR⇂V2 with eigenvalue λ2 ∈ R. Let V3 ⊆ V2 be
the orthogonal complement of the line Rv2 spanned by v2, so that

V2 = Rv2 + V3.

Next we choose an eigenvector v3 ∈ V3, etc. Arguing inductively, we
obtain a strictly decreasing, or nested,3 sequence of spaces

V1 ⊃ V2 ⊃ V3 ⊃ . . . ⊃ Vi ⊃ . . . ⊃ {0}
which necessarily terminates with a point since V1 is finite-dimensional.

3mekunenet
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Step 4. We thus obtain an orthonormal basis consisting of unit eigen-
vectors v1, . . . , vn ∈ Rn. These vectors belong respectively to the eigen-
values λ1, . . . , λn ∈ R of the endomorphism SR. Let

P = [v1 . . . vn]

be the orthogonal n×n matrix whose columns are the vectors vi. Then
we have

P−1 = P t. (2.4.2)

Step 5. Consider the diagonal matrix Λ = diag(λ1, . . . , λn). By con-
struction, we have

S = PΛP t

from (2.4.2), or equivalently,

SP = PΛ. (2.4.3)

Indeed, to verify the relation (2.4.3), note that both sides of (2.4.3) are
equal to the square matrix [λ1v1 λ2v2 . . . λnvn]. Thus the matrix S
has been orthogonally diagonalized. �

2.5. Classification of conic sections: diagonalisation

We will now apply the linear-algebraic tools developed in the pre-
vious sections in order to classify conic sections in the plane up to
orthogonal transformations (rotations) and translations of the plane.

Definition 2.5.1. A conic section4 (or conic for short) in the plane
is by definition a curve defined by the following master equation (gen-
eral equation) in the (x, y)-plane:

ax2 + 2bxy + cy2 + dx+ ey + f = 0, a, b, c, d, e, f ∈ R. (2.5.1)

The relation of this definition to the historic definition of conic
sections is discussed in Remark 2.7.6. Here we chose the coefficient of
the xy term to be 2b rather than b so as to simplify formulas like (2.5.2)
below.5

Example 2.5.2. We have the following examples of conic sections:

4chatach charut
5One can also consider the projectivisation of the conic, namely the locus in

projective coordinates of the equation ax21+2bx1x2+cx
2
2+dx1x3+ex2x3+fx

2
3 = 0

where a, b, c, d, e, f ∈ R, and not all three coordinates vanish. Here the relevant ma-

trix is



a b d

2
b c e

2
d
2

e
2 f


. If the matrix is invertible, it is either (1) definite or (2) indefi-

nite, i.e., has both positive and negative eigenvalues. In the first case, the projective
conic is empty. In the second case, it is unique up to projective transformation.
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(1) a circle x2 + y2 − 1 = 0,
(2) an ellipse x2 + 3y2 − 1 = 0,
(3) a parabola x2 + y = 0,
(4) a hyperbola 2xy + 1 = 0,
(5) a hyperbola x2 − 5y2 − 1 = 0.

Consider again the master equation (2.5.1). Let us write it in vector

form. Let X =

(
x
y

)
and let

S =

(
a b
b c

)
. (2.5.2)

Then X tSX = ax2 + 2bxy + cy2. The master equation can then be
re-written as

X tSX + dx+ ey + f = 0. (2.5.3)

We can now eliminate the mixed term xy as follows.

Theorem 2.5.3. Up to an orthogonal transformation resulting in
new coordinates (x′, y′), every conic section as in (2.5.3) can be written
in a “diagonal” form

λ1x
′ 2 + λ2y

′ 2 + d′x′ + e′y′ + f = 0, (2.5.4)

where the coefficients λ1 and λ2 are the eigenvalues of the matrix S
of (2.5.2).

Proof. We give a proof in four steps.

Step 1. Consider the row vector

T =
(
d e

)
.

Then TX = dx+ ey. Thus equation (2.5.1) becomes

X tSX + TX + f = 0. (2.5.5)

Step 2. We apply Theorem 2.4.9 to orthogonally diagonalize the sym-
metric matrix S to obtain S = PΛP t with

Λ =

(
λ1 0
0 λ2

)
. (2.5.6)

Substituting this expression for S into (2.5.5) yields

X tPΛP tX + TX + f = 0.

Step 3. We set X ′ = P tX. Then X = PX ′ since the matrix P is
orthogonal. Furthermore, we have

(X ′)t = (P tX)t = (X t)(P t)t = (X t)P.
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Hence we obtain the equation

(X ′)tΛX ′ + TPX ′ + f = 0.

Step 4. Letting T ′ = TP , we obtain

(X ′)tΛX ′ + T ′X ′ + f = 0,

where Λ is the diagonal matrix of (2.5.6). Letting x′ and y′ be the

components of X ′, i.e. X ′ =

(
x′

y′

)
, and T =

(
d′ e′

)
, we obtain for-

mula (2.5.4), as required. �

Example 2.5.4. The hyperbola 2xy − 1 = 0 is not in “diagonal”

form. The corresponding matrix S is S =

(
0 1
1 0

)
. Here the eigen-

values are λ1 = 1 and λ2 = −1. By Theorem 2.5.3 we obtain the
“diagonal” equation

x′2 − y′2 − 1 = 0

in the new coordinates (x′, y′). The result could be obtained directly

by using the substitution x = x′+y′√
2

and y = x′−y′√
2
.

To obtain more precise information about the conic, we need to
specify certain nondegeneracy conditions, as discussed in Section 2.6.

2.6. Classification of conics: trichotomy, nondegeneracy

We apply the diagonalisation result of Section 2.5 to classify conic
sections into three types (under suitable nondegeneracy conditions):
ellipse, parabola, hyperbola. Such a result can be referred to as tri-
chotomy.6 Let S be the matrix (2.5.2).

Theorem 2.6.1. If S is invertible then, up to an orthogonal trans-
formation and a translation, the conic section can be written in the
form

λ1(x
′′)2 + λ2(y

′′)2 + f ′′ = 0 (2.6.1)

where λ1 and λ2 are the eigenvalues of S.

Note that the coefficients λ1 and λ2 are the same as in (2.5.4) but
the constant term is changed from f to f ′′.

6trichotomia
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Proof. If S is invertible then both eigenvalues λ1, λ2 are nonzero.
The term d′x′ in (2.5.4) can be absorbed into the quadratic term λ1x

′2

by completing the square as follows. We write

λ1x
′2 + d′x′ = λ1

(
x′2 + 2

d′

2λ1
x′
)

= λ1

(
x′2 + 2

d′

2λ1
x′ +

(
d′

2λ1

)2
)
− λ1

(
d′

2λ1

)2

= λ1

(
x′ +

d′

2λ1

)2

− d′2

4λ1
.

Then we set

x′′ = x′ +
d′

2λ1
.

Similarly e′y′ can be absorbed into λ2y
′2. Geometrically this corre-

sponds to a translation along the axes x′ and y′. The constant term f
is modified to f ′′ by absorbing the constant term − d′2

4λ1
and a similar

term for λ2, proving the theorem. �

Definition 2.6.2 (Hyperbola). A conic section of type (2.6.1) is
called a hyperbola if λ1λ2 < 0, provided the following nondegeneracy
condition is satisfied: the constant f ′′ in equation (2.6.1) is nonzero.

Corollary 2.6.3 (Degenerate case). Assume det(S) < 0. If the
constant f ′′ in (2.6.1) is zero, then instead of a hyperbola, the solution
set is a degenerate conic given by a pair of transverse lines.

Remark 2.6.4. The transverse lines as in Corollary 2.6.3 are not
necessarily orthogonal. More specifically, they are orthogonal if and
only if λ1 = −λ2.

Definition 2.6.5. A conic section is called an ellipse if λ1λ2 > 0,
provided the following nondegeneracy condition is satisfied: the con-
stant f ′′ in equation (2.6.1) is nonzero and has the opposite sign as
compared to the sign of λ1, i.e., f

′′λ1 < 0.

See Example 12.6.1 for an application. We summarize the degen-
erate elliptic case as follows.

Corollary 2.6.6 (Degenerate case). Assume det(S) > 0.

(1) If f ′′ = 0 then instead of an ellipse one obtains a single point
x′′ = y′′ = 0.

(2) If f ′′ 6= 0 and f ′′ has the same sign as λ1 then the solution set
is empty.
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We summarize our conclusions for the ellipse and the hyperbola in
the following corollary. Recall that the determinant of the matrix S is
the product of its eigenvalues: det(S) = ac− b2 = λ1λ2.

Corollary 2.6.7 (Case det(S) > 0). We have the following rela-
tions between the algebraic equation and the nature of the corresponding
conic:

(1) If the conic ax2 + 2bxy + cy2 + dx + ey + f = 0 is an ellipse
then ac− b2 > 0.

(2) If ac − b2 > 0 and the solution locus is neither empty nor a
single point, then it is an ellipse.

Corollary 2.6.8 (Case det(S) < 0). We have the following rela-
tions between the algebraic equation and the nature of the corresponding
conic:

(1) If the conic ax2 + 2bxy + cy2 + dx+ ey + f = 0 is a hyperbola
then ac− b2 < 0.

(2) If ac− b2 < 0 and the solution locus is not a pair of transverse
lines, then the conic is a hyperbola.

The remaining case det(S) = 0 will be treated in Section 2.7.

2.7. Characterisation of parabolas

We continue analyzing the quadratic curve defined as the locus
of the equation ax2 + 2bxy + cy2 + dx + ey + f = 0. Suppose the

matrix S =

(
a b
b c

)
as in (2.5.2) satisfies det(S) = 0. In this case,

(1) one can diagonalize S as before, but
(2) one cannot necessarily eliminate the linear terms by complet-

ing the square as in the cases of ellipse and hyperbola treated
in Section 2.6.

Therefore we continue working with the equation

λ1x
′2 + λ2y

′2 + d′x′ + e′y′ + f = 0 (2.7.1)

from (2.5.4) where now one of the eigenvalues λi of S vanishes. Note
that diagonalizing S does not depend on S being invertible and only
requires symmetry.

Definition 2.7.1 (Parabola). The conic section (2.7.1) is a parabola
if the following two conditions are satisfied by the coefficients in (2.7.1):

(1) the matrix S is of rank 1 (equivalently, λ1λ2 = 0 and λ1 6= λ2);
(2) either λ1e

′ 6= 0 or λ2d
′ 6= 0.
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Example 2.7.2. If λ1 = 1 and e′ = 1 we obtain the parabola x′2 +
y′ = 0.

Parabolas are nondegenerate conics by definition. The following
corollary describes the remaining degenerate cases.

Corollary 2.7.3 (Degenerate case). Suppose S is of rank 1. Sup-
pose further that after absorbing the linear term in (2.7.1) the equation
becomes λ1x

′′2 + f ′′ = 0 or λ2y
′′2 + f ′′ = 0. Then the solution set is

either empty, a line, or a pair of parallel lines.

Example 2.7.4. We illustrate the three degenerate types by exam-
ples.

(1) The equation x2+1 = 0 has an empty solution set in the (x, y)-
plane.

(2) The equation x2 = 0 has as solution set a single line, namely
the y-axis.

(3) The solution set of the equation x2−1 = 0 is a pair of parallel
lines.

We mention the following result on nondegenerate quadratic curves
for general culture. The result explains the term conic section.

Theorem 2.7.5 (Intersection of a plane and a cone). Every non-
degenerate quadratic curve (ellipse, hyperbola, parabola) given by the
solution set of the equation

ax2 + 2bxy + cy2 + dx+ ey + f = 0

can be represented (up to an orthogonal transformation) by the inter-
section in R3 of a suitable plane and the standard cone defined by the
equation z2 = x2 + y2.

Remark 2.7.6. Some degenerate cases cannot be represented by
such an intersection. For example, the pair of parallel lines occurring
in Corollary 2.7.3 cannot be represented as the intersection of a plane
and the cone, and neither can the empty set.



CHAPTER 3

Quadric surfaces, Hessian, representation of curves

Before we go on to quadric (i.e., quadratic) surfaces, we summarize
the results obtained for quadratic curves in the previous chapter.

3.1. Summary: classification of quadratic curves

The analysis of the cases presented in Sections 2.6 and 2.7 results
in the following classification.

Theorem 3.1.1. Let a, b, c, d, e, f ∈ R, and assume not all of a, b, c
are 0. A real quadratic curve section ax2+2bxy+cy2+dx+ey+f = 0
is represented by one of the following possible sets:

(1) the empty set ∅;
(2) a single point;
(3) union of a pair of transverse lines;
(4) a single line or a pair of parallel lines;
(5) ellipse (and then ac− b2 > 0);
(6) parabola (and then ac− b2 = 0);
(7) hyperbola (and then ac− b2 < 0).

Remark 3.1.2. The first four cases are known as degenerate cases.
A parabola can occur only if ac − b2 = 0. An ellipse can occur only
if ac− b2 > 0. A hyperbola can occur only if ac− b2 < 0.

3.2. Quadric surfaces

Quadric surfaces1 are a rich source of examples. Such example will
help us illustrate basic notions of differential geometry such as Gaussian
curvature and geodesic curve.

Definition 3.2.1. A quadric surfaceM ⊆ R3 is the locus of points
(x, y, z) satisfying the master equation

ax2+2bxy+ cy2+2dxz+fz2+2gyz+hx+ iy+ jz+k = 0, (3.2.1)

where a, b, c, d, f, g, h, i, j, k ∈ R.

1mishtachim ribu’im
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To bring equation (3.2.1) to standard form, we apply an orthogonal
diagonalisation procedure similar to that employed in Section 2.6.

Definition 3.2.2. We define matrices S, X, and T by setting

S =



a b d
b c g
d g f


 , X =



x
y
z


 , T =

(
h i j

)
. (3.2.2)

Then the quadratic part of (3.2.1) becomes X tSX, and the linear
part becomes TX. Then equation (3.2.1) takes the form

X tSX + TX + k = 0 (3.2.3)

as in the case of the curves. In the following theorem, we will drop all
primes ′ so as to avoid cumbersome notation.

Theorem 3.2.3. By means of an orthogonal transformation, the
general equation (3.2.1) of a quadric surface M can be simplified to

λ1x
2 + λ2y

2 + λ3z
2 + dx+ fy + gz + k = 0, (3.2.4)

with new variables x, y, z and new coefficients λ1, λ2, λ3, d, f, g, h ∈ R,2

and the same k as in (3.2.3), where λi, i = 1, 2, 3 are the eigenvalues
of S.

Proof. We orthogonally diagonalize the symmetric matrix S as in
Section 2.5. �

3.3. Case of eigenvalues (+ + +) or (−−−), ellipsoid
Definition 3.3.1. A quadric surface M is an ellipsoid if the fol-

lowing three conditions are satisfied:

(1) the coefficients λi, i = 1, 2, 3 in equation (3.2.4) are all nonzero
(i.e., det(S) 6= 0);

(2) all three have the same sign; and
(3) the solution locus is neither a single point nor the empty set.

An ellipsoid is by definition nondegenerate.

Theorem 3.3.2. Suppose detS 6= 0 in the master equation (3.2.3)
a quadric surface M . Then

(1) an orthogonal transformation and translation of the coordi-
nates reduce the equation to the form

λ1x
2 + λ2y

2 + λ3z
2 + ℓ = 0,

for new variables x, y, z.

2We do not add ′ to the variables and constants so as to avoid encumbering
the formula unnecessarily.
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(2) If in addition the eigenvalues have the same sign, the following
three cases can then occur for the quadratic surface:
(a) an ellipsoid if λ1ℓ < 0;
(b) a degenerate surface given by a single point if ℓ = 0;
(c) the empty set when λ1ℓ > 0.

Proof. By Theorem 3.2.3 there exists an orthogonal transforma-
tion diagonalizing S. Next, we use the nonvanishing of the eigenvalues
to complete the square as in Section 2.6, so as to eliminate the first-
order term T in equation (3.2.3). �

Example 3.3.3. We have the following examples of ellipsoids:

(1) the equation 3x2 + 5y2 + 7z2 − 1 = 0 defines an ellipsoid;
(2) equivalently −3x2− 5y2− 7z2 +1 = 0 gives the same ellipsoid

as in (1);
(3) the equation 3x2 +5y2 +7z2 = 0 degenerates to a single point

(the origin),
(4) equation 3x2 + 5y2 + 7z2 + 1 = 0 is the empty degenerate

quadric surface.

3.4. Determining type of quadric surface: explicit example

To present an application of Theorem 3.3.2, let us calculate out an
explicit example. Consider the surfaceM ⊆ R3 defined by the equation

3x2 + y2 − 2xz + 3z2 − 5 = 0. (3.4.1)

Let us determine the type of surface it is.

Step 1. The corresponding symmetric matrix S ∈ Mat3,3(R) is

S =




3 0 −1
0 1 0
−1 0 3




and defines a self-adjoint endomorphism SR : R3 → R3.

Step 2. Note that the equation is partly diagonalized already be-
cause there are no xy or yz terms. Thus the y-axis is an invariant
subspace of S. Namely, the y-axis is the eigenspace of the eigen-
value λ1 = +1, so that Se2 = e2. Its orthogonal complement, the (x, z)-
plane, is also invariant under S by Lemma 2.4.7, or simply by inspec-
tion. Thus we obtain an S-invariant decomposition

R3 = Span(e1, e3) + Re2.
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Step 3. To find the remaining two eigenvalues of S, we restrict the
endomorphism to the (x, z) plane. Here we obtain the equation

3x2 − 2xz + 3z2 − 5 = 0. (3.4.2)

We therefore focus on diagonalizing the quadratic part 3x2− 2xz+3z2

of (3.4.2). Consider the corresponding symmetric matrix

C =

(
3 −1
−1 3

)
.

Here we deliberately use C instead of S so as to avoid confusion with
the 3 × 3 matrix above. The 2 × 2 matrix C has characteristic poly-
nomial pC(λ) = λ2 − 6λ + 8. Its roots are 3 ±

√
9− 8 = 3 ± 1. Both

roots λ2 = 2 and λ3 = 4 are positive.

Step 4. According to the general theory in dimension 2, we obtain
that, after an orthogonal transformation and with respect to the new
coordinates x′, z′, equation (3.4.2) becomes

2x′2 + 4z′2 − 5 = 0.

In the notation of Chapter 2, we obtain a diagonal matrix Λ =

(
2 0
0 4

)

diagonalizing C. Note that this diagonalisation procedure does not af-
fect the constant term, which remains unchanged. Since we are only
interested in the eigenvalues, there is no need to determine the new
coordinates x′, z′ explicitly (which would involve calculating the eigen-
vectors and finding the orthogonal matrix P ).

Step 5. With respect to the new triple of coordinates (y, x′, z′),
the equation of the quadric surface M of (3.4.1) takes the form

y2 + 2x′ 2 + 4z′ 2 − 5 = 0.

Namely, we obtain a diagonal matrix Λ =



1 0 0
0 2 0
0 0 4


 diagonalizing S.

Notice that all three eigenvalues 1, 2, 4 of the original matrix S are
positive. Furthermore, the solution set is neither a point nor the empty
set since the constant term ℓ = −5 is negative. By Theorem 3.3.2 (or
Definition 3.3.1), M is an ellipsoid.

3.5. Case of eigenvalues (−++) or (−−+), hyperboloid

Let S be a symmetric matrix as in (3.2.2) with eigenvalues λi,
i = 1, 2, 3. As in Section 3.4 we assume that detS = λ1λ2λ3 6= 0.
In this section, we assume that

not all eigenvalues are of the same sign.
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Remark 3.5.1. To fix ideas, we can order the eigenvalues in in-
creasing (more precisely, non-decreasing) order:

λ1 ≤ λ2 ≤ λ3.

Then λ1 < 0 and λ3 > 0.

Definition 3.5.2 (Degenerate quadratic surface: cone). Assume
that not all eigenvalues have the same sign. Then

(1) The solution set of the homogeneous equation

λ1x
2 + λ2y

2 + λ3z
2 = 0 (3.5.1)

is called a cone;
(2) A surface defined by an equation reducible to (3.5.1) by an

orthogonal transformation and translation is similarly called a
cone.

Example 3.5.3. The equation x2 + y2− z2 = 0 defines a cone, and
similarly the equation −x2 − y2 + z2 = 0 defines (the same) cone.

Definition 3.5.4. Assume for convenience that λ1 ≤ λ2 ≤ λ3. A
quadric surface M is a hyperboloid if λ1 < 0 and λ3 > 0, and M is not
a cone.

A hyperboloid is nondegenerate by definition.

Theorem 3.5.5. Suppose det(S) 6= 0 in the master equation of a
quadric surface M .

(1) If all eigenvalues have the same sign and M is neither the
empty set nor single point, then M is an ellipsoid;

(2) if the eigenvalues include both positive and negative values
and M is not a cone, then M is a hyperboloid.

Proof. We apply orthogonal diagonalisation to S, obtaining a di-
agonal matrix

Λ =



λ1 0 0
0 λ2 0
0 0 λ3


 .

Then we use the hypothesis that the eigenvalues do not vanish to
complete the square so as to eliminate the linear term T as in Sec-
tion 2.6. �

One distinguishes two types of hyperboloids as follows.
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Definition 3.5.6 (One-sheeted hyperboloid). The hyperboloid of
one sheet3 is the locus of the equation

az2 = bx2 + cy2 − d
where a > 0, b > 0, c > 0, d > 0 (or all negative).

Remark 3.5.7. The Gaussian curvature (see Section 9.5) of a hy-
perboloid of one sheet is negative at each point: K < 0.

Definition 3.5.8 (Two-sheeted hyperboloid). The hyperboloid of
two sheets4 is the locus of the equation

az2 = bx2 + cy2 + d

where a > 0, b > 0, c > 0, d > 0 (or all negative).

Remark 3.5.9. The Gaussian curvature of a hyperboloid of two
sheets is positive at each point: K > 0.

Definition 3.5.10 (Alternative definition). Hyperboloid of k sheets,
where k is 1 or 2, is the locus of the equation

az2 = bx2 + cy2 + (−1)kd
where a > 0, b > 0, c > 0, d > 0 (or all negative).

Remark 3.5.11 (Sign of determinant is insignificant). In this di-
mension (unlike the case of conic sections), the sign of the deter-
minant det(S) has no significance and cannot be used to determine
whether the surface M is an ellisoid or a hyperboloid, or which type of
hyperboloid M is.

3.6. Case rank(S) = 2; paraboloid, hyperbolic paraboloid

Now suppose that rank(S) = 2 in the master equation of a quadric
surface. This occurs if precisely two of the three eigenvalues are nonzero.
We study quadric surfaces

X tSX + TX + k = 0 (3.6.1)

in the case when S has rank 2.

Theorem 3.6.1. Suppose matrix S in (3.6.1) has rank(S) = 2. Up
to orthogonal transformation and translation, the quadric surface M
defined by X tSX + TX + k = 0 takes the form

λ1x
2 + λ2y

2 + cz + d = 0, (3.6.2)

with new variables x, y, z and new coefficients c, d, where λ1λ2 6= 0.

3chad-yeriati
4du-yeriati



3.6. CASE RANK(S) = 2; PARABOLOID, HYPERBOLIC PARABOLOID 41

Proof. We orthogonally diagonalize the matrix as before. We
relabel the new coordinates as x, y, z in such a way that

(1) the eigendirections for the nonzero eigenvalues λ1 and λ2 cor-
respond to the x-axis and the y-axis, and

(2) the zero eigenvalue corresponds to the z-axis.

Thus, orthogonally diagonalizing S we obtain the matrix

Λ =



λ1 0 0
0 λ2 0
0 0 0




Next, we eliminate the linear terms in x and y by absorbing them
into the respective quadratic term by completing the square as in Sec-
tion 2.6. �

Note that the linear term in z cannot be eliminated because the
third eigenvalue vanishes.

Definition 3.6.2 (Paraboloid). If c 6= 0 in equation (3.6.2), the
corresponding nondegenerate quadric surface M is called a paraboloid
(of one of two types as detailed below).

Additional special cases of quadric surfaces are the following.

Remark 3.6.3. It is important to think through each of these ex-
amples as they will provide important illustrations of the behavior of
the Gaussian curvature (to be introduced in Section 9.5) of surfaces.

Definition 3.6.4. The (elliptic) paraboloid is the quadratic sur-
face z = ax2 + by2 + d, where ab > 0.

The Gaussian curvature of the paraboloid is positive at each point.

Definition 3.6.5. The hyperbolic paraboloid is the quadratic sur-
face z = ax2 − by2 + d, where ab > 0.

The Gaussian curvature of the hyperbolic paraboloid5 is negative
at each point. See Figures 3.6.1, 3.6.2, 3.6.3.

Corollary 3.6.6. Consider the surface

M =
{
(x, y, z) ∈ R3 : z = ax2 + by2

}
where ab 6= 0.

If ab > 0 then M is a (elliptic) paraboloid. If ab < 0 then M is a
hyperbolic paraboloid.

This is immediate from the discussion above.
5In the appendix on surfaces to the second volume of his Introductio in analysin

infinitorum (1748), Euler gave a complete geometric classification of quadrics, and
it is there that we meet the hyperbolic paraboloid for the first time. See https://
hsm.stackexchange.com/questions/15834 for details.

https://hsm.stackexchange.com/questions/15834
https://hsm.stackexchange.com/questions/15834
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Figure 3.6.1. Hyperbolic paraboloid

Figure 3.6.2. Elliptic and hyperbolic paraboloids

3.7. Cylinder

We continue studying the case rank(S) = 2 in some degenerate
cases.

Definition 3.7.1. Suppose c = 0 in equation (3.6.2), resulting
in equation λ1x

2 + λ2y
2 + d = 0. All such surfaces in R3 are called

degenerate.

Example 3.7.2. The cylinder {(x, y, z) ∈ R3 : x2 + y2 − 1 = 0} is
an example of a degenerate quadric surface.

Remark 3.7.3. In Section 3.1 we gave a (more-or-less) complete
classification of conic sections, including the degenerate cases. For
quadric surfaces, a complete classification in the case det(S) = 0 is too
detailed to be treated here.
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Figure 3.6.3. Hyperbolic paraboloid

3.7.1. Exercise on index notation. The material in this subsection
is review.

Theorem 3.7.4. Every 2× 2 matrix A = (aij) satisfies the identity

(∀i, j) aika
k
j + det(A) δij = akka

i
j (3.7.1)

Note that indices i and j and free indices, whereas k is a summation
index (see Section 1.8).

Proof. Let pA(λ) be the characteristic polynomial of A. For 2× 2 ma-
trices, we have pA(λ) = λ2−(trA)λ+det(A). The Cayley-Hamilton theorem
asserts that pA(A) = 0. Therefore we obtain A2 − (trA)A + det(A)I = 0,
which in index notation gives aika

k
j−akkaij+detA δij = 0. This is equivalent

to (3.7.1). �

Example 3.7.5 (Exercise on index notation). For a matrix A of size 3×3,
the characteristic polynomial pA(λ) has the form −pA(λ) = λ3−Tr(A)λ2 +
s(A)λ1 − det(A)λ0. Here s(A) = λ1λ2 + λ1λ3 + λ2λ3, where λi are the
eigenvalues of A. By Cayley-Hamilton theorem, we have

pA(A) = 0. (3.7.2)

Express the equation (3.7.2) in index notation.
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3.8. Gradient vector and Hessian matrix

We review some material from vector calculus.6 Let (u1, . . . , un) be
coordinates in Rn. Consider a real-valued function f(u1, . . . , un) of n
variables. The function will be required to be at least C2-smooth.

Definition 3.8.1. The gradient ∇f of f at a point p = (u1, . . . , un)
is the vector

∇f(p) =




∂f
∂u1

∂f
∂u2
...
∂f
∂un




where each of the partial derivatives is calculated at the point p.

Definition 3.8.2. A critical point p ∈ Rn of f is a point satisfying

∇f(p) = 0,

i.e. ∂f
∂ui

(p) = 0 for all i = 1, . . . , n.

We now consider the second partial derivatives of f , which we will

denote fij =
∂2f

∂ui∂uj
.

Definition 3.8.3. The Hessian matrix Hf of f is the matrix

Hf =
(
fij
)
i=1,...,n
j=1,...,n

i.e., the n× n matrix of second partial derivatives.

The antisymmetrisation notation was defined in formula (1.6.2).
We can then formulate what is known as Schwarz’s theorem or Clairaut’s
theorem as follows.

Theorem 3.8.4 (Equality of mixed partials). Let f ∈ C2. The
following three statements are equivalent and true:

(1) the Hessian Hf is a symmetric matrix;
(2) we have fij = fji for all i, j;
(3) in terms of the antisymmetrisation notation, f[ij] = 0.

3.9. Minima, maxima, saddle points

We study the graph of a function f(u1, u2) at a critical point.

6This is material from infi 3, required of all math majors.
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Example 3.9.1 (maxima, minima, saddle points). Let n = 2. Then
the sign of the determinant

det(Hf ) =
∂2f

∂u1∂u1
∂2f

∂u2∂u2
−
(

∂2f

∂u1∂u2

)2

at a critical point p has geometric significance.

Namely, we have the following.

(1) If det(Hf (p)) > 0 then p is a local maximum or a local mini-
mum.

(2) If det(Hf (p)) < 0, then p is a saddle point7 of the graph of the
function.

Example 3.9.2 (Critical points of quadric surfaces). Quadric sur-
faces are a rich source of examples.

(1) The origin is a critical point for the function whose graph is
the paraboloid z = x2 + y2. In the case of the paraboloid the
critical point is a minimum.

(2) Similar remarks apply to the top sheet of the hyperboloid of

two sheets, namely z =
√
x2 + y2 + 1, where we also get a

minimum.
(3) The origin is a critical point for the function whose graph is

the hyperbolic paraboloid z = x2 − y2. In the case of the
hyperbolic paraboloid the critical point is a saddle point.

In addition to the sign, the value of Hf (p) also has geometric signif-
icance in terms of an invariant we will define later called the Gaussian
curvature, expressed by the following theorem that will be proved later.

Theorem 3.9.3. Let f be a function of two variables. Consider the
surfaceM ⊆ R3 given by the graph (x, y, f(x, y)) of f in R3. Let p ∈ R2

be a critical point of f . Then the value of det(Hf (p)) is precisely the
Gaussian curvature of the surface M at the point (p, f(p)) ∈M .

See Definition 9.5.1 for more details. We will return to surfaces in
Section 5.1.

3.10. Parametric representation of a curve

In Chapter 2 we studied curves given by solution sets of quadratic
equations in the plane. We will now study more general curves.

Remark 3.10.1 (Two representations). There are two main ways
of representing a curve in the plane: parametric and implicit.

7Nekudat ukaf



46 3. QUADRIC SURFACES, HESSIAN, REPRESENTATION OF CURVES

A curve in the plane can be represented by a pair of coordinates
evolving as a function of the time parameter t:

α(t) = (α1(t), α2(t)), t ∈ [a, b],

with coordinates α1(t) and α2(t). Both functions are assumed to be of
class C2. Thus a parametrized curve can be viewed as a map

α : [a, b]→ R2. (3.10.1)

Let C be the image of the map (3.10.1). Then C ⊆ R2 is the geometric
curve independent of parametrisation. Thus, changing the parametri-
sation by setting t = t(s) and replacing α by a new curve β(s) = α(t(s))
preserves the geometric curve C.

Definition 3.10.2. A parametrisation α(t) is called regular if for
all t one has α′(t) 6= 0.

3.11. Implicit representation of a curve

A curve in the (x, y)-plane can also be represented implicitly as the
solution set of an equation

F (x, y) = 0,

where F is a function always assumed to be of class C2(R2).

Definition 3.11.1 (Level curve). The level curve CF ⊆ R2 is the
locus of the equation

CF =
{
(x, y) : F (x, y) = 0

}
.

Example 3.11.2. A circle of radius r > 0 corresponds to the choice
of the function F (x, y) = x2 + y2 − r2.

Further examples are given below.

(1) The function F (x, y) = y − x2 defines a parabola.
(2) The function F (x, y) = xy − 1 defines a hyperbola.
(3) The function F (x, y) = x2 − y2 − 1 also defines a hyperbola.

Remark 3.11.3. In each of these cases, it is easy to find a parametri-
sation (at least of a part of) the level curve, by solving the equation
for one of the variables. Thus, in the case of the circle, we choose the
positive square root to obtain y =

√
r2 − x2, giving a parametrisation

of the upper half-circle by means of the pair of formulas

α1(t) = t, α2(t) =
√
r2 − t2.

Note this is not all of the level curve CF .
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Remark 3.11.4. In general (unlike in the examples above), it may
be difficult to find an explicit parametrisation for a curve defined by
an implicit equation F (x, y) = 0. Locally one can always find one
in theory under a suitable nondegeneracy condition, expressed by the
implicit function theorem, dealt with in Section 3.12.

3.12. Implicit function theorem

The material in this section is from infi 3.

Theorem 3.12.1 (Implicit Function Theorem). Assume the func-
tion F (x, y) is C1(R2). Suppose the gradient of F does not vanish at a
specific point p = (x, y) ∈ CF , in other words

∇F (p) 6= 0.

Then there exists a regular parametrisation (α1(t), α2(t)) of the level
curve CF in a suitable neighborhood of p.

A useful special case is the following result.

Theorem 3.12.2 (implicit function theorem: special case). Assume
the function F (x, y) is C1. Suppose that the partial derivative with
respect to y satisfies

∂F

∂y
(p) 6= 0.

Then there exists a parametrisation y = α2(x), in other words α(t) =
(t, α2(t)) of the curve CF in a suitable neighborhood of p.

Example 3.12.3. In the case of the circle x2+y2 = r2, the point (r, 0)
on the x-axis fails to satisfy the hypothesis of Theorem 3.12.2. The
curve cannot be represented by a differentiable function y = y(x) in
a neighborhood of this point due to the presence of a vertical tan-
gent. On the other hand, a regular parametrisation still exists, e.g.,
(r cos t, r sin t).

3.12.1. Jacobi’s criterion. This section is optional.8 The type of
quadric surface one obtains depends critically on the signs of the eigenvalues
of the matrix S. The signs of the eigenvalues can be determined without
orthogonal diagonalisation, by means of Jacobi’s criterion. See Giorgi [2,
p. 57–58].

Given a matrix A over a field F , let ∆k denote the k × k upper-left
block, called a principal minor. Matrices A and B are equivalent if they are
congruent (rather than similar), meaning that B = P tAP (rather than by
conjugation P−1AP ). Equivalent matrices don’t have the same eigenvalues

8The material with regard to the Sylvester criterion (special case of Jacobi) is
covered in infi 3, required of all math majors.
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(unlike similar matrices). However, the signs of the eigenvalues are preserved
under equivalence. Here B is of course not assumed to be orthogonal.

Theorem 3.12.4 (Jacobi). Let A ∈ Matn(F ) be a symmetric matrix,
and assume det(∆k) 6= 0 for k = 1, . . . , n. Then A is equivalent to the

matrix diag
(

1
∆1
, ∆1

det∆2
, . . . , det∆n−1

det∆n

)
.

For example, for a 2 × 2 symmetric matrix

(
a b
b d

)
Jacobi’s criterion

affirms the equivalence to

(
1
a 0
0 a

ad−b2

)
.

Proof. Take the vector bk = ∆−1
k ek ∈ F k of length k, and pad it with

zeros up to length n. Consider the matrix B = (bij) whose column vectors
are b1, . . . , bn. By Cramer’s formula, the diagonal coefficients of B sat-

isfy bkk = det

(
∆k−1 0
0 1/det∆k

)
= det∆k−1/∆k, so det(B) =

∏n
k=1 bkk =

1/det(A) 6= 0. Compute that BtAB is lower triangular with diagonal
b11, . . . , bkk. Being symmetric, it is diagonal. �

If some minor ∆k is not invertible, then A cannot be definite. Ap-
plying this result in the case of a real symmetric matrix, we obtain the
following corollary. Let A be symmetric. Then A is positive definite if
and only if all det(∆k) > 0. Define minors in general (choose rows and
columns i1, . . . , it). Permuting rows and columns, we obtain the following
corollary.

Corollary 3.12.5. Let A be symmetric positive definite matrix. Then
all “diagonal” minors are positive definite (and in particular have positive
determinants).

An application of this is determining whether or not a quadric surface
is an ellipsoid, without having to orthogonally diagonalize the matrix of
coefficients, as we will see below (care has to be taken to show that the
quadric surface is nondegenerate). For example, let us determine whether
or not the quadric surface

x2 + xy + y2 + xz + z2 + yz + x+ y + z − 2 = 0 (3.12.1)

is an ellipsoid. To solve the problem, we first construct the corresponding

matrix S =




1 1/2 1/2
1/2 1 1/2
1/2 1/2 1


 and then calculate the principal minors ∆1 =

1, ∆2 = 1·1− 1
2 · 12 = 3/4, and ∆3 = 1+ 1

8+
1
8− 1

4− 1
4− 1

4 = 1
2 . Thus all principal

minors are positive and therefore the surface is an ellipsoid, provided we can

show it is nondegenerate. To check nondegeneracy, notice that (3.12.1) has

at least two distinct solutions: (x, y, z) = (1, 0, 0) and (x, y, z) = (0, 1, 0).

Therefore it is a nondegenerate ellipsoid.



CHAPTER 4

Curvature, Laplacian, Bateman–Reiss

4.1. Unit speed parametrisation

In Section 3.10 we dealt with the notion of a parametrized curve.
Let us review the notation involved.

• α : I → R2, α(t) = (α1(t), α2(t)) is a parametrized curve in
the plane, where I = [a, b];
• C ⊆ R2 is the underlying geometric curve, i.e., the image of α:

C =
{
(x, y) ∈ R2 : (∃t)

(
x = α1(t), y = α2(t)

)}
.

Definition 4.1.1. We say α = α(t) is a unit speed curve if
∣∣dα
dt

∣∣ = 1,

i.e.
(
dα1

dt

)2
+
(
dα2

dt

)2
= 1 for all t ∈ [a, b].

Definition 4.1.2. The parameter of a unit speed parametrisation,
usually denoted s, is called arclength.

Similarly, a parametrized curve α(t) in Rn is unit speed if |α′(t)| = 1
for all t.

Example 4.1.3 (Arclength parametrisation of a circle of radius r).
Let r > 0. Then the curve

α(s) =
(
r cos

s

r
, r sin

s

r

)

is a unit speed (arclength) parametrisation of the circle of radius r.
Indeed, we have

∣∣∣∣
dα

ds

∣∣∣∣ =

√(
r
1

r

(
− sin

s

r

))2

+

(
r
1

r
cos

s

r

)2

=

√
sin2 s

r
+ cos2

s

r
= 1.

A regular curve always admits an arclength parametrisation; see
Theorem 4.15.

4.2. Geodesic curvature of a curve

We review the standard calculus topic of the curvature of a curve.

49
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Remark 4.2.1. The notion of the curvature of curves is closely
related to the theory of surfaces in Euclidean space. It is indispens-
able to understanding the principal curvatures of a surface; see e.g.,
Theorem 9.7.1 and Theorem 9.10.5.

Our main interest will be in space curves (curves in R3). For such
curves, one cannot in general assign a sign to the curvature. Therefore
in the definition below we do not concern ourselves with the sign of the
curvature of plane curves, either (see Remark 4.2.2). Signed curvature
will be defined in Section 12.2.1.

In the present section, only local properties of the curvature of
curves will be studied.1 We will use the lower-case k to denote the
curvature of a curve.

Definition 4.2.2. The (geodesic) curvature function kα(s) ≥ 0 of
a unit speed curve α(s) is the function

kα(s) =

∣∣∣∣
d2α

ds2

∣∣∣∣. (4.2.1)

Theorem 4.2.3. The curvature kα(s) of the circle of radius r > 0
is kα(s) =

1
r
at every point of the circle.

Proof. With the parametrisation given in Example 4.1.3, we have

d2α

ds2
=

(
r
1

r2

(
− cos

s

r

)
, r

1

r2

(
− sin

s

r

))

for all s, and so kα =
∣∣1
r

(
− cos s

r
,− sin s

r

)∣∣ = 1
r
. �

Remark 4.2.4 (Independence of point). For the circle, the cur-
vature is independent of the point, i.e. is a constant function of the
arclength parameter s.

In Section 12.3, we will give a formula for curvature with respect
to an arbitrary parametrisation (not necessarily arclength).

In Section 12.4, the curvature will be expressed in terms of the
angle θ formed by the tangent vector (to the curve) with the positive x-
axis.

4.3. Tangent and normal vectors

Consider a plane curve C ⊆ R2 with arclength parametrisation
α(s) = (α1(s), α2(s)) where s is the arclength.

1Signed curvature: For oriented plane curves, there is a finer invariant called
signed curvature; see Definition 12.2.1. A global result on the curvature of plane
curves appears in Section 12.5.
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Definition 4.3.1 (Unit tangent vector). The unit tangent vector
v(s) at a point α(s) of C is the vector

v(s) = α′(s),

written in coordinates as v(s) = (X(s), Y (s)).

Remark 4.3.2. X(s) and Y (s) are the coordinates of v(s) rather

than of α(s). Thus X(s) = dα1

ds
, Y (s) = dα2

ds
.2

Definition 4.3.3 (Unit normal vector). The unit normal vector n(s)
to the curve C ⊆ R2 is the vector

n(s) = (Y (s),−X(s)).3

Lemma 4.3.4. Let v(s) = (X(s), Y (s)) be the unit tangent vector
along the curve α(s), and assume Y (s) 6= 0. Then the following identity
is satisfied:

dY

ds
= −dX

ds

X

Y
. (4.3.1)

Proof. We start with the formula v(s) = (X(s), Y (s)). Differ-
entiating the identity X(s)2 + Y (s)2 = 1 with respect to s using the
chain rule, we obtain X dX

ds
+ Y dY

ds
= 0 and therefore dY

ds
= −dX

ds
X
Y

as
required. �

Lemma 4.3.5. Let v(s) = (X(s), Y (s)) be the unit tangent vector
along α(s), and assume Y (s) 6= 0. With respect to the arclength pa-
rameter s, we have the following formula for the curvature:

kα(s) =

∣∣∣∣
1

Y

dX

ds

∣∣∣∣ .

2We deliberately use capital letters X,Y here. In Section 12.4, we will use x, y
for the components of the curve itself.

3Let S1 =
{
(X,Y ) : X2 + Y 2 = 1

}
be the unit circle. Since |n(s)| = 1 by

definition, one can think of n(s) as a map C → S1. This leads us to the notion of
Gauss map for the curve C; see Section 12.4.
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Proof. We start with the relation α′′ = v′ and use Lemma 4.3.4.
Substituting the expression (4.3.1) into α′′ = v′ we obtain

α′′(s) =

(
dX

ds
,
dY

ds

)

=

(
dX

ds
,−dX

ds

X

Y

)

=
dX

ds

(
1,−X

Y

)

=
1

Y

dX

ds
(Y,−X)

=

(
1

Y

dX

ds

)
n

where n is the unit normal vector. Thus, kα(s) = |α′′(s)| =
∣∣ 1
Y
dX
ds

∣∣, as
required. �

Proposition 4.3.6. Differentiating the normal vector

n(s) = (Y (s),−X(s))

along the curve produces a vector proportional to v(s) with factor of
proportionality (up to sign) given by the geodesic curvature kα(s):

d

ds
n(s) = ±kα(s)v(s). (4.3.2)

Proof. Differentiating and applying the formula (4.3.1) for dY
ds
, we

obtain

−n′ (s) =

(
−dY
ds
,
dX

ds

)

=

(
X

Y

dX

ds
,
dX

ds

)

=
dX

ds

(
X

Y
, 1

)

=
1

Y

dX

ds
(X, Y )

=

(
1

Y

dX

ds

)
v(s),

and we apply Lemma 4.3.5 to prove the proposition.4 �

4Note that if the curve is defined implicitly by F (x, y) = 0, then the unit
normal n to the curve satisfies n = ∇F

|∇F | . There is a formula for the curvature

purely in terms of F ; see Section 4.8.
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Remark 4.3.7 (Comparison to the Weingarten map for surfaces).
We see that

the curvature of a curve can be thought of as the rate
of change of the normal vector

(with respect to the arclength parameter s). A similar phenomenon
to (4.3.2) (relating curvature to the derivative of the normal vector)
occurs for a surface M . In the case of surfaces, the directional deriv-
ative of the normal vector n to M is used to define the Weingarten
map (shape operator). The latter leads to the Gaussian curvature
function K of M ; see Section 8.6.

4.4. Osculating circle of a curve

To give a more geometric description of the curvature of a curve, we
will exploit its osculating circle5 at a point. We first recall the following
fact from elementary calculus about the second derivative of a function.

Theorem 4.4.1. Let I be an interval, and let f ∈ C2(I). The
second derivative f ′′ of a function f(x) may be computed from a triple
of points f(x), f(x+h), f(x−h) that are infinitely close to each other,
as follows:

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
.

The theorem remains valid for vector-valued functions; see Defini-
tion 4.4.3.

Corollary 4.4.2. The second derivative of a function can be cal-
culated from the value of the function at a triple of nearby points x, x+
h, x− h.

Recall that any triple of non-collinear points defines a unique circle
passing through them.

Definition 4.4.3 (Osculating circle). The osculating circle to the
curve parametrized by α with arclength parameter s at a point p = α(s)
is obtained by choosing a circle passing through the three points

α(s), α(s− h), α(s+ h)

for infinitesimal h, i.e., taking the limit as h tends to zero.

Remark 4.4.4. The osculating circle and the curve are “better
than tangent” at the point p, in the sense that they have second order
tangency at p.

5Maagal noshek
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Corollary 4.4.5. The curvatures of the osculating circle and the
curve at the point of tangency are equal.6

Proof. The curvature is defined by the second derivative. By
Corollary 4.4.2, the second derivative is computed from the same triple
of points for α(s) and for the osculating circle proving the corollary
(cf. Weatherburn [We55, p. 13]). �

4.5. Center of curvature, radius of curvature

Recall that we denote the geometric curve by C ⊆ R2 and its
parametrisation by α(s) where s is the arclength parameter.

To help geometric intuition, it is useful to recall Leibniz’s and
Cauchy’s definition of the radius of curvature of a curve [Cauchy 1826]
as the distance from the curve to the intersection point of two infinitely
close normals to the curve. In more detail, we have the following.

Definition 4.5.1. The normal line at a point p ∈ C is the line
spanned by the normal vector at p.

Definition 4.5.2 (Center of curvature). Let p ∈ C ⊆ R2. The
center of curvature q ∈ R2 of C associated with p is the intersection
point of the normal lines to the curve at infinitely close points p and p′

of C.

Example 4.5.3 (Center of curvature of circle). If C is a circle, then
the intersection point of two normals is always the center of C even if
the normals are not close to each other. Thus the center of C and the
center of curvature q (at any point) coincide. For a general curves we
need to take the normals close to each other.

Theorem 4.5.4 (Relation between center of curvature and oscu-
lating circle). At a point p ∈ C, consider the osculating circle to the
curve. Then the corresponding center of curvature q of C (the intersec-
tion point of two infinitely close normals) is the center of the osculating
circle.

6For example, let y = f(x). Compute the curvature of the graph of f
when f(x) = ax2. Let B = (x, x2). Let A be the midpoint of OB. Let C be the
intersection of the perpendicular bisector of OB with the y-axis. Let D = (0, x).

Triangle OAC yields sinψ = OA
OC =

1

2

√
x2+(ax2)2

r , triangle OBD yields sinψ =
BD
OB = ax2

√
x2+a2x4

, and
1

2

√
x2+a2x4

r = ax2

√
x2+a2x4

, so that 1
2 (x

2 + a2x4) = arx2,

and 1
2 (1 + a2x2) = ar, so that r = 1+a2x2

2a . Taking the limit as x→ 0, we ob-

tain r = 1
2a , hence k = 1

r = 2a = f ′′(0). Thus the curvature of the parabola at
its vertex equals the second derivative with respect to x (even though x is not the
arclength parameter of the graph).



4.7. BATEMAN–REISS OPERATOR 55

Definition 4.5.5 (Radius of curvature). Let p ∈ C. The radius of
curvature R of a curve C at p is the distance from p to its associated
center of curvature q ∈ R2. Namely, R = |pq|.

Corollary 4.5.6. For a curve with parametrisation α(s), the cur-
vature kα at the point p is the inverse of the radius of curvature:
kα = 1

R
= 1

|pq| .

4.6. Flat Laplacian

Computing the curvature of implicitly defined curves C ⊆ R2 will
involve a certain second-order differential operator. We start by re-
viewing the simplest example of a second-order operator, the (flat)
Laplacian.

Definition 4.6.1. The flat Laplacian ∆0 on R2 is the differential
operator is defined in the following two equivalent ways:

(1) ∆0 =
∂2

∂x2
+ ∂2

∂y2
;

(2) we apply ∆0 to a smooth function F = F (x, y) by setting

∆0F = ∂2F
∂x2

+ ∂2F
∂y2

.

We also introduce the traditional briefer notation

Fxx =
∂2F

∂x2
, Fyy =

∂2F

∂y2
, Fxy =

∂2F

∂x ∂y
.

Then we obtain the equivalent formula

∆0(F ) = Fxx + Fyy.

Example 4.6.2. If F (x, y) = x2 + y2 − r2, then ∂2F
∂x2

= 2 and

similarly ∂2F
∂y2

= 2, hence ∆0F = 4.

4.7. Bateman–Reiss operator

Recall that we have two types of presentations of a curve, either
parametric or implicit.

Remark 4.7.1. In Section 4.2 the curvature of a curve was calcu-
lated starting with a parametric representation of the curve. If a curve
is given implicitly as the locus (solution set) of an equation F (x, y) = 0,
one can also calculate the geodesic curvature, by means of the theorems
given in the Section 4.8, and exploiting the Bateman–Reiss operator of
Definition 4.7.2.

We will be interested in the following second-order operator that
appears in a formula for curvature.
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Definition 4.7.2. Let F (x, y) be a function of two variables. The
Bateman–Reiss operator DB is defined by

DB(F ) = FxxF
2
y − 2FxyFxFy + FyyF

2
x . (4.7.1)

Remark 4.7.3. DB is a non-linear second order differential opera-
tor.

The subscript “B” stands for Bateman, as in the Bateman equa-
tion FxxF

2
y − 2FxyFxFy + FyyF

2
x = 0.

Theorem 4.7.4. The Bateman operator can be represented by the
determinant

DB(F ) = −det




0 Fx Fy
Fx Fxx Fxy
Fy Fxy Fyy


 . (4.7.2)

Proof. Expanding the determinant (4.7.2) along the first row, we
obtain the formula (4.7.1). �

Remark 4.7.5 (Historical remark). This operator was treated in
detail in [Goldman 2005, p. 637, formula (3.1)]. The same operator
occurs in the Reiss7 relation in algebraic geometry; see Griffiths and
Harris [GriH78, p. 677]. See also Valenti [7, p. 804] who refers to
geodesic curvature as isophote curvature in the context of a study of
luminosity and eye center location. See also [8] and (two) references
therein.

4.8. Geodesic curvature for an implicit curve

The operator DB defined in Section 4.7 allows us to calculate the
curvature of a curve presented in implicit form, without having to spec-
ify a parametrisation. Let CF ⊆ R2 be a curve defined implicitly
by F (x, y) = 0.

Theorem 4.8.1. Let p ∈ CF , and suppose ∇F (p) 6= 0. Then the
geodesic curvature kC of CF at the point p is given by

kC =
|DB(F )|
|∇F |3 ,

where DB is the Bateman–Reiss operator defined in (4.7.1).

A proof can be found in [Goldman 2005, p. 637].

7Michel Reiss (1805–1869).
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4.9. Curvature of circle via DB

We will use the formula for curvature based on the Bateman–Reiss
operator to calculate the curvature and solve maximization problems.
We start with the circle.

Example 4.9.1. The circle C of radius r is defined by the equa-
tion F (x, y) = 0, where F = x2 + y2 − r2. Then

Fx = 2x, Fy = 2y, ∇F = (2x, 2y)t,

and therefore |∇F | = 2
√
x2 + y2 = 2r. Meanwhile, Fxx = 2, Fyy =

2, Fxy = 0, hence

DB(F ) = 2(2y)2 + 2(2x)2 = 8r2,

and therefore the curvature is kC = 8r2

8r3
= 1

r
, in agreement with Theo-

rem 4.2.3.

4.10. Curvature of parabola via DB

Consider the parabola C = CF given by the zero locus of F (x, y) =
y − x2. Then

Fx = −2x, Fy = 1, |∇F | =
√
1 + 4x2.

Meanwhile, Fxx = −2, Fyy = 0, Fxy = 0. Applying the formulaDB(F ) =
FxxF

2
y − 2FxyFxFy + FyyF

2
x we obtain DB(F ) = −2(1)2 = −2. We ob-

tain the following theorem.

Theorem 4.10.1. The curvature of the parabola y = x2 satisfies

kC =
2

(1 + 4x2)3/2
. (4.10.1)

This enables us to identify the point of maximal curvature in The-
orem 4.10.2 as follows.

Theorem 4.10.2. The apex of the parabola y = x2 is its point of
maximal curvature.

Proof. By formula (4.10.1), kC = 2
(1+4x2)3/2

. Since 1 + 4x2 ≥ 1,

the curvature attains its maximal value k = 2 when x = 0. �

Corollary 4.10.3. The osculating circle of the parabola at the
origin has radius R = 1

2
.
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4.11. Curvature of hyperbola via DB

Consider the hyperbola C = CF given by the zero locus of F (x, y) =
xy − 1. Then

Fx = y, Fy = x, |∇F | =
√
x2 + y2.

Meanwhile Fxx = 0, Fyy = 0, and Fxy = 1. Hence DB(F ) = −2xy. To
simplify the expression for DB(F ) we exploit the defining equation of
the curve xy = 1. Hence we have DB(F ) = −2 at every point of the
hyperbola. We obtain the following theorem.

Theorem 4.11.1. The curvature of the hyperbola y = 1
x
is

kC =
2

(x2 + y2)3/2
. (4.11.1)

This enables us to find the maximum in Theorem 4.11.2 as follows.

Theorem 4.11.2. The curvature of the hyperbola C defined by the
equation xy = 1 is maximal at the points (1, 1) and (−1,−1).

Proof. Formula (4.11.1) gives kC = 2
(x2+y2)3/2

. We need to express

the curvature as a function of a single variable.

Step 1. In order to maximize this expression along the curve, it
suffices to minimize the expression x2+ y2 whose power appears in the
denominator, restricted to the curve itself. We can assume without loss
of generality that x > 0. We exploit the defining relation xy = 1 of the
curve to obtain

x2 + y2 = (x+ y)2 − 2xy = (x+ y)2 − 2 =
(
x+ 1

x

)2 − 2. (4.11.2)

Step 2. To minimize the expression (4.11.2), it suffices to minimize
the quantity x + 1

x
. We will show that the sum x + 1

x
is minimal

when x = 1. Namely, to show that x + 1
x
≥ 2, rewrite the inequality

as x2 +1 ≥ 2x or x2 +1− 2x ≥ 0 or equivalently (x− 1)2 ≥ 0 which is
a true inequality. Hence the maximum of the curvature is when x = 1
and so y = 1, proving the theorem.

The same result can be obtained by differentiating the expression(
x+ 1

x

)2 − 1. �

4.12. Maximal curvature of a logarithmic curve

Theorem 4.12.1. Consider the logarithmic curve

C = {(x, y) : y = ln x, x > 0}.
Then the maximum of curvature of the curve is attained at the point
x = 1√

2
, y = − ln 2

2
.
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Proof. Let F (x, y) = y − ln x. Then

Fx = −
1

x
, Fy = 1, |∇F | =

√
1 + x−2.

Then Fxx =
1
x2
, Fyy = 0, and Fxy = 0. Applying the formula DB(F ) =

FxxF
2
y−2FxyFxFy+FyyF 2

x we obtainDB(F ) =
1
x2
·1−2·0+0 = 1

x2
= x−2.

The curvature of the logarithmic curve is therefore

kC =
x−2

(
√
1 + x−2)3

=
1

x2(1 + x−2)3/2
=

x3

x2(x2 + 1)3/2
=

x

(x2 + 1)3/2
.

To maximize kC it is sufficient to maximize the expression k2C = x2

(x2+1)3
.

We will use an auxiliary variable z = x2 to simplify calculations.
We are therefore interested in maximizing the function

g(z) =
z

(z + 1)3
.

Differentiating we obtain

g′(z) =
(z + 1)3 · 1− z · 3(z + 1)2

(z + 1)6

=
z + 1− 3z

(z + 1)4
=

1− 2z

(z + 1)4
= 0.

We obtain an extremum when 1 − 2z = 0, i.e., z = 1
2
. Checking

that the second derivative is negative at the point, we conclude that
this is a point of maximum. Thus the maximum of the curvature
of the logarithmic curve is attained when x2 = 1

2
, i.e., x = 2−1/2.

Hence y = ln(2−1/2) = −1
2
ln 2. �

4.13. Exploiting defining equation in studying curvature

The defining equation of the curve may be exploited several times
in the course of the calculation when studying the curvature of a curve.
Let us calculate out a specific example as follows.

Theorem 4.13.1. Let a > 0 be fixed. The maxima of the curvature
of the curve

C = {(x, y) : xy + y2 − a = 0} (4.13.1)

are at the two points such that y = ±
√
a

4√2
while the corresponding x can

be found from the defining equation.



60 4. CURVATURE, LAPLACIAN, BATEMAN–REISS

Proof. Set F (x, y) = xy + y2 − a. Then
Fx = y, Fy = x+2y, |∇F | =

√
y2 + (x+ 2y)2 =

√
y2 + x2 + 4xy + 4y2

and therefore
|∇F | =

√
y2 + x2 + 4(xy + y2). (4.13.2)

We will give a proof in four steps.

Step 1. We use the defining equation of the curve to replace xy+y2

by a. This enables us to simplify (4.13.2) to

|∇F | =
√
x2 + y2 + 4a. (4.13.3)

Next, Fxx = 0, Fxy = 1, and Fyy = 2. Therefore

DB(F ) = 0− 2xy − 4y2 + 2y2 = −2(xy + y2). (4.13.4)

Step 2. Exploiting the defining relation of the curve, we obtain
from equation (4.13.4) that

DB(F ) = −2a. (4.13.5)

Using (4.13.3) and (4.13.5), we obtain that the curvature at a point (x, y)
of the curve is

kC =
|DB(F )|
|∇F |3 =

2a

(x2 + y2 + 4a)3/2
. (4.13.6)

The curvature (4.13.6) of the curve is maximal when the expression x2+
y2 + 4a along the curve is minimal, or equivalently when x2 + y2 is
minimal along the curve. At this point one can either apply Lagrange
multipliers8 or simply solve for x, as in Step 3 below.

Step 3. Using the defining relation of the curve we obtain xy =
a− y2 or

x =
a− y2
y

=
a

y
− y. (4.13.7)

Therefore along the curve, we obtain x2+y2 = (a−y2)2
y2

+y2 = (a−y2)2+y4
y2

.

To simplify calculations, we introduce an auxiliary variable z = y2.
Thus we have

x2 + y2 =
(a− z)2 + z2

z
. (4.13.8)

Step 4. The expression (4.13.8) to be minimized is

g(z) =
(a− z)2 + z2

z
=

2z2 − 2az + a2

z
= 2z +

a2

z
− 2a.

8Lagrange multipliers were treated in Infi 3 (88-230), required of all math
majors.
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We set g′(z) = 2 − a2

z2
= 0 to find the extremum z = a√

2
. One checks

that the second derivative is positive. Since z = y2, we obtain that y =

±√z = ±
√
a

21/4
. The corresponding x can be found from x = a−y2

y
. This

gives the maximum of the curvature for the curve (4.13.1). �

Remark 4.13.2. Another example (cusp) is calculated out in The-
orem 5.11.1.

4.14. Curvature of graph of function

Theorem 4.14.1 (Curvature at a critical point). Assume f ∈
C2(R). Let c ∈ R be a critical point of f(x). Consider the graph
of f at the point (c, f(c)) ∈ R2. Then the curvature k of the graph at
this point equals k = |f ′′(c)|.

Remark 4.14.2. We parametrize the graph by α(t) = (t, f(t)).

Then d2α
dt2

=
(
0, d

2f
dt2

)
, and at the critical point c, we have

∣∣∣d2αdt2 (c)
∣∣∣ =∣∣∣d2fdt2 (c)

∣∣∣. This is the expected answer for the curvature at a critical

point. However, this argument is merely a heuristic calculation because
the parametrisation (t, f(t)) is not a unit speed parametrisation of the
graph.

Proof. We apply the characterisation of curvature in terms of the
Bateman operator DB(F ) = FxxF

2
y −2FxyFxFy+FyyF

2
x . Let F (x, y) =

−f(x) + y. At the critical point c, we have

∇F = (−f ′(c), 1)t = (0, 1)t,

while

DB(F ) = −f ′′(x)(1)2 − 0 + 0 = −f ′′(x).

Hence the curvature of the graph at this point satisfies

k =
|DBF |
|∇F |3 =

|f ′′(c)|
1

= |f ′′(c)|,

as required. �

Example 4.14.3. The apex of the parabola y = x2 is a critical
point. At the apex (x = 0), the second derivative is 2 and therefore
the curvature is 2, while the radius of the osculating circle is 1

2
, which

agrees with Corollary 4.10.3.
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4.15. Existence of arclength

Consider a geometric curve C ⊆ R2. Assume C admits a regu-
lar parametrisation. We will now prove the existence of a unit speed
parameter s, i.e., the arclength parameter.

Lemma 4.15.1. Let f ∈ C1([a, b]). The length L of the plane curve
defined by the graph of a function f(x) from a to b is

L =

∫ b

a

√
1 + f ′(x)2 dx .

This is proved in calculus. More generally,

Lemma 4.15.2. For a curve α(t) = (α1(t), α2(t)), we have the fol-
lowing formula for the length:

L =

∫ b

a

√(dα1

dt

)2
+
(dα2

dt

)2
dt

=

∫ b

a

∣∣∣dα
dt

∣∣∣dt.

This follows from the Pythagorean theorem applied to the curve.

Theorem 4.15.3. Let α(t) be a regular parametrisation of the geo-
metric curve C ⊆ R2. Then there exists a unit speed parametrition
β(s) = α(t(s)) of the curve C, where the parameter s is defined by

s(t) =

∫ t

a

∣∣∣dα
dτ

∣∣∣dτ, (4.15.1)

where τ is a dummy variable (internal variable of integration).

Proof. The Fundamental Theorem of Calculus applied to (4.15.1)
yields

ds

dt
=
∣∣∣dα
dt

∣∣∣.

The function being monotone increasing, there exists an inverse func-
tion t = t(s). Let β(s) = α(t(s)). Then by chain rule

dβ

ds
=
dα

dt

dt

ds
=
dα

dt

1

ds/dt
=
dα

dt

1

|dα/dt| .

Thus
∣∣dβ
ds

∣∣ = 1, i.e., s is the arclength parameter. �

We provide an example of non-existence of a regular parametrisa-
tion for a curve with a smooth parametrisation which is not regular.
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Example 4.15.4 (Cusp curve). The plane curve α(t) = (t3, t2) is
smooth but not regular. Its graph exhibits a cusp.9 In this case it is
impossible to find a smooth arclength parametrisation of the curve. In
Theorem 5.11.1 it is shown that its curvature tends to infinity as it
approaches the cusp.

Remark 4.15.5 (Curves in R3). A space curve may be written in
coordinates as

α(s) = (α1(s), α2(s), α3(s)).

Here s is the arc length if
∣∣∣dαds
∣∣∣ = 1 i.e.

∑3
i=1

(
dαi

ds

)2
= 1.

Example 4.15.6. Helix α(t) = (a cosωt, a sinωt, bt).
(i) make a drawing in case a = b = ω = 1.
(ii) parametrize by arc length.
(iii) compute the curvature.

9chod





CHAPTER 5

Surfaces and their curvature

5.1. Surfaces; Arnold’s observation on folding a page

The differential geometry of surfaces in Euclidean 3-space starts
with the observation that they inherit a metric structure from the am-
bient space (i.e. the Euclidean space).

Question 5.1.1. Which geometric properties of
this structure are intrinsic?1

Part of the job is to clarify the sense of the term intrinsic.

Remark 5.1.2. Following Arnold [Ar74, Appendix 1, p. 301], note
that a piece of paper may be placed flat on a table, or it may be rolled
into a cylinder, or it may be rolled into a cone. In mathematical terms
this can be formulated by saying that

the plane, the cylinder, and the cone (apart from the
vertex) have the same local intrinsic geometry.

However, the piece of paper cannot be transformed into the surface of
a sphere, that is, without tearing or stretching. Understanding this
phenomenon quantitatively is our goal, cf. Figure 12.12.1.

5.2. Regular surface; Jacobian

Consider a surface M ⊆ R3 parametrized by a map x(u1, u2) or

x : R2 → R3. (5.2.1)

We will always assume that x is differentiable.

Definition 5.2.1. The Jacobian matrix Jx is the 3× 2 matrix

Jx =

(
∂xi

∂uj

)
, (5.2.2)

where xi, i = 1, 2, 3, are the three components of the vector valued
function x.

1This is atzmit rather than pnimit according to Vishne.

65
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Definition 5.2.2 (Regular parametrisation ofM). A parametrisa-
tion x of the surfaceM is called regular if one of the following equivalent
conditions is satisfied:

(1) the vectors ∂x
∂u1

and ∂x
∂u2

are linearly independent;

(2) the vector product x1 × x2 is nonzero, where xi =
∂x
∂ui

;
(3) the Jacobian matrix (5.2.2) is of rank 2.

Example 5.2.3 (Regular parametrisation of hemisphere). Let b > 0

be a fixed real number, and let f(x, y) =
√
b2 − x2 − y2. The graph of

the function f in R3 can be parametrized as follows:

x+(u1, u2) = (u1, u2, f(u1, u2)). (5.2.3)

This provides a parametrisation of the (open) northern hemisphere.
Then {

∂x+

∂u1
= (1, 0, fx(u

1, u2))
t

∂x+

∂u2
= (0, 1, fy(u

1, u2))t.

These vectors are linearly independent and therefore (5.2.3) is a regular
parametrisation.

Note that we have the relations

fx =
−x
f

=
−x√

b2 − x2 − y2
, fy =

−y
f
. (5.2.4)

The southern hemisphere can be similarly parametrized by

x− = (u1, u2,−f(u1, u2)).
The formulas for the ∂x−

∂ui
are then ∂x−

∂u1
= (1, 0,−fx)t =

(
1, 0, x√

b2−x2−y2
)t
,

while ∂x−

∂u2
= (0, 1,−fy)t =

(
0, 1, y√

b2−x2−y2
)t
.

5.3. Coefficients of first fundamental form of a surface

Our starting point in the analysis of the intrinsic geometry of sur-
faces is the first fundamental form of a surface. The first fundamen-
tal form is obtained by restricting the 3-dimensional inner product.
Let 〈 , 〉 denote the Euclidean inner product in R3. Consider a regular
parametrized surface x(u1, u2).

Definition 5.3.1. For i = 1, 2 and j = 1, 2, define functions gij =
gij(u

1, u2) called metric coefficients of the surface by

gij(u
1, u2) =

〈 ∂x
∂ui

,
∂x

∂uj

〉
. (5.3.1)

Remark 5.3.2. We have gij = gji as the Euclidean inner product
is symmetric.
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Remark 5.3.3 (Measuring length of curves). What does the first
fundamental form measure? A helpful observation to keep in mind is
that it enables one to measure the length of curves on the surface.

Example 5.3.4 (Metric coefficients for the graph of a function).
The surface defined by the graph of a function f = f(x, y) as in Ex-
ample 5.2.3 satisfies

〈
∂x

∂u1
,
∂x

∂u1

〉
= 1 + f 2

x ,

〈
∂x

∂u1
,
∂x

∂u2

〉
= fxfy,

〈
∂x

∂u2
,
∂x

∂u2

〉
= 1 + f 2

y .

Therefore in this case we have the matrix of metric coefficients

(gij) =

(
1 + f 2

x fxfy
fxfy 1 + f 2

y

)

In the case of the hemisphere, the partial derivatives are as in for-
mula (5.2.4).

5.4. Metric coefficients in spherical coordinates

Spherical coordinates2 (ρ, θ, ϕ) in 3-space were studied in Infi 3.
They will be reviewed in more detail in Section 6.8. Briefly, ϕ is the
angle formed by the position vector of the point with the positive di-
rection of the z-axis. Meanwhile, θ is the polar coordinate angle θ for
the projection of the vector to the x, y plane.

Example 5.4.1 (Metric coefficients in spherical coordinates). Con-
sider the parametrisation of the unit sphere S2 by means of spherical
coordinates, so that x = x(θ, ϕ). We have the Cartesian coordinates

x = sinϕ cos θ, y = sinϕ sin θ, z = cosϕ .

We set u1 = θ and u2 = ϕ. We then obtain

∂x

∂u1
= (− sinϕ sin θ, sinϕ cos θ, 0)

and
∂x

∂u2
= (cosϕ cos θ, cosϕ sin θ,− sinϕ).

2Koordinatot kaduriot
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Note that the two vectors are orthogonal. Thus in this case we have

(gij) =

(
sin2 ϕ 0
0 1

)

so that det(gij) = sin2 ϕ and
√
det(gij) = sinϕ. This expression will

appear in the formula for the area in Section 7.6.7.

5.5. Matrix (gij) as a Gram matrix

Consider a regular parametrisation x(u1, u2) of a surface M ⊆ R3.
Let p = x(u1, u2) ∈ R3 be a particular point on the surface.

Definition 5.5.1. The vectors xi =
∂x
∂ui

, i = 1, 2, are called the
tangent vectors to the surface M at the point p = x(u1, u2).

Lemma 5.5.2. The Jacobian matrix of x is Jx =
(
x1 x2

)
.

This is immediate from the definition. Next, we express the rela-
tionship between the metric coefficients and the Gram matrix of the
tangent vectors as follows.

Definition 5.5.3 (Gram matrix). Given an ordered n-tuple S =
(vi)i=1,...,n in Rb, we define its Gram matrix as the matrix of inner
products

Gram(S) =
(
〈vi, vj〉

)
i=1,...,n
j=1,...,n

(5.5.1)

In Section 5.4 we defined the metric coefficients gij = gij(u
1, u2).

We now state a relationship between the Gram matrix and the metric
coefficients.

Theorem 5.5.4. The 2× 2 matrix (gij) is the Gram matrix of the
pair of tangent vectors:

(gij) = Gram(x1, x2) = JTx Jx,

where Jx is the Jacobian matrix.3

The proof is immediate.

5.6. First fundamental form as a bilinear form

Definition 5.6.1. The tangent plane TpM to the surfaceM at the
point p = x(u1, u2) is the plane in R3 spanned by the vectors x1(u

1, u2)
and x2(u

1, u2).

3cf. formula (14.6.1).
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Definition 5.6.2. The first fundamental form Ip of the surface M
at the point p is the bilinear form on the tangent plane Tp, namely

Ip : TpM × TpM → R,

defined by the restriction of the ambient Euclidean inner product:

Ip(v, w) = 〈v, w〉R3 ,

for all v, w ∈ TpM .

Lemma 5.6.3. With respect to the basis (x1, x2), the first fundamen-
tal form is given by the matrix (gij) of metric coefficients, where gij =
〈xi, xj〉.

Proof. Indeed, Ip(xi, xj) = 〈xi, xj〉 = gij. �

5.7. The form Ip of plane and cylinder

Like curves, surfaces can be represented either implicitly or para-
metrically (see Section 3.10 for representations of curves).

The example of the sphere was discussed in Section 5.4. We now
consider two more examples.

Example 5.7.1 (Plane). The x, y-plane in R3 is defined implic-
itly by the equation z = 0. Consider the parametrisation x(u1, u2) =
(u1, u2, 0) ∈ R3. Then x1 = (1, 0, 0)t, x2 = (0, 1, 0)t, and

g11 = 〈x1, x1〉 =
〈

1
0
0


 ,



1
0
0



〉

= 1,

and so on. Thus we have (gij) =

(
1 0
0 1

)
= Id (the identity matrix).

Example 5.7.2 (Cylinder). The cylinder in R3 is defined implicitly
by the equation x2 + y2 = 1. Let x(u1, u2) = (cos u1, sin u1, u2). This
formula provides a parametrisation of the cylinder. We have

x1 = (− sin u1, cos u1, 0)t

and x2 = (0, 0, 1)t, while

g11 =

〈

− sin u1

cos u1

0


 ,



− sin u1

cos u1

0



〉

= sin2 u1 + cos2 u1 = 1,

etc. Thus the matrix of metric coefficients is (gij) =

(
1 0
0 1

)
= Id.
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Remark 5.7.3. The two examples above illustrate that the first
fundamental form does not contain all the information (even up to
orthogonal transformations) about how the surface sits in R3. Indeed,
the plane and the cylinder have the same first fundamental form, but
are geometrically distinct embedded surfaces.

5.8. Surfaces of revolution

For surfaces of revolution, it is customary to use the notation u1 = θ
and u2 = φ. The starting point is a generating curve C in the xz-plane,
parametrized by a pair of functions

x = r(φ), z = z(φ).

Definition 5.8.1. The surface of revolution (around the z-axis)
generated by C is parametrized as follows:

x(θ, φ) = (r(φ) cos θ, r(φ) sin θ, z(φ)). (5.8.1)

Example 5.8.2. Consider a generating curve which is the vertical
line r(φ) = 1, z(φ) = φ. The resulting surface of revolution is the
cylinder.

Example 5.8.3. The generating curve r(φ) = sinφ, z(φ) = cosφ
yields the sphere S2 in spherical coordinates as discussed in Section 5.4;
see Example 5.8.5 for more details.

Theorem 5.8.4. Assume that φ is the arclength parameter of a
parametrisation (r(φ), z(φ)) of the generating curve C. Then the first
fundamental form of the corresponding surface of revolution (5.8.1) is
given by

(gij) =

(
r2(φ) 0
0 1

)
.

Proof. We have

x1 =
∂x

∂θ
= (−r sin θ, r cos θ, 0)t,

x2 =
∂x

∂φ
=

(
dr

dφ
cos θ,

dr

dφ
sin θ,

dz

dφ

)t

therefore

g11 =

∣∣∣∣∣∣



−r sin θ
r cos θ

0



∣∣∣∣∣∣

2

= r2 sin2 θ + r2 cos2 θ = r2
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and

g22 =

∣∣∣∣∣∣




dr
dφ

cos θ
dr
dφ

sin θ
dz
dφ



∣∣∣∣∣∣

2

=

(
dr

dφ

)2

(cos2 θ + sin2 θ) +

(
dz

dφ

)2

=

(
dr

dφ

)2

+

(
dz

dφ

)2

and

g12 =

〈

−r sin θ
r cos θ

0


 ,




dr
dφ

cos θ
dr
dφ

sin θ
dz
dφ



〉

= −r dr
dφ

sin θ cos θ + r
dr

dφ
cos θ sin θ = 0.

Thus the matrix of metric coefficients is

(gij) =

(
r2 0

0
(
dr
dφ

)2
+
(
dz
dφ

)2
)
.

In the case of an arclength parametrisation of the generating curve C,
we obtain g22 = 1, proving the theorem. �

Example 5.8.5. Consider the curve (sinφ, cosφ) in the x, z-plane.
The resulting surface of revolution is the sphere, where the φ parame-
ter coincides with the angle ϕ of spherical coordinates. Thus, for the
sphere S2 we obtain

(gij) =

(
sin2 φ 0
0 1

)
.

5.9. From tractrix to pseudosphere

Definition 5.9.1 (Tractrix). The tractrix is the plane curve is
parametrized by (r(φ), z(φ)) where r(φ) = eφ and

z(φ) =

∫ φ

0

√
1− e2ψdψ = −

∫ 0

φ

√
1− e2ψdψ,

where −∞ < φ ≤ 0.

Definition 5.9.2. The pseudosphere4 is the surface of revolution
generated by the tractrix.

4The name reflects the fact that its Gaussian curvature equals −1. The Gauss-
ian curvature of the pseudosphere will be calculated in Section 13.3.
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Here g11 = e2φ, while

g22 = (eφ)2 +
(√

1− e2φ
)2

= e2φ + 1− e2φ = 1.

Thus the matrix of metric coefficients is (gij) =

(
e2φ 0
0 1

)
.

5.10. Chain rule in two variables

How does one measure the length of curves on a surface in terms of
the metric coefficients of the surface x(u1, u2)? Let

α : [a, b]→ R2, α(t) =

(
α1(t)
α2(t)

)

be a plane curve. We will exploit the Einstein summation convention.
We will also use the following version of chain rule in several variables.

Theorem 5.10.1 (Chain rule in two variables). Consider the curve
on the surface defined by the composition β(t) = x ◦ α(t) where x =

x(u1, u2). Then dβ
dt

=
∑2

i=1
∂x
∂ui

dαi

dt
, or in Einstein summation conven-

tion
dβ

dt
=

∂x

∂ui
dαi

dt
= Jx

dα

dt
.

For a proof see Keisler [Ke74, p. 672].

5.11. Curvature of the cusp

We provide another example of a curvature calculation. We already
mentioned the cusp curve in Example 4.15.4. We will now calculate its
curvature.

Theorem 5.11.1 (Curvature of cusp curve). Consider the cusp
curve α(t) = (t2, t3) when t 6= 0. Then the curvature kα(t) tends to
infinity as we approach the cusp, i.e., as t→ 0.

Proof. The curve can be represented implicitly as the level curve
of the function F (y, x) = y2 − x3: We have Fy = 2y, Fx = 3x2,

|∇F | =
√
4y2 + 9x4. Using the defining equation y2 = x3 we obtain

|∇F | = (4x3 + 9x4)
1
2 = x

3
2 (4 + 9x)

1
2 . (5.11.1)

Next, Fyy = 2, Fxx = 6x, Fyx = 0. Thus

DBF = 2(9x4) + 6x(4y2) = 18x4 + 24y2x = 6x(3x3 + 4y2).
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Using the defining equation of the curve, namely y2 = x3, we ob-
tain DBF = 6x(3x3 − 4x3) = −6x4. From (5.11.1) we obtain that the
curvature of the curve is

kα =
6x4

x
9
2 (4 + 9x)3/2

=
6

x1/2(4 + 9x)3/2
.

We see in particular that as we approach the cusp point (i.e., x tends
to 0 or equivalently t tends to 0), the curvature tends to infinity, or in
symbols limt→0 kα(t) =∞. �

5.11.1. Curvature of the general cusp. This material is optional.
We provide another example of a curvature calculation. We already men-
tioned the cusp curve α(t) = (t2, t3) In Example 4.15.4.

Theorem 5.11.2. If 2 < n < 4, then the curvature of the curve α(t) =
(t2, tn) (where t 6= 0) tends to infinity as we approach the cusp.

Proof. The curve can be represented implicitly as the level curve of
the function F (y, x) = y2 − xn. We have Fy = 2y, Fx = nxn−1. There-

fore |∇F | =
√
4y2 + n2x2n−2. Using the defining equation of the curve, we

obtain

|∇F | = (4xn + n2x2n−2)
1
2 = xn/2(4 + n2xn−2)

1
2 . (5.11.2)

Next, Fyy = 2, Fxx = n(n− 1)xn−2, and Fyx = 0. Thus

DBF = 2(n2x2n−2) + n(n− 1)xn−2(4y2) = 2nxn−2(nxn + 2(n− 1)y2).

To express this as a function of a single variable, we exploit the defin-
ing equation of the curve, namely y2 = xn. Then we obtain DBF =
2nxn−2(nxn + (2n − 2)xn) = 2nxn−2(3n − 2)xn = 2n(3n − 2)x2n−2. Using

(5.11.2), we obtain that the curvature of the curve is kα = 2n(3n−2)x2n−2

x
3n
2 (4+n2xn−2)

3
2
=

x2n−2− 3n
2

(
2n(3n−2)

(4+n2xn−2)
3
2

)
= x(n−4)/2

(
2n(3n−2)

(4+n2xn−2)
3
2

)
. We see in particular

that as we approach the cusp point (i.e., x tends to 0 or equivalently t tends
to 0), the curvature tends to infinity (limt→0 kα(t) =∞) if and only if

n < 4.

For example, this would be the case when n = 3 as calculated earlier. �





CHAPTER 6

Gamma symbols of a surface and applications

In this chapter we continue the study of the intrinsic geometry of
surfaces in R3. The intrinsic geometric information about the surface
is the information contained in its first fundamental form.

6.1. Measuring length of curves on surfaces

In Section 5.4, we defined the following data:

(1) the metric coefficients gij = 〈xi, xj〉 of a surfaceM with parametri-
sation x(u1, u2).

(2) The first fundamental form Ip : TpM ×TpM → R, represented
by the matrix (gij).

The first fundamental form determines the length of curves on the
surface as follows. Let α : [a, b]→ R2 be a smooth curve.

Theorem 6.1.1. Consider a surface with parametrisation x(u1, u2).
Let β(t) = x ◦ α(t), t ∈ [a, b], be a curve on the surface. Then the
length L of the curve β is given by the formula

L =

∫ b

a

√
gij
(
α(t)

)dαi
dt

dαj

dt
dt.

Proof. The length L of the curve β is calculated as follows using
the chain rule:

L =

∫ b

a

∣∣dβ
dt

∣∣ dt

=

∫ b

a

∣∣∣∣∣

2∑

i=1

∂x
∂ui

dαi

dt

∣∣∣∣∣ dt

=

∫ b

a

√〈
xi

dαi

dt
, xj

dαj

dt

〉
dt

=

∫ b

a

√
〈xi, xj〉dα

i

dt
dαj

dt
dt

=

∫ b

a

√
gij(α(t))

dαi

dt
dαj

dt
dt.
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We therefore obtain L =
∫ b
a

√
gij(α(t))

dαi

dt
dαj

dt
dt as required. �

Corollary 6.1.2. If at every point we have (gij) = (δij) (i.e., the
identity matrix), then the length of the curve β = x ◦ α on the surface
equals the length of the original curve α in R2.

Proof. If the first fundamental form of the surface satisfies gij =

δij, then L =
∫ b
a

√(
dα1

dt

)2
+
(
dα2

dt

)2
dt. By Lemma 4.15.2, this is the

length of the curve α(t) in R2, as well.1 �

6.2. Normal vector to a surface

We first review the notation introduced in Section 5.2.

• x : R2 → R3 is a regular parametrisation of a surface M ⊆ R3;
• xi = ∂x

∂ui
, i = 1, 2 are its tangent vectors;

• at a specific point p = x(u1, u2) of the surface, the tangent
vectors span the tangent plane Tp = Span(x1, x2).

Definition 6.2.1. The normal vector n(u1, u2) to a regular surface
at the point x(u1, u2) ∈ R3 is a unit vector defined in terms of the vector
product, cf. Definition 1.10.1, as follows:

n =
x1 × x2
|x1 × x2|

,

so that 〈n, xi〉 = 0 for each i = 1, 2.

Lemma 6.2.2. For a regular surface M , we have an orthogonal de-
composition

R3 = Rn+ TpM.

Proof. This is immediate from the fact that the vector product is
orthogonal to both x1 and x2. �

Remark 6.2.3 (Sign ambiguity). Either the vector x1×x2
|x1×x2| or the

opposite vector
x2 × x1
|x1 × x2|

= − x1 × x2
|x1 × x2|

can be taken to be a normal vector to the surface.

1To simplify notation, let x = x(t) = α1(t) and y = y(t) = α2(t). Then the dt

cancels out. The infinitesimal element of arclength is ds =
√
dx2 + dy2. The length

of the curve is
∫
ds =

∫ √
dx2 + dy2.
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Theorem 6.2.4 (Normal direction of a graph). Consider the sur-
face M ⊆ R3 given by the graph z = f(x, y) of a function f(x, y). Then
the vector

(fx, fy,−1)t

is orthogonal to the tangent plane Tp toM at the point p = (x, y, f(x, y)).

Proof. A standard parametrisation of the graph of f is

x(u1, u2) = (u1, u2, f(u1, u2)).

Then x1 = (1, 0, fx)
t and x2 = (0, 1, fy)

t. Taking the vector product,
we obtain

det



−→
i
−→
j
−→
k

1 0 fx
0 1 fy


 = −fx

−→
i − fy

−→
j +
−→
k

which is the opposite of the vector (fx, fy,−1)t. Note that this may
not be a unit vector. �

Corollary 6.2.5. The normal vector n of the graph of f(x, y)
in R3 is

n =
(fx, fy,−1)t√
f 2
x + f 2

y + 1

up to sign.

Proof. This is immediate from the theorem by normalizing the
vector (fx, fy,−1)t. �

6.3. Γ symbols of a surface

In this section, we will define the symbols Γkij of a surface. The

symbols Γkij, roughly speaking, account for how the surface twists2 in
space. They are, however, coordinate-dependent (unlike the Gaussian
curvature that we will define in Section 9.5).

Remark 6.3.1 (Relation to the geodesic equation). We will see
that the symbols Γkij

control the behavior of geodesics on the surface.

Here geodesics on a surface can be thought of as curves that are to the
surface what straight lines are to a plane, or what great circles are to
a sphere; cf. Definition 7.2.2.

2Mitpatelet
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Remark 6.3.2. The metric coefficients gij were defined in terms of
first partial derivatives of x. Meanwhile, the symbols Γkij are defined

in terms of the second partial derivatives.3

The following is immediate from the definition of the regularity of
a surface.

Lemma 6.3.3. For a regular parametrisation x, the vectors (x1, x2, n)
form a basis (frame) for R3.

The symbols Γ are defined as the coefficients of the decomposition
of the second partial derivative vector xij, defined by

xij =
∂2x

∂ui∂uj

with respect to the basis, or frame,4 (x1, x2, n), as follows.

Definition 6.3.4. The symbols Γkij = Γkij(u
1, u2) are uniquely de-

termined by the decomposition

xij = Γ1
ij x1 + Γ2

ij x2 + Lijn

Remark 6.3.5. The coefficients Lij are also uniquely defined by
the formula. Their geometric meaning will be analyzed in Section 9.6.

6.4. Basic properties of the Γ symbols

Proposition 6.4.1. We have the following formula for the Gamma
symbols:

Γkij = 〈xij, xℓ〉gℓk, (6.4.1)

where (gℓk) is the inverse matrix of (gij).

Proof. Using the coefficients Lij from Definition 6.3.4, we have

〈xij, xℓ〉 = 〈Γkijxk + Lijn, xℓ〉
= 〈Γkijxk, xℓ〉+ 〈Lijn, xℓ〉
= Γkijgkℓ

since the vector n is perpendicular to each tangent vector of the surface.
We now multiply by gℓm and sum over the index ℓ:

〈xij, xℓ〉gℓm = Γkijgkℓg
ℓm = Γkijδ

m
k = Γmij .

This is equivalent to the desired formula. �

3Since the Gamma symbols do not transform as a tensor, one does not stagger
the indices.

4Maarechet yichus
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Remark 6.4.2. We have the following relation: Γkij = Γkji, or equiv-

alently Γk[ij] = 0 for all i, j, k.

Theorem 6.4.3. For the standard parametrisations of the plane
and the cylinder, the Gamma symbols vanish.

Proof. We calculate the symbols Γkij for the plane x(u1, u2) =

(u1, u2, 0). We have x1 = (1, 0, 0)t, x2 = (0, 1, 0)t. Thus we have xij = 0
for all i, j. Hence by formula (6.4.1), Γkij = 0 for all i, j, k.

Next, we calculate the symbols for the cylinder with parametrisa-
tion x(u1, u2) = (cos u1, sin u1, u2). We obtain the following data:





x1 = (− sin u1, cos u1, 0)t;

x2 = (0, 0, 1)t;

n = (cosu1, sin u1, 0)t.

Thus we have x22 = 0, x21 = 0 and so Γk22 = 0 and Γk12 = Γk21 = 0
for k = 1, 2.

Meanwhile, x11 = (− cos u1,− sin u1, 0)t. This vector is propor-
tional to n:

x11 = 0x1 + 0x2 + (−1)n.
Hence Γk11 = 0 for all k. �

An example of a surface with nonzero Γ symbols will appear in
Section 6.7.

6.5. Derivatives of the metric coefficients

Definition 6.5.1 (Comma notation). We use the following comma
notation for the partial derivative of the function gij = gij(u

1, u2):

gij,k =
∂

∂uk
(gij).

Lemma 6.5.2 (Leibniz rule). Scalar product of vector valued func-
tions f(t), g(t) satisfies Leibniz’s rule:

〈f, g〉′ = 〈f ′, g〉+ 〈f, g′〉.5 (6.5.1)

Proposition 6.5.3. In terms of the symmetrisation notation in-
troduced in Section 1.6, we have

gij,k = 2gm{iΓ
m
j}k, (6.5.2)

5For a proof, see infi 3 or [Leib]. In more detail, let (f1, f2) be components
of f , and let (g1, g2) be components of g. Then 〈f, g〉′ = (f1g1 + f2g2)

′ = f1g
′
1 +

f ′1g1 + f2g
′
2 + f ′2g2 = 〈f ′, g〉 + 〈f, g′〉. The same proof goes through for arbitrary

number of components, e.g., for functions with values in R3.
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or more explicitly

gij,k = gmiΓ
m
jk + gmjΓ

m
ik. (6.5.3)

Proof. Leibniz rule (Lemma 6.5.2) gives

gij,k =
∂

∂uk
〈xi, xj〉

= 〈xik, xj〉+ 〈xi, xjk〉
= 〈Γmikxm, xj〉+ 〈Γmjkxm, xi〉
= Γmik〈xm, xj〉+ Γmjk〈xm, xi〉.

The scalar products above by definition are the metric coefficients.
Therefore we have

gij,k = Γmikgmj + Γmjkgmi

= gmjΓ
m
ik + gmiΓ

m
jk

= 2gm{jΓ
m
i}k

= 2gm{iΓ
m
j}k

as required. �

Remark 6.5.4 (Reversing the arrow in gij ❀ Γkij). The system of
equations of type (6.5.3) suggests that one may be able to solve the
system for Γkij, i.e., to express Γkij in terms of the metric coefficients gij
and their derivatives gij,k. This turns out to be correct, as we show in
Section 6.6.

6.6. Intrinsic nature of the Γ symbols

In this section we show that the coefficients Γ are intrinsic6 mean-
ing that they are determined by the metric coefficients alone, and are
therefore independent of the ambient (extrinsic) geometry of the sur-
face, i.e., the way the surface “sits” in 3-space.

Theorem 6.6.1. The symbols Γkij can be expressed in terms of the
first fundamental form and its derivatives as follows:

Γkij =
1

2

(
giℓ,j − gij,ℓ + gjℓ,i

)
gℓk,

where gij is the inverse matrix of gij.

6This is atzmit and not pnimit according to Vishne.
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Γ1
ij j = 1 j = 2

i = 1 0 1
r
dr
dφ

i = 2 1
r
dr
dφ

0

Table 6.7.1. Symbols Γ1
ij of a surface of revolution (6.7.1)

Proof. The proof, motivated in Remark 6.5.4, is a calculation.
Applying Proposition 6.5.3 three times, we obtain

giℓ,j − gij,ℓ + gjℓ,i = 2gm{iΓ
m
ℓ}j − 2gm{iΓ

m
j}ℓ + 2gm{jΓ

m
ℓ}i

= gmiΓ
m
ℓj + gmℓΓ

m
ij − gmiΓmjℓ − gmjΓmiℓ + gmjΓ

m
ℓi + gmℓΓ

m
ji

= 2gmℓΓ
m
ji

after cancellation. We therefore obtain
1

2
(giℓ,j − gij,ℓ + gjℓ,i)g

ℓk =

Γmij gmℓg
ℓk = Γmij δ

k
m = Γkij, as required.

7 �

6.7. Gamma symbols for a surface of revolution

In Section 5.8, we defined a surface of revolution as obtained by
starting with a generating curve (r(φ), z(φ)) in the (x, z) plane, and ro-
tating it around the z-axis. This produces the parametrisation x(θ, φ) =
(r(φ) cos θ, r(φ) sin θ, z(φ)). Here we adopt the notation

u1 = θ, u2 = φ.

Theorem 6.7.1. For a surface of revolution we have Γ1
11 = Γ1

22 = 0,
while Γ1

12 =
1
r
dr
dφ

as in Table 6.7.1.

Proof. For the surface of revolution

x(θ, φ) = (r(φ) cos θ, r(φ) sin θ, z(φ)), (6.7.1)

the metric coefficients are given by the matrix

(gij) =

(
r2(φ) 0

0
(
dr
dφ

)2
+
(
dz
dφ

)2
)

by Theorem 5.8.4. We will use the formula Γkij =
1
2
(giℓ,j−gij,ℓ+gjℓ,i)gℓk

from Theorem 6.6.1. Since the off-diagonal coefficient g12 = 0 vanishes,

7Another approach would be to prove the identity 2〈xij , xℓ〉 = giℓ,j−gij,ℓ+gjℓ,i
and use it to prove the theorem.
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the diagonal coefficients of the inverse matrix satisfy

gii =
1

gii
for each i. (6.7.2)

We have
∂

∂θ
(gii) = 0 since the coefficients gii depend only on the vari-

able φ. Thus the terms
gii,1 = 0 (6.7.3)

vanish. Let us now compute the symbols Γ1
ij for k = 1. Using formulas

(6.7.2) and (6.7.3), we obtain

Γ1
11 =

1

2g11
(g11,1 − g11,1 + g11,1) by formula (6.7.2)

= 0 by formula (6.7.3).

Similarly, Γ1
22 =

1
2g11

(g12,2 − g22,1 + g12,2) =
g12,2
g11

= d
dφ
(0) = 0. Finally,

Γ1
12 =

1

2g11
(g11,2 − g12,1 + g12,1) =

g11,2
2g11

=

dr
dφ

r
,

proving the theorem.8 �

6.8. Spherical coordinates, latitudes

Spherical coordinates are useful in understanding surfaces of revo-
lution. They were already introduced in Section 5.4.9 The interval of
definition for the variable ϕ is ϕ ∈ [0, π] since ϕ = arccos z

ρ
and the

range of the arccos function is [0, π]. Meanwhile θ ∈ [0, 2π] as usual.

Definition 6.8.1. (1) The unit sphere S2 ⊆ R3 is defined in
spherical coordinates by the condition S2 = {(ρ, θ, ϕ) : ρ = 1}.

(2) A latitude10 on the unit sphere is a circle satisfying the equa-
tion ϕ = constant.

(3) The equator of the sphere is defined by the equation {ϕ = π
2
}.

8To keep track of the variables θ and φ, one could use the notation Γθ
θφ for Γ1

12,

etc. Then one would write Γθ
θφ =

dr
dφ

r , whereas Γθ
θθ = Γθ

φφ = 0.
9Recall that spherical coordinates (ρ, θ, ϕ) in R3 are defined by the following

formulas. We have ρ =
√
x2 + y2 + z2 =

√
r2 + z2 is the distance to the origin, r =√

x2 + y2, while ϕ is the angle with the z-axis, so that cosϕ = z
ρ . Here θ is the angle

inherited from polar coordinates in the x, y plane, so that tan θ = y
x while x = r cos θ

and y = r sin θ.
10kav rochav
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The equator is the only latitude that is also a great circle (see
Section 6.9) of the sphere.

Each latitude of the sphere is parallel to the equator (i.e., lies in a
plane parallel to the plane of the equator).

Lemma 6.8.2. A latitude can be parametrized by setting θ(t) = t
and ϕ(t) = constant.

Lemma 6.8.3. On the unit sphere, at each point we have the relation

r = sinϕ, (6.8.1)

where r is the distance from the point to the z-axis.

This is immediate from the relation r = ρ sinϕ.

6.9. Great circles and Clairaut’s relation as a bridge

In Section 7.5, we will analyze the geodesic equation on a surface.
This is a system of nonlinear second order differential equations. Our
goal in this section is to provide a geometric intuition for this equation.
We will establish a connection between the following two items: (1)
solutions of this system of ODEs, and (2) great circles on the sphere.

Definition 6.9.1. Let q ∈ S2, and let

(1) r be the distance from q to the (vertical) axis of revolution;
(2) γ is the angle at q between the direction of the great circle and

the latitudinal circle; cf. Theorem 6.10.4.

Theorem 6.9.2 (Clairaut’s relation as a bridge). The connection
between the ODE and the geometry of great circles is established via
the intermediary of Clairaut’s relation for a variable point q on a great
circle:

r(t) cos γ(t) = const.

Remark 6.9.3. In Section 6.10.4, we will verify Clairaut’s relation
for great circles using synthetic geometry, and also show that the great
circles satisfy a first order differential equation. In Section 7.5 we will
complete the connection by deriving Clairaut’s relation from the ge-
odesic equation. Thus Clairaut’s relation provides a bridge between
geometry and analysis.

Definition 6.9.4. A plane P through the origin is given by an
equation

ax+ by + cz = 0, (6.9.1)

where a2 + b2 + c2 > 0.
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Definition 6.9.5. A great circle G of S2 is given by an intersection

G = S2 ∩ P.
Example 6.9.6 (A parametrisation of the equator of S2). The

equator is parametrized by

α(t) = (cos t)e1 + (sin t)e2.

Theorem 6.9.7. Every great circle can be parametrized by

α(t) = (cos t)v + (sin t)w

where v, w ∈ S2 are orthonormal vectors in R3.

Proof. By the Pythagorean theorem, α(t) is a unit vector and
therefore lies on the unit sphere.11 �

6.10. Position vector orthogonal to tangent vector of S2

The following lemma will be useful in the sequel.

Lemma 6.10.1. Let α : R → S2 be a parametrized curve on the

sphere S2 ⊆ R3. Then the tangent vector
dα

dt
is perpendicular to the

position vector α(t), or in formulas:
〈
α(t),

dα

dt

〉
= 0.

Proof. We have 〈α(t), α(t)〉 = 1 by definition of S2. We apply the
operator d

dt
to obtain

d

dt
〈α(t), α(t)〉 = 0. (6.10.1)

Next, we apply the Leibniz rule (6.5.1) to equation (6.10.1) to obtain
〈
α(t),

dα

dt

〉
+
〈dα
dt
, α(t)

〉
= 2
〈
α(t),

dα

dt

〉
= 0,

completing the proof. �

The lemma will be used in the analysis of Clairaut’s relation in
Section 6.10.1 and elsewhere.

11An implicit (non-parametric) representation of a great circle can be obtained
as follows. Recall that we have x = r cos θ = ρ sinϕ cos θ; y = ρ sinϕ sin θ; z =
ρ cosϕ. If the circle lies in the plane ax + by + cz = 0 where a, b, c are fixed, the
great circle in coordinates (θ, ϕ) is defined implicitly by the equation a sinϕ cos θ+
b sinϕ sin θ + c cosϕ = 0, as in (6.9.1).
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6.10.1. Clairaut’s relation: bridge from geometry to analysis.

This material is optional. Our interest in Clairaut’s relation (6.10.2) for
curves on the sphere (and more general surfaces of revolution) lies in the
motivation it provides for the general geodesic equation on a surface of
revolution, as a bridge between geometry and analysis.

Remark 6.10.2. We will use Newton’s dot notation for the derivative
with respect to t as in α̇(t), where t is not necessarily an arclength parameter.

We defined great circles in Section 6.9. Consider a great circle G ⊆ S2.
Let α(t) be a parametrisation of G.

Definition 6.10.3 (Angle γ with latitude). γ(t) is the angle, at the
point α(t) ∈ S2, between the tangent vector α̇(t) to the curve and the
vector tangent to the latitude passing through α(t).

Theorem 6.10.4 (Clairaut’s relation). Let α(t) be a regular parametri-
sation of a great circle G on S2 ⊆ R3. Let r(t) denote the distance from the
point α(t) to the z-axis. Then the following relation holds along G:

r(t) cos γ(t) = const. (6.10.2)

Here the constant has value const = rmin, where rmin is the least Euclidean
distance from a point of G to the z-axis.

The proof exploits the sine law of spherical trigonometry given in Sec-
tion 6.10.2.

6.10.2. Spherical sine law. Let S2 be the unit sphere in 3-space.

Definition 6.10.5. A spherical triangle is the following collection of
data:

(1) the three vertices are points of S2, not lying on a common great
circle;

(2) each side is an arc of of a great circle;
(3) the angle at each vertex is the angle between tangent vectors to

the sides;
(4) each side has length strictly smaller than π.

Theorem 6.10.6 (Spherical sine law). Let a be the side opposide angle α,
let b be the side opposite angle β, and let c be the side opposite angle γ. Then

sin a

sinα
=

sin b

sinβ
=

sin c

sin γ
.

Corollary 6.10.7. If γ = π
2 then

sin a = sin c sinα. (6.10.3)

Remark 6.10.8. For small values of the sides a, c in a right-angle trian-
gle, we recapture the Euclidean sine law

a = c sinα

as the limiting case of (6.10.3).
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Three proofs of the spherical sine law are given in Subsection 6.10.7.

6.10.3. Longitudes; length-minimizing property.

Definition 6.10.9. A longitude12 on S2 is the arc of a great circle con-
necting the North Pole e3 = (0, 0, 1)t and the South Pole −e3 = (−1, 0, 0)t.

Next we show that the arc of great circle is length-minimizing among
all paths joining a pair of points on the sphere. Recall that the metric
coefficients of the sphere in coordinates (θ, φ) are





g11 = sin2 φ,

g22 = 1,

g12 = 0.

Theorem 6.10.10. A shortest spherical path between a pair of points
on S2 is an arc of great circle passing through them.

Proof. Let p0, p1 ∈ S2.

Step 1. Since orthogonal transformations preserve lengths, by applying
a rotation we can assume that p0 and p1 lie on a common longitude. To fix
ideas, we will assume that this is the longitude in the xz-plane defined by
the coordinate θ = 0 while φ varies from 0 to π.

Step 2. Let x(θ, φ) be the standard parametrisation of the sphere as a
surface of revolution. Then pi = x(0, φi), for i = 0, 1.

Step 3. The main point is that moving in the latitudinal direction can
only increase the length of the curve. To implement this technically, consider
an arbitrary path α(t), t ∈ [0, 1] joining the two points, so that α(0) = (0, φ0)
and α(1) = (0, φ1). Let β(t) = x(α(t)) be the path on the sphere. Then pi =
β(i) for i = 0, 1. The length L of the path β can now be bounded from below

as follows using Theorem 6.1.1: L =
∫ 1
0

∣∣∣dβdt
∣∣∣ =

∫ 1
0

√
sin2 φ

(
dθ
dt

)2
+
(
dφ
dt

)2
≥

∫ 1
0

∣∣∣dφdt
∣∣∣ ≥

∫ 1
0
dφ
dt =

∫ φ1
φ0
dφ = φ1 − φ0.

Step 4. The difference φ1 − φ0 is precisely the length of the segment
of the longitude between the two points. This proves that the arc of the
longitude containing both points is a shortest path between them. �

A proof without calculus is given at https://matheducators.stackexchange.
com/a/26698/1385.

Definition 6.10.11. A great circle will be called generic if it does not
pass through the north and south poles, i.e., does not include a longitude.

Definition 6.10.12. Let pG ∈ S2 be the point of the great circle G with
the largest z-coordinate among all points of G.

12kav orech

https://matheducators.stackexchange.com/a/26698/1385
https://matheducators.stackexchange.com/a/26698/1385
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Lemma 6.10.13. Consider a generic great circle G ⊆ S2. Let α(t) be a
regular parametrisation of G with α(0) = pG, and denote by α̇(0) the tangent
vector to G at pG. Then G has the following three equivalent properties:

(1) α̇(0) is proportional to the vector product e3 × pG;
(2) α̇(0) is perpendicular to the longitude passing through pG;
(3) α̇(0) is tangent at pG to the latitude.

Proof. We will prove item (1).

Step 1. Note that 〈α̇(0), pG〉 = 0 by Lemma 6.10.1 (tangent vector is
perpendicular to the position vector of the point on the sphere). It remains
to prove that α̇(0) is orthogonal to e3.

Step 2. Since pG as the point with maximal z-coordinate, the func-
tion 〈α(t), e3〉 achieves its maximum at t = 0. Hence by Fermat’s theorem
we have

d

dt

∣∣∣
t=0
〈α(t), e3〉 = 0. (6.10.4)

Step 3. We apply the Leibniz rule to (6.10.4) to obtain
〈dα
dt

∣∣∣
t=0

, e3

〉
= −

〈
α(t),

de3
dt

〉
= 0,

since e3 is constant. Thus 〈α̇(0), e3〉 = 0.13 �

6.10.4. Preliminaries to proof of Clairaut’s relation.

Definition 6.10.14. The spherical distance d(p, q) on S2 is the distance
between points p, q ∈ S2 measured along shortest arc of great circle passing
through them:

d(p, q) = arccos〈p, q〉.
By Theorem 6.10.10, d(p, q) is the least length of a path on the sphere

joining p, q.

Lemma 6.10.15. When p be the north pole p = e3, the spherical dis-
tance d(e3, q) is the ϕ-coordinate of the point q.

Proof. This follows from the fact that the length of an arc of a unit
circle equals the subtended angle. �

13Equation of great circle. This material is optional. One can show that
a great circle on the sphere satisfies the equation cot(ϕ) = tan(γ) cos(θ − θ0),
where γ is the angle of inclination of the plane (see below). Indeed, a great cir-
cle is the intersection of the sphere with a plane through the origin. Let a unit
normal to that plane be u = [− sin(γ), 0, cos(γ)], where for convenience we choose
our x and y axes so that y = 0 (the plane contains the y-axis). Then the equa-
tion u · [sinϕ cos θ, sinϕ sin θ, cosϕ] = 0 becomes cot(ϕ) = tan(γ) cos(θ). Rotating
around the z axis, this becomes cot(ϕ) = tan(γ) cos(θ−θ0) (this gamma has nothing
to do with the gamma from Clairaut’s relation).
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As in Section 6.10.1, we denote by γ(t) the angle formed by the tangent
vector to a great circle and the latitude. First we note that the complemen-
tary angle of γ is the angle with the longitude, as follows.

Lemma 6.10.16. Given a regular parametrisation α(t) of a great circle,
the following are equivalent:

(1) the angle between α̇(t) and (the vector tangent to) the latitude
is γ(t);

(2) the angle between α̇(t) and the vector tangent to the longitude at
the point α(t) is of π

2 − γ(t).
Proof. For a surface of revolution x(θ, ϕ) (where u1 = θ and u2 =

ϕ), the metric coefficient g12 vanishes (see Section 5.6 and Section 6.7).
Hence the tangent vectors x1 = ∂x

∂θ and x2 = ∂x
∂ϕ are orthogonal. These are

respectively the tangents to the latitude and the longitude. Therefore the
two angles add up to π

2 . �

6.10.5. Proof of Clairaut’s relation. Let us summarize our notation
for a great circle G ⊆ S2 with parametrisation β(t).

(1) pG ∈ S2 is the point of G with maximal z-coordinate.
(2) ϕ(t) is the spherical coordinate ϕ at the point β(t).
(3) r(t) = sinϕ(t) is the distance to the z-axis.
(4) ∆t is a spherical triangle with vertices at β(t), pG, and the north

pole e3.
(5) The angle of the triangle ∆t at the vertex pG is π

2 by Lemma
6.10.13.

We introduce two further arcs:

• ct is the arc of longitude joining the variable point β(t) to e3.
• b is the arc of longitude joining pG to e3.

By Lemma 6.10.15, the lengths b and ct are respectively the ϕ-coordinates
of the points pG and β(t). We now apply Corollary 6.10.7 (of the law of
sines) to the right-angle triangle ∆t. We obtain

sin ct sin
(
π
2 − γ(t)

)
= sin b.

Note that r(t) = sin ct by (6.8.1). Since b is independent of t, we obtain the
relation r(t) cos γ(t) = sin b, proving Clairaut’s relation.

6.10.6. Differential equation of great circle. Recall that the sphere
S2 ⊆ R3 is defined in spherical coordinates (θ, ϕ, ρ) by the equation ρ = 1.
Note that the parametrisation of the great circle G in Clairaut’s relation
need not be arclength. Assume that a great circle G ⊆ S2 is generic (see
Definition 6.10.11). Then we can parametrize G by the value of the spherical
coordinate θ. By the implicit function theorem, we obtain the following
lemma.

Lemma 6.10.17. A generic great circle G ⊆ S2 can be defined by a
suitable function ϕ = ϕ(θ).
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Theorem 6.10.18. Each generic great circle G ⊆ S2 satisfies the fol-
lowing differential equation for ϕ = ϕ(θ):

r2 +

(
dϕ

dθ

)2

=
r4

const2
, (6.10.5)

where r = sinϕ and const = sinϕmin from Theorem 6.10.4.

Proof. An element of length, denoted ds, along the great circle G
decomposes into a longitudinal (along a longitude, north-south) displace-
ment dϕ, and a latitudinal (east-west) displacement rdθ (Leibniz’s charac-
teristic triangle). Thus ds2 = r2dθ2+dϕ2 (for details see Proposition 7.6.5).
Recall that γ is the angle with the latitude. Hence

{
ds sin γ = dϕ

ds cos γ = rdθ

along G. Dividing the first equation by the second, we obtain

tan γ =
sin γ

cos γ
=

dϕ

r dθ
.

Expressing cos2 γ in terms of tan2 γ, we obtain

cos2 γ =
1

1 +
( dϕ
r dθ

)2 . (6.10.6)

Substituting into (6.10.6) the value cos γ = const
r from Clairaut’s relation

(Theorem 6.10.4), we obtain14

(
const
r

)2(
1 +

(
dϕ
rdθ

)2)
= 1. (6.10.8)

Multiplying by r4 and dividing by const2 we obtain

r2 +

(
dϕ

dθ

)2

=
r4

const2
where r = sinϕ,

proving the theorem. �

This equation is solved explicitly in terms of integrals in note 7.6.6 be-
low.15

14Equivalently, 1 +
(

dϕ
rdθ

)2
=
(

r
const

)2
or
(

dϕ
rdθ

)2
= r2

const2 − 1 or dϕ
rdθ =

√
r2

const2
− 1 or 1

r
dϕ
dθ =

√
r2

const2
− 1 or

1

sinϕ

dϕ

dθ
=

√
sin2 ϕ

const2
− 1 (6.10.7)

15At a point where ϕ is not extremal as a function of θ, the theorem on the
uniqueness of solution of ODE applies and gives a unique geodesic through the
point. However, at a point of maximal ϕ, the hypothesis of the uniqueness theorem
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6.10.7. Sine law. This material is optional. We present three proofs.

First proof of spherical sine law. Let A,B,C be the angles. We
choose a coordinate system so that the three vertices of the spherical trian-
gle are located at (1, 0, 0), (cos a, sin a, 0) and (cos b, sin b cosC, sin b sinC).
The volume of the tetrahedron formed from these three vertices and the
origin is 1

6 sin a sin b sinC. Since this volume is invariant under cyclic rela-
beling of the sides and angles, we have sin a sin b sinC = sin b sin c sinA =
sin c sin a sinB and therefore sinA

sin a = sinB
sin b = sinC

sin c proving the law. See
http://math.stackexchange.com/questions/1735860. �

Second proof. Denote byA,B,C the vertices opposite the sides a, b, c.
The points A,B,C can be thought of as unit vectors in R3. Note that sin a =
|B × C|, etc. Meanwhile sinα = |C ′ × B′| where C ′ is normalisation of the
orthogonal component of C when the component parallel to A is eliminated
(through the Gram-Schmidt process). Here the component of C parallel to A
is (C · A)A of norm cos b. The orthogonal component is C − (C · A)A is of

norm sin b = |A×C| = |C−(C ·A)A|. Thus we have C ′ = C−(C·A)A
|A×C| , B′ =

B−(B·A)A
|A×B| . Therefore sinα

sin a =

∣

∣

∣

C−(C·A)A
|A×C|

×B−(B·A)A
|A×B|

∣

∣

∣

|B×C| = |(C−(C·A)A)×(B−(B·A)A)|
|A×B| |A×C| |B×C|

In the denominator we get the product of the three vector products, namely
|A×B| |B×C| |C×A|, which is symmetric in the three vectors. Meanwhile
in the numerator we get the norm of the vector

(C − (C ·A)A)× (B − (B ·A)A). (6.10.9)

The triple of vectors A,B,C is transformed into the triple A, (C − (C ·
A)A), (B − (B · A)A) by a volume-preserving transformation. This com-
bined with the fact that A is a unit vector shows that the norm of the
vector (6.10.9) equals the absolute value of the determinant of the 3×3 ma-
trix [ABC] (i.e., absolute value of the volume of the parallelopiped spanned
by the three vectors), which is also symmetric in the three points. Thus we

have sinα
sin a = |det[ABC] |

sin a sin b sin c , proving the spherical sine law. �

Third proof of sine law. There is an alternative proof that relies
on the identity (a × b) × (a × c) = (a · (b × c))a for each triple of vectors

a, b, c ∈ R3. Indeed, sinα = |(A×B)×(A×C)|
|A×B| |A×C| = det(ABC)

sin b sin c since A is a unit

vector, and therefore sinα
sin a = det(ABC)

sin a sin b sin c as required. �

does not apply. Namely, the square root expression on the right hand side of (6.10.7)
does not satisfy the Lipschitz condition as the expression under the square root
sign vanishes. In fact, uniqueness fails at this point, as a latitude (which is not a
geodesic) satisfies the differential equation, as well. Here we have r = const, and
at an extremal value of ϕ one can no longer solve the equation by separation of
variables (as this would involve division by the radical expression which vanishes at
the extremal value of ϕ). At this point, there is a degeneracy and general results
about uniqueness of solution cannot be applied.

http://math.stackexchange.com/questions/1735860
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The sources for the spherical sine law are Smart 1960, pp. 9-10; Gellert et
al. 1989, p. 265; Zwillinger 1995, p. 469. Here (1) Gellert, W.; Gottwald, S.;
Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). “Spherical Trigonome-
try.” §12 in VNR Concise Encyclopedia of Mathematics, 2nd ed. New York:
Van Nostrand Reinhold, pp. 261-282, 1989; (2) Smart, W. M. Text-Book on
Spherical Astronomy, 6th ed. Cambridge, England: Cambridge University
Press, 1960; (3) Zwillinger, D. (Ed.). “Spherical Geometry and Trigonom-
etry.” §6.4 in CRC Standard Mathematical Tables and Formulae. Boca
Raton, FL: CRC Press, pp. 468-471, 1995.





CHAPTER 7

Geodesic equation

7.1. Gravitation, ants, and geodesics on a surface

The notion of a geodesic curve is important both in differential
geometry and in relativity theory. What is a geodesic on a surface?

A geodesic on a surface can be thought of as the path
of an ant crawling along the surface of an apple,

according to the textbook Gravitation [MiTW73, p. 3].

Remark 7.1.1 (Narrow strip of apple’s peel). Imagine that we peel
off a narrow strip1 of the apple’s skin along the ant’s trajectory, and
then lay it out flat on a table. What we obtain is a straight line,
revealing the ant’s ability to travel along the shortest path.

On the other hand, a geodesic is defined by a certain nonlinear
second order ordinary differential equation as in formula (7.2.1). To
make the geodesic equation more concrete, we will examine the case of
the surfaces of revolution. Here the geodesic equation transforms into
a conservation law called conservation of angular momentum.2

In addition to a derivation in Section 7.2, we will also give a longer
derivation of the geodesic equation using the calculus of variations.3

7.2. Geodesic equation on a surface

Consider the following data.

(1) A plane curve R
s
→
α

R2

(u1,u2)
where α = (α1(s), α2(s)).

(2) A parametrisation x : R2 → R3 of a surface M .

1retzua daka
2shimur tena’ zaviti. This conservation law is equivalent to Clairaut’s relation.

The latter lends itself to a synthetic verification for spherical great circles; see
Theorem 6.10.4. Thus Clairaut’s relation provides a bridge between geometry and
ODEs.

3I once heard R. Bott point out a surprising aspect of M. Morse’s foundational
work in this area. Namely, Morse systematically used the length functional on the
space of curves. The simple idea of using the energy functional instead of the length
functional was not exploited until later. The use of energy simplifies calculations
considerably, as we will see in the optional Section 8.8.2.

93
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(3) A curve β = x ◦ α on M given by the composition

R
s
−→
α

R2

(u1,u2)
−→
x

R3.

We will first prove the following identity. The coefficients Lij are
from Definition 6.3.4.

Proposition 7.2.1. Every regular curve β(s) on M satisfies the
identity

β′′ =
(
αi

′
αj

′
Γkij + αk

′′)
xk +

(
Lijα

j ′αi
′
)
n

Proof. Write β = x ◦ α, then β′ = xi(α(s))α
i′ by chain rule.

Differentiating again, we obtain

β′′ = d
ds
(xi ◦ α) αi′ + xi α

i′′

= xij α
j ′αi

′
+ xk α

k ′′.

Meanwhile xij = Γkij xk + Lij n. Thus

β′′ =
(
Γkij xk + Lij n

)
αj

′
αi

′
+ xk α

k ′′.

Rearranging the terms proves the proposition. �

Definition 7.2.2. A geodesic is a curve β = x◦α on the surfaceM
satisfying one of the following two equivalent conditions:

(a) for each k = 1, 2, we have

(αk)
′′

+ Γkij(α
i)

′

(αj)
′

= 0 where
′

=
d

ds
, (7.2.1)

meaning that

(∀k) d2αk

ds2
+ Γkij

dαi

ds

dαj

ds
= 0; (7.2.2)

(b) the vector β′′ is perpendicular to the surface and one has

β′′ = Lij α
i′αj

′
n. (7.2.3)

Remark 7.2.3. We will show in Lemma 7.4.1 that such a curve β
must have constant speed.4

4In Section 8.8.2, the equations (7.2.1) will be derived using the calculus of
variations.
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7.3. Equivalence of definitions

In Section 7.2 we defined a geodesic curve β(s) = x ◦α(s) on a sur-
face with parametrisation x = x(u1, u2) in two ways that were claimed
to be equivalent:

(a) for each k = 1, 2, we have (αk)
′′
+ Γkij (α

i)
′
(αj)

′
= 0;

(b) the vector β′′ is normal to the surface and β′′ = Lij α
i′αj

′
n.

Proof of equivalence. Assume β satisfies (a). We apply Propo-

sition 7.2.1 to the effect that β′′ =
(
αi

′
αj

′
Γkij + αk

′′
)
xk+

(
Lijα

j ′αi
′)
n.

Our assumption implies that the tangent component vanishes and we
obtain

β′′ = Lij α
i′αj

′
n,

showing that the vector β′′ is normal to the surface.
Conversely, suppose β′′ is proportional to the normal vector n. Then

the tangential component of β′′ must vanish, proving the equation
(αk)

′′
+ Γkij(α

i)
′
(αj)

′
= 0 for each k. �

Corollary 7.3.1. Geodesics in the plane are straight lines.

Proof. In the plane with a standard parametrisation, all coeffi-
cients vanish: Γkij = 0. Then the geodesic equation becomes (αk)

′′
= 0.

Integrating twice, we obtain that α(s) is a linear function of s. There-
fore the graph is a straight line, proving the corollary. �

7.4. Geodesic is constant speed

Let x(u1, u2) be a regular parametrisation of a surface M , and
let β = x ◦α be a smooth curve on M . Recall that β is a geodesic if it
satisfies the geodesic equation

αk
′′
+ Γkij α

i′αj
′
= 0 (7.4.1)

for all k, and that if β is a geodesic then

β′′ = Lij α
i′αj

′
n (7.4.2)

(see equation (7.2.1)), where n is the normal vector to the surface at
the point x(u1, u2).

Lemma 7.4.1. On a surface M , a curve β satisfying the geodesic
equation (7.4.1) is necessarily constant speed.
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Proof. It suffices to prove that the square of the speed has van-
ishing derivative. From formula (7.4.2), we have

d

ds

(
|β′|2

)
= 2〈β′′, β′〉

= 〈Lij αi′αj ′n , αk ′xk〉
= Lij α

i′αj
′
αk

′〈n, xk〉
= 0,

proving the lemma. �

7.5. Geodesics on a surface of revolution

Surfaces of revolutionM ⊆ R3 are a rich source of interesting exam-
ples of surfaces. Because of the presence of a circle of symmetries, one
can reduce the order of the differential equation of a geodesic from 2
to 1, making it easier to solve explicitly.

We use the notation u1 = θ, u2 = φ for the parameters in the case
of a surface of revolution generated by a plane curve (r(φ), z(φ)), and
write x(θ, φ) in place of x(u1, u2). Here the function r(φ) is the distance
from the point on the surface to the z-axis.

Definition 7.5.1 (Latitude on a surface of revolution). On a sur-
face of revolution M , the latitude5 is the curve obtained by fixing φ =
φ0, and parametrized as follows:

β(θ) = x(θ, φ0) = (r(φ0) cos θ, r(φ0) sin θ, z(φ0))

where θ ∈ [0, 2π].

Lemma 7.5.2 (Angle with latitude). Let M be a surface of revo-
lution. Let β(s) = x(θ(s), φ(s)) be a unit speed curve (not necessarily
geodesic) on M . Then the angle γ(s) at the point β(s) between the
curve and the latitude satisfies the relation

cos γ(s) = r
dθ

ds
,

where r is the distance from the point β(s) to the z-axis.

Proof. The tangent vector to the latitude is x1 = ∂x
∂θ
. Recall

that g11 = r2(φ) by Theorem 6.7.1, i.e., |x1| = r; and g12 = 0. Then
we can compute the cosine of the angle between two unit vectors by

cos γ =

〈
x1
|x1|

,
dβ

ds

〉
.

5kav rochav
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Let ′ = d
ds
. Recall that by chain rule β′ = x1 θ

′
+ x2 φ

′
. Thus

cos γ =
1

|x1|
〈x1, x1θ

′

+ x2φ
′

︸ ︷︷ ︸
chain rule

〉 = θ
′

|x1|
〈x1, x1〉︸ ︷︷ ︸

|x1|2

+
φ

′

|x2|
〈x1, x2〉︸ ︷︷ ︸
g12=0

= θ
′ |x1| = r θ

′

,

proving the lemma. �

7.6. Geodesic equation on a surface of revolution

We will continue using the shorthand notation θ(s), φ(s) respec-
tively for the components α1(s), α2(s) of the curve α(s).

Proposition 7.6.1. On a surface of revolution, the differential
equation of geodesic β(s) = x(θ(s), φ(s)) for k = 1 becomes

r θ′′ + 2
dr

dφ
θ
′

φ
′

= 0. (7.6.1)

Proof. The Gamma symbols for k = 1, computed in Lemma 6.7.1,

are Γ1
11 = Γ1

22 = 0 and Γ1
12 =

dr
dφ

r
. The differential equation of geo-

desic β = x ◦ α for k = 1 becomes

0 = θ′′ + 2Γ1
12 θ

′φ′ = θ′′ +
2 dr
dφ

r
θ
′

φ
′

,

as required. �

Theorem 7.6.2. On a surface of revolution M ⊆ R3 with coordi-
nates (θ, φ), the differential equation of a geodesic for k = 1 is equiva-
lent to the first-order differential equation

r2θ
′

= const. (7.6.2)

Proof. We multiply formula (7.6.1) by r to obtain

0 = r2θ′′ + 2r
dr

dφ
θ
′

φ
′

= (r2θ
′

)
′

by Leibniz rule and chain rule. Integrating the equation (r2θ
′
)
′
= 0 we

obtain r2θ
′
= const as required. �

Corollary 7.6.3. The geodesic equation on a surface of revolution
is equivalent to Clairaut’s relation

r cos γ = const

along the geodesic, where γ is the angle with the latitude.6

6See Theorem 6.10.4.
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Proof. Since the geodesic β is constant speed by Lemma 7.4.1, we
can assume the parameter s is arclength by rescaling the parameter by
a constant factor. Now, by Lemma 7.5.2 we have cos γ = r θ′. Hence
by formula (7.6.2) of Theorem 7.6.2, we have r cos γ = r2θ′ = const.
Thus we obtain r cos γ = const. �

Remark 7.6.4. This result generalizes Clairaut’s relation from the
sphere to arbitrary surfaces of revolution. In Section 6.10.5 we proved
Clairaut’s relation synthetically (using the spherical law of sines) for
the sphere only. Corollary 7.6.3 shows that the relation holds for an
arbitrary surface of revolution in R3.

The geodesic equation is expressed in terms of differentials in the
footnote.7

7This material is optional. We now consider the geodesic equation in differential
form. Recall that (r(φ), z(φ)) is the generating curve of a surface of revolution. We

have g11 = r2(φ) and g22 =
(

dr
dφ

)
+
(

dz
dφ

)2
. Let β = x ◦ α(s) be a unit speed

geodesic. Thus s is the arclength parameter and ds is an element of length.

Proposition 7.6.5. On the surface of revolution generated by the
curve (r(φ), z(φ)), every unit speed curve β(s) satisfies the equation ds2 = r2dθ2 +

g22dφ
2, or equivalently

(
ds
dθ

)2
= r2 + g22

(
dφ
dθ

)2
.

Proof. We have 1 =
〈

dβ
ds ,

dβ
ds

〉
= 〈x1θ

′

+ x2φ
′

, x1θ
′

+ x2φ
′〉 = g11(θ

′

)2 +

g22(φ
′

)2. Thus,

1 = r2
(
dθ

ds

)2

+ g22

(
dφ

ds

)2

. (7.6.3)

Multiplying (7.6.3) by
(
ds
dθ

)2
, we obtain

(
ds
dθ

)2
= r2+g22

(
dφ
ds

ds
dθ

)2
= r2+g22

(
dφ
dθ

)2
,

as required. �

Remark 7.6.6. The geodesic equation for a surface of revolution can be solved
explicitly in integrals, producing the following formula for θ as a function of φ: θ =

c
∫

1
r

(
( dr

dφ )
2
+( dz

dφ )
2

r2−c2

) 1

2

dφ+c′. Indeed, from equation (7.6.2) (equivalent to Clairaut’s

relation) we obtain ds
dθ = r2

c . By Proposition 7.6.5, we obtain the formula r4

c2 =

r2+g22

(
dφ
dθ

)2
or, equivalently, 1

c2 = 1
r2 +

g22
r4

(
dφ
dθ

)2
(which in the case of the sphere

is the equation (6.10.5) of a great circle). Solving equation r4

c2 = r2 + g22

(
dφ
dθ

)2

for dφ
dθ we obtain dφ

dθ =
( r4

c2
−r2

g22

)1/2
= r

c

(
r2−c2(

dr
dφ

)
2

+
(
dz
dφ

)
2

)1/2
. Solving for θ, we

obtain θ = c
∫

1
r

√
( dr

dφ )
2
+( dz

dφ )
2

r2−c2 dφ + c′. As a corollary, we obtain the following:

Along a great circle on S2, we have the following relation between the spherical
coordinates θ and φ: θ = c

∫
dφ

sinφ
√

sin2φ−c2
+ c′. Since r(φ) = sinφ and z = cosφ,
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7.7. Integration in spherical coordinates

Following some preliminaries on areas, directional derivatives, and
Hessians, we will deal with a central object in the differential geom-
etry of surfaces in Euclidean space, namely the Weingarten map, in
Section 8.6.

Spherical coordinates8 (ρ, θ, ϕ) in Euclidean 3-space are studied in
Vector Calculus. They were already defined in Section 6.8.

We consider the volume element in spherical coordinates. The co-
ordinate ρ is the distance from the point to the origin, satisfying ρ2 =
x2 + y2 + z2, or ρ2 = r2 + z2, where r2 = x2 + y2. If we project the
point orthogonally to the (x, y)-plane, the polar coordinates of its im-
age, (r, θ), satisfy x = r cos θ and y = r sin θ. The last coordinate ϕ
of the spherical coordinates is the angle between the position vector
of the point and the third basis vector e3 in 3-space (pointing upward
along the z-axis). Thus z = ρ cosϕ while r = ρ sinϕ. Here we have
the bounds 0 ≤ ρ, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π (note the different upper
bounds for θ and ϕ).

Definition 7.7.1 (Volume element in spherical coordinates). The
volume of a region in 3-space is calculated using the volume element of
the form

dV = ρ2 sinϕ dρ dϕ dθ

we have obtained an equation of a great circle in spherical coordinates. Integrating

this by a substitution u = cotφ we obtain cotφ = a cos(θ − θ0) where a = 1−c2

c .
Note that the angles θ and φ are switched in the related discussion at http://www.
damtp.cam.ac.uk/user/reh10/lectures/nst-mmii-handout2.pdf

Remark 7.6.7 (Area integration in polar coordinates). We review material
from calculus on polar, cylindrical, and spherical coordinates as regards their role
in integration. The polar coordinates (r, θ) in the plane arise naturally in complex
analysis (of one complex variable). Area element in polar coordinates: Polar coor-
dinates (koordinatot koteviot) (r, θ) satisfy r2 = x2+y2 and x = r cos θ, y = r sin θ.
It is shown in elementary calculus that the area of a region D ⊆ R2 in the plane
in polar coordinates is calculated using the following area element. The area el-
ement of polar coordinates is dA = r dr dθ, meaning that the area of D relative
to polar coordinates is computed as follows:

∫
D
dA =

∫∫
rdrdθ. Integration in

cylindrical coordinates in R3. Cylindrical coordinates in Euclidean 3-space are
studied in Vector Calculus. volume element (koordinatot gliliot) in cylindrical co-
ordinates: (r, θ, z) are a natural extension of the polar coordinates (r, θ) in the
plane. The volume of an open region D ⊆ R3 is calculated with respect to cylindri-
cal coordinates using a suitable volume element. The volume element in cylindrical
coordinates is dV = r dr dθ dz, meaning that the volume of D is calculated as
follows:

∫
D
dV =

∫∫∫
rdr dθ dz.

8koordinatot kaduriot

http://www.damtp.cam.ac.uk/user/reh10/lectures/nst-mmii-handout2.pdf
http://www.damtp.cam.ac.uk/user/reh10/lectures/nst-mmii-handout2.pdf
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meaning that the volume of a region D ⊆ R3 is
∫

D

dV =

∫∫∫

D

ρ2 sinϕ dρ dϕ dθ.

Definition 7.7.2 (Area element on the sphere). The area of a
spherical region D ⊆ S2 on the unit sphere is calculated using an area
element

sinϕ dϕ dθ.

See also the note.9

7.8. Measuring area on surfaces

Let x(u1, u2) be a parametrisation of a surface M ⊆ R3. The area
of the parallelogram spanned by the tangent vectors x1 and x2 can be
calculated as the square root of their Gram matrix, namely the matrix
of the first fundamental form. This motivates the following definition.

Definition 7.8.1 (Area element of a surface). The area of the
surface M parametrized by x : U → R3 is computed by integrating the
area element √

g11g22 − g212 du1du2 (7.8.1)

over the domain U of the map x. Thus

area(M) =

∫

U

√
det(gij) du

1du2,

where M is the region parametrized by x(u1, u2).

Remark 7.8.2. The presence of the square root in the formula
is explained in infinitesimal calculus in terms of the Gram matrix,
cf. formula (5.5.1). The geometric meaning of the square root is the
area of the parallelogram spanned by the pair of standard (coordinate)
tangent vectors.

Example 7.8.3 (Area element of the unit sphere). Consider the
parametrisation of the unit sphere provided by spherical coordinates.

9The area of a spherical region on a sphere of radius ρ = ρ1 is calculated
using the area element dA = ρ21 sinϕ dϕ dθ. Thus the area of a spherical region D
on a sphere of radius ρ1 is given by the integral

∫
D
dA =

∫∫
ρ21 sinϕ dϕ dθ =

ρ21
∫∫

sinϕ dϕ dθ . An an example, calculate the area of the spherical region on
a sphere of radius ρ1 contained in the first octant (so that all three Cartesian
coordinates are positive).
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Then the area element is10

sinϕ dϕ dθ

where sinϕ =
√
det(gij). We recover the formula familiar from calculus

for the area of a region D on the unit sphere:

area(D) =

∫∫

D

sinϕ dϕ dθ

as in Example 7.7.2.

10Here there is a nasty problem of sign, since we chose u1 = θ. At the level of
calculus this does not matter but it becomes important when integrating differential
2-forms.





CHAPTER 8

Weingarten map

8.1. Directional derivative as derivative along path

We will represent a vector v ∈ Rn as the velocity vector

v = dα
dt

= α̇(0)

of a curve α(t), at t = 0. Typically we will be interested in the case n =
3 (or 2).

Definition 8.1.1 (Directional derivative along curve). Given a
function f of n variables, its directional derivative1 ∇vf at a point p ∈
Rn, in the direction of a vector v is defined by setting

∇vf =
d (f ◦ α(t))

dt

∣∣∣∣
t=0

where α(0) = p and α̇(0) = v.

Lemma 8.1.2. The value of the directional derivative is independent
of the choice of the curve α(t) representing the vector v.

Proof. The lemma is proved in Elementary Calculus [Ke74]. �

Let p = x(u1, u2) be a point of a surfaceM ⊆ R3. The tangent plane
to the surface at the point p, denoted Tp, was defined in Section 5.5
and is the plane passing through p and spanned by vectors x1 and x2:

Tp = SpanR(x1, x2).

It can be thought of as the plane perpendicular to the normal vector n
at p.

Definition 8.1.3. Denote by SpanRn the line spanned by n.

Definition 8.1.4 (Orthogonal decomposition). We have an orthog-
onal decomposition

R3 = Tp + SpanRn,

meaning that each vector v ∈ Tp is orthogonal to n.
1nigzeret kivunit
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Example 8.1.5. Suppose x(u1, u2) is a parametrisation of the unit
sphere S2 ⊆ R3. At a point p = (a, b, c) ∈ S2, the normal vector is the
position vector itself:

n =



a
b
c


 = p.

In other words, n(u1, u2) = x(u1, u2) = p and we have an orthogonal
decomposition R3 = Tp + SpanR p.

Remark 8.1.6. The sphere is defined implicitly by F (x, y, z) = 0
where F (x, y, z) = x2 + y2 + z2 − 1. We have ∇F = (2x, 2y, 2z) and
therefore the gradient∇F at a point is proportional to the radius vector
of the point on the sphere (see Lemma 8.2.1 below).

8.2. Extending v. field along surface to an open set in R3

Recall the following from elementary calculus.

Lemma 8.2.1. The gradient ∇F of a function F = F (x, y, z) at a
point where the gradient is nonzero, is perpendicular to the level sur-
face {(x, y, z) : F (x, y, z) = 0} of the function F .

Consider a regular parametrisation x(u1, u2) of a neighborhood of
a point p ∈ M ⊆ R3 and its normal vector n = n(u1, u2). In the set-
up R

t
−→
α

R2

(u1,u2)
−→
x

R3, consider the curve β = x ◦ α. Let p = β(0).

Let v = dβ
dt

∣∣
t=0

be the initial vector of the curve β(t). By chain rule,
we have

v =
dαi

dt
xi.

Now consider the normal vector to the surface M

n ◦ α(t)
varying along the curve β(t) on M . This vector is only defined along
the curve. It is not defined in any open neighborhood in R3. We
would like to extend it to a vector field in an open neighborhood of the
point p ∈ R3, so as to be able to differentiate it.2

Theorem 8.2.2. The normal vector n can be extended to a differen-
tiable vector field N(x, y, z) defined in an open neighborhood of p ∈ R3,
in the sense that we have

n(u1, u2) = N
(
x(u1, u2)

)
. (8.2.1)

2The notion of vector field is defined in infi 4 but only the maslul of applied
mathematics requires it. The maslul of pure mathematics takes a course on rings
instead.
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Proof. In a neighborhood of p, we can represent the surface M
implicitly as the level surface F (x, y, z) = 0, where ∇F 6= 0 at p. By
Lemma 8.2.1, the normalisation N = 1

|∇F |∇F of the gradient ∇F of F

gives the required extension in the sense of (8.2.1) of the normal n. �

Corollary 8.2.3. Since the vector field N is defined in an open
neighborhood of a point, the usual notion of directional derivative ∇vN
can be applied to N .

8.3. Differentiating n and N

Note the following six points.

(1) M ⊆ R3 is a surface;
(2) x(u1, u2) is a regular parametrisation of M ;
(3) n(u1, u2) is the normal vector field along M ;
(4) N(x, y, z) is a vector field defined in an open neighborhood

in R3, and extends n(u1, u2) in the sense that

n(u1, u2) = N(x(u1, u2)), (8.3.1)

as shown in Section 8.2;
(5) ∇v is the directional derivative defined in Section 8.1 via a

representative curve for v;
(6) N is a vector-valued function defined in an open neighborhood

in R3, and therefore can be differentiated.

Proposition 8.3.1. Let p ∈M , and v ∈ TpM where v = β′(0) and
β(t) = x(α(t)). Then the directional derivative ∇vN satisfies

∇vN =
d (n ◦ α(t))

dt

∣∣∣∣
t=0

at the point p.

Proof. By (8.3.1), the function n(α(t)) satisfies

n(α(t)) = N(β(t)), (8.3.2)

where β = x ◦ α. By Lemma 8.1.2, the directional derivative is in-
dependent of the choice of the representing curve. Hence the direc-
tional derivative ∇vN can be calculated using the particular curve β.
By (8.3.2), we obtain

∇vN =
d (N ◦ β(t))

dt
=
d (n ◦ α(t))

dt
,

as required. �

We will exploit this proposition to define the Weingarten map in
Section 8.6, after motivating it in terms of the Hessian in Section 8.4.
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8.4. Hessian of a function at a critical point

This section is intended to motivate the definition of the Weingarten
map in Section 8.6. The key observation is Remark 8.5 below, relating
the Hessian and the Weingarten map.

Proposition 8.4.1. Let f(x, y) of two variables. Let p be a critical
point p of f . Let M ⊆ R3 be the graph of f . Then the tangent plane
of M at the point (p, f(p)) ∈M is a horizontal plane.

Proof. By Theorem 6.2.4, the unit normal vector n to the sur-
face M is proportional to (fx, fy,−1)t up to sign. At the critical point,
we have ∇f = 0 so that fx = fy = 0 and therefore n = ±(0, 0, 1)t =
e3. �

The Hessian (matrix of second derivatives) of the function at the
critical point captures the main features of the local behavior of the
function in a neighborhood of the critical point up to negligible higher
order terms. Thus, we have the following typical result concerning the
surface given by the graph of the function in R3.

Theorem 8.4.2 (Sign of Hessian). Let p be a critical point of f .
If detHf < 0 then p is a saddle point. If detHf > 0 then p is a local
minimum or maximum.

8.5. Hessian as linear map

Consider the graph M of f at a critical point p of f . Consider the
Hessian matrix Hf = (fij). We now think of the matrix Hf as defining
an endomorphism of the horizontal plane Tp = R2:

Hf : Tp → Tp

by the usual formula w = Hf (v) if and only if

wi =
2∑

j=1

fijvj.

Then the Hessian of a function at a critical point becomes a special case
of the Weingarten map, defined in Section 8.6. The determinant of the
Weingarten map plays a special role in determining the geometry of the
surface near p, similar to that of the Hessian noted in Corollary 8.4.2.
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8.6. Weingarten map; interpretation as coordinate-free
Hessian

The definition of the Weingarten operator can be viewed as an
analogue of a formula involving the derivative of the normal vector
that we saw in the context of curves. Recall the following.

Proposition 8.6.1 (Comparison with curves). For a plane curve
α(s) with tangent vector v(s) and normal vector n(s), we have the
equation

d

ds
n(s) = ±kα(s)v(s). (8.6.1)

This was proved in Proposition 4.3.6.

Corollary 8.6.2. The curvature is the rate of change of the nor-
mal vector:

kα(s) =

∣∣∣∣
dn

ds

∣∣∣∣ .

The Weingarten map Wp at a point p ∈ M can be thought of as a
surface analog of the formula (8.6.1) for curves. Namely Wp carries the
information about the curvature of M .

In Section 8.4, we considered the special case of a surface given by
the graph of a function f of two variables near a critical point of f .
Now consider the more general framework of a parametrized regular
surface M in R3 with a regular parametrisation x(u1, u2).

Instead of working with a matrix of second derivatives, we will
give a definition of an endomorphism of the tangent plane. This is a
coordinate-free way of talking about the Hessian matrix.

Theorem 8.2.2 enables us to extend the normal vector field n along
the surface to a vector field N(x, y, z) defined in an open neighborhood
of p ∈ R3, so that n(u1, u2) = N(x(u1, u2)).

Definition 8.6.3 (Weingarten map as a coordinate-free way of
talking about the Hessian). Let p ∈M . Let Tp = TpM be the tangent
plane to the surface at p. The Weingarten map (also known as the
shape operator)

Wp : Tp → Tp
is the endomorphism of the tangent plane given by the directional de-
rivative of the vector-valued function N :

Wp(v) = ∇vN =
d

dt

∣∣∣∣
t=0

n ◦ α(t), (8.6.2)

where the curve β = x ◦ α is chosen so that β(0) = p while β′(0) = v.

We will show that Wp is a well-defined map in Section 8.7.
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8.7. Properties of Weingarten map

Consider a surface M ⊆ R3. The Weingarten map

Wp : Tp → Tp

at a point p ∈ M was defined in Section 8.6. The following points
should be kept in mind:

(1) Suppose p is a critical point of a function f and the surfaceM
is the graph of f . Then the Weingarten map of M at p with
respect to the standard coordinates is expressed by the Hessian
matrix of f :

Hf =
(
fij
)
i=1,2
j=1,2

(see Theorem 9.1.1 for details).
(2) The Weingarten map at p measures the way the unit normal

vector to the surface changes as the point p ∈M varies.

Lemma 8.7.1. The map Wp is well defined in that the image is
included in the tangent plane Tp at p.

Proof. Let v ∈ Tp be a tangent vector. We choose a curve β(t) =

x ◦ α(t) so that v = dβ
dt

when t = 0. The right-hand side of

Wp(v) = ∇vN =
d

dt

∣∣∣∣
t=0

n ◦ α(t), (8.7.1)

as in formula (8.6.2) is a priori a vector in R3. We have to show that
it is indeed produces a vector that lies in the tangent plane Tp i.e., is
perpendicular to the unit normal vector n. Using (8.7.1) and applying
the Leibniz rule, we obtain

〈Wp(v), n(α(t))〉 = 〈∇vN, n(α(t))〉

=
1

2

d

dt
〈n ◦ α(t), n ◦ α(t)〉

=
1

2

d

dt
(1)

= 0

since n is a unit vector at every point of M . Therefore the image
vector Wp(v) is orthogonal to n. Hence it lies in Tp, as required. �

8.8. Self-adjointness of Weingarten map

Let p ∈M . Recall that the Weingarten mapWp : Tp → Tp is defined
as follows. Let v ∈ Tp. Then Wp(v) = ∇vN where N = N(x, y, z) is
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the extension to an open neighborhood of p ∈ R3 of the unit normal
vector n = n(u1, u2) along M .

The connection with the matrix of second derivatives of the parametri-
sation x is given in the following theorem.

Theorem 8.8.1. The map Wp has the following properties:

(1) it is a selfadjoint endomorphism of the tangent plane Tp, and

(2) it satisfies ∀i, j, 〈Wp(xi), xj〉 = −
〈
n, ∂2x

∂ui∂uj

〉
.

Proof. By definition of the Weingarten map,∇vN is the derivative
of N along a curve with initial vector v ∈ Tp. To simplify notation,
assume that p = x(0, 0).

Step 1. We can choose the particular curve γ(t) = x(t, 0) varying
along the first coordinate. Then we have dγ

dt
= x1 by definition of

partial derivatives. Therefore

∇x1N =
d

dt
N(γ(t)) =

∂n

∂u1

by definition of the directional derivative.

Step 2. Using the curve δ(t) = x(0, t) varying along the second
coordinate, we similarly obtain ∇x2N = ∂n

∂u2
. Thus

∀j = 1, 2, ∇xjN =
∂n

∂uj
.

Step 3. We have by Leibniz rule

〈Wp(xi), xj〉 =
〈
∂n

∂ui
, xj

〉

=
∂

∂ui
〈n, xj〉 − 〈n,

∂

∂ui
xj〉

= −
〈
n,

∂2x

∂ui∂uj

〉
.

Thus we obtain that for all i, j,

〈Wp(xi), xj〉 = −
〈
n,

∂2x

∂ui∂uj

〉
. (8.8.1)

Step 4. The right-hand side of equation (8.8.1) is an expression
symmetric in i and j by equality of mixed partials. Thus,

(∀i, j) 〈Wp(xi), xj〉 = 〈xi,Wp(xj)〉. (8.8.2)

This proves the selfadjointness of Wp by verifying it for a set of basis
vectors. �



110 8. WEINGARTEN MAP

Corollary 8.8.2. The eigenvalues of the Weingarten map are
real.

Proof. The endomorphism Wp of the vector space TpM is selfad-
joint and we apply Corollary 2.3.2. �

Definition 8.8.3. The principal curvatures at p ∈ M , denoted k1
and k2, are the eigenvalues of the Weingarten map Wp.

By Corollary 8.8.2, the principal curvatures are real. The principal
curvatures will be discussed in more detail in Section 9.10.

8.8.1. Normal and geodesic curvatures. The material in this sec-
tion is optional. Let x(u1, u2) be a surface in R3. Let α(s) = (α1(s), α2(s))
a curve in R2, and consider the curve β = x ◦ α on the surface x. Con-
sider also the normal vector to the surface, denoted n. The tangent unit
vector β′ = dβ

ds is perpendicular to n, so β′, n, β′ × n are three unit vector

spanning R3. As β′ is a unit vector, it is perpendicular to β′′, and there-
fore β′′ is a linear combination of n and β′×n. Thus β′′ = knn+kg(β

′×n),
where kn, kg ∈ R are called the normal and the geodesic curvature (resp.).
Note that kn = β′′ · n, kg = β′′ · (β′× n). If k is the curvature of β, then we
have that k2 = ||β′′||2 = k2n + k2g .

Exercise 8.8.4. Let β(s) be a unit speed curve on a sphere of radius r.
Then the normal curvature of β is ±1/r.

Remark 8.8.5. Let π be a plane passing through the center of the sphere
S in Exercise 8.8.4, and Let C = π ∩ S. Then the curvature k of C is 1/r,
and thus kg = 0. On the other hand, if π does not pass through the center
of S (and π ∩ S 6= ∅) then the geodesic curvature of the intersection 6= 0.

Proposition 8.8.6. If a unit speed curve β on a surface is geodesic then
its geodesic curvature is kg = 0.

Proof. If β is a geodesic, then β′′ is parallel to the normal vector n, so
it is perpendicular to n× β′′, and therefore kg = β′′ · (n× β′′) = 0. �

Exercise 8.8.7. The inverse direction of Proposition 8.8.6 is also cor-
rect. Prove it.

Example 8.8.8. Any line γ(t) = at + b on a surface is a geodesic, as
γ′′ = 0 and therefore kg = 0.

Example 8.8.9. Take a cylinder x of radius 1 and intersect it with a
plane π parallel to the xy plane. Let C = x ∩ π - it is a circle of radius 1.
Thus k = 1. Show that kn = 1 and thus C is a geodesic.

The principal curvatures, denoted k1 and k2, are the eigenvalues of the
Weingarten map W . Assume k1 > k2.
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Theorem 8.8.10. The minimal and maximal values of the normal cur-
vature kn at a point p of all curves on a surface passing through p are k2
and k1.

Proof. This is proven using the fact that kg = 0 for geodesics. �

8.8.2. Calculus of variations and the geodesic equation. The
material in this subsection is optional. Calculus of variations is known as
tachsiv variatsiot. Let α(s) = (α1(s), α2(s)), and consider the curve β =
x ◦ α on the surface given by [a, b]s→αR2→xR3. Consider the energy

functional E(β) =
∫ b
a ‖β′‖2ds. Here ′ = d

ds . We have dβ
ds = xi(α

i)
′

by chain
rule. Thus

E(β) =
∫ b

a
〈β′, β′〉ds =

∫ b

a

〈
xiα

i′, xjα
j ′
〉
ds =

∫ b

a
gijα

i′αj
′
ds. (8.8.3)

Consider a variation α(s)→ α(s)+ tδ(s), t small, such that δ(a) = δ(b) = 0.
If β = x ◦α is a critical point of E , then for any perturbation δ vanishing at
the endpoints, the following derivative vanishes:

0 =
d

dt

∣∣∣∣∣
t = 0

E(x ◦ (α+ tδ))

=
d

dt

∣∣∣∣∣
t = 0

{∫ b

a
gij(α

i + tδi)
′

(αj + tδj)
′

ds

}
(from equation (8.8.3))

=

∫ b

a

∂ (gij ◦ (α+ tδ))

∂t
αi

′

αj
′

ds

︸ ︷︷ ︸
A

+

∫ b

a
gij
(
αi

′

δj
′

+ αj
′

δi
′)
ds

︸ ︷︷ ︸
B

,

so that we have

A+B = 0. (8.8.4)

We will need to compute both the t-derivative and the s-derivative of the
first fundamental form. The formula is given in the lemma below.

Lemma 8.8.11. The partial derivatives of gij = gij ◦ (α(s) + tδ(s))

along β = x ◦ α are given by the following formulas: ∂
∂t(gij ◦ (α + tδ)) =

(〈xik, xj〉+ 〈xi, xjk〉)δk, and ∂gik
∂s = (〈xim, xk〉+ 〈xi, xkm〉)(αm)

′
.

Proof. We have

∂

∂t
(gij ◦ (α+ tδ)) =

∂

∂t
〈xi ◦ (α+ tδ)), xj ◦ (α+ tδ)〉

=

〈
∂

∂t
(xi ◦ (α+ tδ)), xj

〉
+

〈
xi,

∂

∂t
(xj ◦ (α+ tδ))

〉

= 〈xikδk, xj〉+ 〈xi, xjkδk〉 = (〈xik, xj〉+ 〈xi, xjk〉)δk.

Furthermore, g′ik = 〈xi, xk〉′ = 〈xim(αm)
′
, xk〉+ 〈xi, xkm(αm)

′〉. �
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Lemma 8.8.12. Let f ∈ C0[a, b]. Suppose that for all g ∈ C0[a, b] we

have
∫ b
a f(x)g(x)dx = 0. Then f(x) ≡ 0. This conclusion remains true if

we use only test functions g(x) such that g(a) = g(b) = 0.

Proof. We try the test function g(x) = f(x). Then
∫ b
a (f(x))

2ds = 0.

Since (f(x))2 ≥ 0 and f is continuous, it follows that f(x) ≡ 0. If we
want g(x) to be 0 at the endpoints, it suffices to choose g(x) = (x− a)(b−
x)f(x). �

Theorem 8.8.13. Suppose β = x ◦ α is a critical point of the en-
ergy functional (endpoints fixed). Then β satisfies the differential equation

(∀k) (αk)
′′
+ Γkij(α

i)
′
(αj)

′
= 0.

We use Lemma 8.8.11 to evaluate the term A from equation (8.8.4) as fol-

lows: A =
∫ b
a (〈xik, xj〉 + 〈xi, xjk〉)(αi)

′

(αj)
′

δkds = 2

∫ b

a
〈xik, xj〉αi

′

αj
′

δkds,

since summation is over both i and j. Similarly, B = 2
∫ b
a gijα

i
′

δj
′

ds =

−2
∫ b
a

(
gijα

i
′
)′

δjds by integration by parts, where the boundary term van-

ishes since δ(a) = δ(b) = 0. Hence B = −2
∫ b
a

(
gikα

i′
)′
δkds by changing an

index of summation. Thus 1
2
d
dt

∣∣∣∣∣
t=0

(E) =
∫ b
a

{
〈xik, xj〉αi′αj ′ −

(
gikα

i′
)′}

δkds.

Since this is true for any variation (δk), by Lemma 8.8.12 we obtain the

Euler-Lagrange equation (∀k) 〈xik, xj〉αi′αj ′ −
(
gikα

i′
)′
≡ 0, or

〈xik, xj〉αi′αj ′ − gik ′αi′ − gikαi′′ = 0. (8.8.5)

Using the formula from Lemma 8.8.11 for the s-derivative of the first fun-
damental form, we can rewrite the formula (8.8.5) as follows:

0 = 〈xik, xj〉αi
′

αj
′

− 〈xim, xk〉αm
′
αi

′

− 〈xi, xkm〉αi
′

αm
′ − gikαi

′′

= −〈Γnimxn, xk〉αm
′
αi

′

− gikαi
′′

= −Γnimgnkαm
′
αi

′

− gikαi
′′

,

where the cancellation of the first and the third term in the first line results

from replacing index i by j and m by i in the third term. This is true ∀k.
Now multiply by gjk to obtain gjkΓnimgnkα

m′
αi

′

+gjkgikα
i
′

= δjnΓnimα
m′
αi

′

+

δjiα
i
′′

= Γjimα
m′
αi

′

+ αj
′′
= 0, which is the desired geodesic equation.



CHAPTER 9

Gaussian curvature; second fundamental form

9.1. Relation to the Hessian of a function

Let p ∈M ⊆ R3. The Weingarten mapWp : Tp → Tp was defined in
Section 8.6. The Weingarten map can be understood as a generalisation
of the Hessian matrix in the following sense. Recall from (8.8.1) that

〈Wp(xi), xj〉 = −
〈
n,

∂2x

∂ui∂uj

〉
. (9.1.1)

Theorem 9.1.1 (Relation to the Hessian). Given a function f
of two variables, consider its graph M ⊆ R3 with parametrisation
x(u1, u2) = (u1, u2, f(u1, u2)). Let p be a critical point of f and let
n = −e3. Then the inner products 〈Wp(xi), xj〉 at p form the Hessian
matrix

Hf (p) =

(
∂2f

∂ui∂uj

)

of f at p = x(u1, u2).

Proof. The second partial derivatives of the parametrisation are
xij = (0, 0, fij)

t. The normal vector at a critical point is n = −e3.
Therefore we obtain 〈xij, n〉 = −fij. The theorem now follows from
formula (9.1.1). �

Example 9.1.2. Consider the plane with its standard parametrisa-
tion x(u1, u2) = (u1, u2, 0). We have x1 = e1, x2 = e2, while the normal
vector field n

n(u1, u2) =
x1 × x2
(x1 × x2)

= e1 × e2 = e3

is constant. We can therefore extend it to a constant vector field N
defined on all of R3. Thus∇vN ≡ 0 andWp(v) ≡ 0, and the Weingarten
map is identically zero. This can be seen also from the vanishing of the
second derivatives of the parametrisation.

In Sections 9.2 and 9.3 we will present nonzero examples of the
Weingarten map.

113
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9.2. Weingarten map of sphere

We defined the Weingarten map Wp : Tp → Tp of a surface M ⊆ R3

in Section 8.6.

Theorem 9.2.1. Let M ⊆ R3 be the sphere of radius R > 0. Then
the Weingarten map at every point p ∈ M of the sphere is the scalar
map Wp : Tp → Tp given by

Wp =
1

R
IdT

where IdT is the identity map of the tangent plane Tp.

Proof. Represent a tangent vector v ∈ Tp by v = β′(0) where
β(t) = x ◦ α(t) as usual. On the sphere M of radius R > 0, we
have n(α(t)) = 1

R
β(t) (normal vector is the normalized position vector).

Hence
Wp(v) = ∇vN(β(t))

=
d

dt

∣∣∣
t=0
n ◦ α(t)

=
1

R

d

dt

∣∣∣
t=0
β(t)

=
1

R
v.

Thus Wp(v) =
1
R
v for all v ∈ Tp. In other words, Wp =

1
R
IdT . �

Note that the Weingarten map has rank 2 in this case, i.e., it is
invertible.

9.3. Weingarten map of cylinder

The cylinder is parametrized by x(u1, u2) = (cos u1, sin u1, u2), with




x1 = (− sin u1, cos u1, 0)t

x2 = e3,

n = (cos u1, sin u1, 0)t.

Theorem 9.3.1. For the cylinder we have Wp(x1 + cx2) = x1 for
all c ∈ R.

Proof. Extend n to a vector field N defined in an open neighbor-
hood in R3, with the usual relation ∇xiN = ∂

∂ui
n. Hence we have

∇x1N =
∂

∂u1
n = (− sin u1, cos u1, 0)t. (9.3.1)
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Differentiating with respect to u2, we obtain

∇x2N =
∂

∂u2
n = (0, 0, 0)t. (9.3.2)

Now let v = v1x1 + v2x2 be an arbitrary tangent vector. By linearity
of directional derivatives, we obtain

∇vN = ∇vixiN = v1∇x1N + v2∇x2N
Hence (9.3.1) and (9.3.2) yield

∇vN = v1∇x1N = v1



− sin u1

cos u1

0


 ,

and therefore,

Wp(v) = v1



− sin u1

cos u1

0


 = v1x1,

where v = vixi. Thus, Wp(x1 + cx2) = x1 for all c ∈ R. �

Note that the Weingarten map has rank 1 in this case.

9.4. Coefficients Lij of Weingarten map

For a regular parametrisation x of a surface M , the vectors (x1, x2)
form a basis of the tangent plane Tp. We can therefore exploit the
uniqueness of the decomposition with respect to this basis, to define
the coefficients of Wp as follows.

Definition 9.4.1. The coefficients Lij of the Weingarten map are
defined by setting W (xj) = Lijxi = L1

j x1 + L2
j x2.

We summarize the examples developed in the previous sections.

Theorem 9.4.2. For the plane, sphere, and cylinder one has:

(1) For the plane, we have (Lij) =

(
0 0
0 0

)
.

(2) For the sphere, we have (Lij) =

(
1
r

0
0 1

r

)
= 1

r
(δij).

(3) For the cylinder, we have L1
1 = 1. The remaining coefficients

vanish, so that (Lij) =

(
1 0
0 0

)
.
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9.5. Gaussian curvature

We consider the following data as in the previous sections:

(1) M ⊆ R3 is a surface;
(2) x(u1, u2) is a regular parametrisation of a neighborhood in M ;
(3) p ∈M is a point of the surface;
(4) Tp is the tangent plane to M at p;
(5) x1, x2 are tangent vectors forming a basis for Tp;
(6) Wp : Tp → Tp is the Weingarten map at p;
(7) Li j are the coefficients of Wp defined by Wp(xj) = Li j xi;
(8) the antisymmetrisation notation [ ] on indices was defined in

Section 1.6.

Definition 9.5.1. The Gaussian curvature function on M , de-
noted K = K(u1, u2), is the determinant of the Weingarten map
at p = x(u1, u2):

K(u1, u2) = det(Wp).

Corollary 9.5.2. We have the formula1

K = det(Lij) = L1
1L

2
2 − L1

2L
2
1 = 2L1

[1L
2
2].

Corollary 9.5.3. For both the cylinder and the plane we have
the identity K = 0.2 The Gaussian curvature of a sphere of radius r

is K = det

(
1
r

0
0 1

r

)
=

1

r2
.

Remark 9.5.4 (Sign of Gaussian curvature). Of particular geomet-
ric significance is the sign of the Gaussian curvature. The geometric
meaning of negative Gaussian curvature is a saddle point. The geo-
metric meaning of positive Gaussian curvature is a point of convexity,
such as local minimum or local maximum of the graph of a function of
two variables.

1 An additional formula for K can be obtained via the signed curvatures k̃i of
oriented curves, defined in Section 12.3 and analyzed in Section 12.7. One can then
assert that Gaussian curvature K of a surface is the product K = k̃1 · k̃2 of signed
curvatures k̃1 and k̃2 of the pair of curvesM∩P1 andM∩P2, where the planes Pi are
defined by Pi = Span(n, vi) and v1, v2 are orthogonal eigenvectors of the Weingarten
map; see Theorem 12.10.4. We will mostly work with Definition 9.5.1 of Gaussian
curvature; we mention the additional definition in terms of signed curvatures of
curves as it was the original definition by Gauss.

2cf. Table 12.12.1.
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9.6. Second fundamental form

In Section 8.2, we extended the normal vector field n(u1, u2) along
the surface M ⊆ R3 near a point p ∈M , to a smooth vector field

N(x, y, z)

defined in an open neighborhood of p viewed as a point of R3, so that

N(x(u1, u2)) = n(u1, u2). (9.6.1)

Definition 9.6.1. The second fundamental form IIp is the bilinear
form on the tangent plane Tp defined for u, v ∈ Tp by

IIp(u, v) = −〈∇uN, v〉. (9.6.2)

Remark 9.6.2 (Surface geodesics as space curves). What does the
second fundamental form measure? In the first approximation, one can
say that the second fundamental form measures

the curvature of space curves defined by geodesics onM
viewed as curves of R3 (cf. 4.2.2)

as illustrated by Theorem 9.7.1 below.

Remark 9.6.3. The minus sign in formula (9.6.2) is just a conven-
tion, to make some later formulas, such as (9.6.3), to work out better.
It is important to note the following:

the sign in (9.6.2) does not affect the sign of the Gauss-
ian curvature!

Definition 9.6.4. The coefficients Lij of the second fundamental
form are defined to be

Lij = IIp(xi, xj) = −
〈
∂n

∂ui
, xj

〉
.

Lemma 9.6.5. The coefficients Lij of the second fundamental form
are symmetric in i and j, more precisely

Lij = +〈xij, n〉. (9.6.3)

Thus we have L12 = L21.

Proof. By definition of the normal vector, we have 〈n, xi〉 = 0
everywhere. Hence ∂

∂uj
〈n, xi〉 = 0, i.e.
〈

∂

∂uj
n, xi

〉
+ 〈n, xij〉 = 0.

Now by (9.6.1),

〈n, xij〉 = −〈∇xjN, xi〉 = +IIp(xj, xi)
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and the proof is concluded by the equality of mixed partials (Clairaut–
Schwarz theorem). �

Corollary 9.6.6. The second fundamental form enables us to
identify the normal component of the second partial derivatives of the
parametrisation x(u1, u2). In formulas,

xij = Γkijxk + Lijn.

Proof. We write xij = Γkijxk + cn. Now form the inner product
with n to obtain Lij = 〈xij, n〉 = 0 + c〈n, n〉 = c. �

9.7. Geodesics and second fundamental form

The second fundamental form measures the curvature of geodesics
on M viewed as space curves, in the following sense.

Theorem 9.7.1. Let β(s) be a unit speed geodesic on a surfaceM ⊆
R3, so that β′(s) ∈ TpM at a point p = β(s). Then the absolute value of
the second fundamental form applied to the pair (β′, β′) is the curvature
of β at p:

|IIp(β′, β′)| = kβ(s),

where kβ is the curvature of the curve β viewed as a curve in R3.

Proof. We apply formula (7.2.3) for the curvature of a curve.
Since |n| = 1 and β is a geodesic, we have

kβ
def
= |β′′| =

∣∣∣Lijαi′αj ′
∣∣∣ . (9.7.1)

On the other hand, recall that β = x ◦ α. We have

IIp(β
′, β′) = IIp(xiα

i′, xjα
j ′) = αi

′
αj

′
IIp(xi, xj) = αi

′
αj

′
Lij.

This expression coincides with (9.7.1) up to sign, completing the proof.
�

9.8. Lowering and raising indices

Proposition 9.8.1 (Lowering an index). We have the following
relation between the coefficients of the second fundamental form and
the Weingarten map:

Lij = −Lkjgki.
Proof. By definition,

Lij = 〈xij, n〉 = −
〈

∂

∂uj
n, xi

〉
= −〈Lkjxk, xi〉 = −Lkjgki

proving the lemma. �
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Corollary 9.8.2 (Raising an index). We have the following rela-
tion between the coefficients of the Weingarten map and the coefficients
of the second fundamental form: Li j = −gikLkj.

Proof. We start with the relation Lij = −Lkjgki of Proposi-
tion 9.8.1. We now multiply the relation on both sides by giℓ, and
sum over i, obtaining

Lijg
iℓ = −Lkjgkigiℓ

= −Lkjδℓk
= −Lℓj

as required. �

9.9. Three formulas for Gaussian curvature

Theorem 9.9.1. We have the following three equivalent formulas
for the Gaussian curvature:

(a) K = det(Lij) = 2L1
[1L

2
2];

(b) K =
det(Lij)

det(gij)
;3

(c) K = − 2
g11
L1[1L

2
2].

Proof. Here formula (a) is our definition of K. To prove for-
mula (b), we use the formula

Lij = −Lkjgki (9.9.1)

of Proposition 9.8.1. By the multiplicativity of determinant with re-
spect to matrix multiplication,

det(Lij) = (−1)2det(Lij)
det(gij)

.

Let us now prove formula (c). The proof is a calculation. Note that
by definition of the antisymmetrisation notation, 2L1[1L

2
2] = L11L

2
2−

L12L
2
1. Applying (9.9.1), we obtain

− 2

g11

(
L1[1L

2
2]

)
=

1

g11

((
L1

1g11 + L2
1g21

)
L2

2 −
(
L1

2g11 + L2
2g21

)
L2

1

)

=
1

g11

(
g11L

1
1L

2
2 + g21L

2
1L

2
2 − g11L1

2L
2
1 − g21L2

2L
2
1

)

= det(Li j) = K

3It is important to note that the sign of K is not affected by the sign con-
vention we adopted in (9.6.2) when we defined the second fundamental form. The
formula K = det(Lij)/det(gij) would be correct with either sign convention there.
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as required.4 �

9.10. Principal curvatures and geodesics

We start with the following data.

(1) a point p ∈M of a surface M .
(2) Wp : Tp → Tp is an endomorphism of the tangent plane TpM .
(3) The principal curvatures at p were defined in Sections 8.6

and 8.8.

Let us recall the definition of the principal curvatures.

Definition 9.10.1. The principal curvatures of M at the point p,
denoted k1 and k2, are the eigenvalues of the Weingarten map Wp.

Proposition 9.10.2. Let M be the hyperbolic paraboloid given by
the graph in R3 of the function f(x, y) = ax2 − by2, a, b > 0.5 Then
the principal curvatures at the origin are k1 = 2a and k2 = −2b.6

Proof. The origin p = (0, 0) is a critical point of f . Therefore the
matrix of the Weingarten map Wp at p is the Hessian matrix Hf of f ,

namely Hf =

(
2a 0
0 −2b

)
. �

See further in Section 12.11 on the connection between the Wein-
garten map and the Hessian.

Remark 9.10.3. The curvatures k1 and k2 are necessarily real, by
the selfadjointness ofW (Theorem 8.8.1) together with Corollary 2.3.2.

Corollary 9.10.4. The Gaussian curvature K(u1, u2) of M at a
point p = x(u1, u2) equals the product of the principal curvatures at p.

Proof. The determinant of a 2 by 2 matrix equals the product
of its eigenvalues: K = det(Lij) = k1k2, where (Lij) is the matrix
representing the endomorphism Wp. �

Recall that IIp denotes the second fundamental form at p ∈M . We
proved in Theorem 9.7.1 that

|IIp(β′, β′)| = kβ, (9.10.1)

where kβ is the curvature of the unit speed geodesic β(s) with velocity
vector β′. We now apply this result to the eigendirections.

4In the proof above, we could calculate using either the formula Lij = −Lk
jgki,

or the formula Lij = −Lk
igkj . Only the former one leads to the appropriate

cancellations as above.
5See Section 3.6.
6The order of the two eigenvalues is immaterial.
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Theorem 9.10.5. Let k be a principal curvature at the point p ∈M .
Let β(s) be a geodesic on M satisfying β(0) = p, such that β′(0) is an
eigenvector belonging to k. Then the curvature of β as a space curve
is the absolute value of k :

kβ(0) = |k|.
Proof of Theorem 9.10.5. Since β′ is an eigenvector of Wp, we

obtain from (9.10.1) that

kβ(0) = |IIp(β′, β′)|
= |
〈
Wp (β

′), β′〉 |
= |〈kβ′, β′〉|
= |k〈β′, β′〉|
= |k|

proving the theorem.7 �

See further in Theorem 12.10.4.

9.11. Mean curvature, minimal surfaces

We start with the following data.

(1) p ∈M a point on a surface M ;
(2) Tp, the tangent plane at p;
(3) Wp : Tp → Tp the Weingarten map, an endomorphism of Tp.

Definition 9.11.1. The mean curvature H = H(u1, u2) of a sur-
faceM ⊆ R3 at a point p = x(u1, u2) is half the trace of the Weingarten
map:

H = 1
2
trace(Wp) =

1
2
(k1 + k2) =

1
2
Lii.

Definition 9.11.2. A surface M ⊆ R3 is called minimal if H = 0
at every point, i.e. k1 + k2 = 0.

Remark 9.11.3 (Meaning of sign). The sign of the mean curvature
has no geometric meaning and depends on the choice of normal vector n
(from among the pair n,−n) used in the definition of Wp and IIp. This

7The absolute value of the Gaussian curvature at a point p of a regular surface
in R3 is the product of curvatures of two perpendicular geodesics passing through p,
whose tangent vectors are eigenvectors of the Weingarten map at the point. The
absolute value can be removed. Choose a unit normal n to the surfaceM at p ∈M .
Consider geodesics βi(s) such that β′

1(0) and β
′
2(0) are the principal directions at p.

We can define the signed curvature k̃i of geodesics βi(s) by setting k̃i = 〈βi, n〉.
Then K = k1k2 (without absolute value bars).
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is in contrast with Gaussian curvature of M where the sign does have
geometric meaning.

See Table 12.12.1 on plane and cylinder for comparison of the geo-
metric meaning of mean curvature and Gaussian curvature.

Remark 9.11.4 (Area minimisation; soap films). Geometrically, a
minimal surface is represented locally by a soap film.8 A soap film seeks
to minimize area locally. In this sense minimal surfaces are similar to
geodesics, which minimize length locally.

9.11.1. Scherk surface. This material is optional. The Scherk sur-
faceMS ⊆ R3 is a well-known minimal surface which is periodic in the sense
explained below.

Definition 9.11.5. The Scherk surface in MS ⊆ R3 is the graph of z =
ln cos y

cosx .

Figure 9.11.1. Scherk surface

Thus MS is parametrized by
(
x, y, ln

( cos y
cosx

))
. Since cosine is periodic,

so is the parametrisation in both variables.

Lemma 9.11.6. The matrix of the first fundamental form of MS is di-
agonal.

Proof. The parametrisation x(x, y) = (x, y, ln cos y − ln cosx) of MS

clearly satisfies x12 = 0. Therefore L12 = 〈x12, n〉 = 0. Thus the matrix (Lij)
is diagonal. �

8krum sabon, as opposed to bu’at sabon. Dip (tvol) a wire (tayil) into soapy
water (mei sabon).
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Theorem 9.11.7 (Scherk surface). The Scherk surface is a minimal sur-
face.

Proof. The proof is in 3 steps.

Step 1. By Corollary 9.8.2 (raising an index), we have L1
1 = −L11g

11

since the first fundamental form is diagonal by Lemma 9.11.6. Similarly,
L2

2 = −L22g
22. Thus, the mean curvature H satisfies the formula 2H =

traceWp = −(L11g
11+L22g

22). Therefore the condition H = 0 is equivalent
to

L11g
11 + L22g

22 = 0. (9.11.1)

Let g = det(gij).
9 By definition of the inverse matrix, g11 = g22

g and g22 =
g11
g . Thus the condition (9.11.1) becomes L11g22+L22g11

g = 0 where g 6= 0, or

equivalently
L11g22 + L22g11 = 0.

Thus we have the following reformulation of minimality for MS :

MS is minimal ←→ L11

g11
+
L22

g22
= 0. (9.11.2)

Step 2. For the partial derivatives of x(x, y) = (x, y, ln cos y − ln cosx), we
have {

x1 = (1, 0,− tanx)t,

x2 = (0, 1, tan y)t.
(9.11.3)

Hence

g11 = 1 + tan2 x = sec2 x, g22 = 1 + tan2 y = sec2 y. (9.11.4)

The normal vector is the normalisation of the vector product x1 × x2. The
vector product is (− tanx, tan y, 1)t. Let C =

√
1 + tan2 x+ tan2 y, so that

n = 1
C (tanx,− tan y, 1)t.

Step 3. We have x11 = (0, 0,− sec2(x))t and x22 = (0, 0, sec2 y)t. Therefore
{
L11 = 〈n, x11〉 = − sec2 x

C ,

L22 = 〈n, x22〉 = sec2 y
C .

(9.11.5)

Thus by (9.11.4), L11
g11

= − 1
C and L22

g22
= 1

C , and therefore L11
g11

+ L22
g22

= 0.

Hence by (9.11.2), M is minimal, proving the minimality of the Scherk
surface. �

See Figure 9.11.1 for Scherk surface.

Remark 9.11.8. The standard parametrisation
(
x, y, ln cos y

cosx

)
of the Scherk

surface provides an example of a parametrisation where the second funda-
mental form is given by a diagonal matrix, but the first fundamental form
and the Weingarten map are given by nondiagonal matrices.

9Note that g12 6= 0 in this case.
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See Figure 10.6.2 for another example of a minimal surface, called the
helicoid.



CHAPTER 10

Hyperbolic plane; minimal surf; Theorema
egregium

10.1. Metrics conformal to the flat metric and their Γs

A particularly important class of metrics are those conformal to the
flat metric, in the following sense. We will use the symbol

λ = λ(u1, u2)

for the conformal factor of the metric, as below.

Definition 10.1.1. A metric (gij) is conformal to the standard flat
metric if there is a function λ(u1, u2) > 0 such that gij(u

1, u2) = λ δij
for all i, j = 1, 2.

In other words, the matrix of the first fundamental form is a scalar
matrix at each point. We will use the notation λi =

∂λ
∂ui

.

Lemma 10.1.2. Let gij = λ(u1, u2) δij be a metric conformal to the
standard flat metric. Then





Γ1
11 =

λ1
2λ
,

Γ1
22 =

−λ1
2λ
,

Γ1
12 =

λ2
2λ
.

The values of the coefficients are listed in Table 10.1.1.

Γ1
ij j = 1 j = 2

i = 1 λ1
2λ

λ2
2λ

i = 2 λ2
2λ

−λ1
2λ

Γ2
ij j = 1 j = 2

i = 1 −λ2
2λ

λ1
2λ

i = 2 λ1
2λ

λ2
2λ

Table 10.1.1. Symbols Γkij of a conformal metric λ δij

125
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Proof. We will use the general formula proved in Section 6.6:

Γkij =
1

2
(giℓ,j − gij,ℓ + gjℓ,i)g

ℓk. (10.1.1)

For diagonal metrics, formula (10.1.1) simplifies to

Γkij =
1

2
(gik,j − gij,k + gjk,i)g

k k. (10.1.2)

We have underlined the index k in (10.1.2) to emphasize that no sum-
mation is taking place even though k appears as both a subscript and
a superscript. Equivalently, we can write

Γkij =
1

2gkk
(gik,j − gij,k + gjk,i)

where underlining is no longer necessary since the index k appears only
as a subscript in the formula on the right-hand side. If i = j then the
formula simplifies to

Γkii =
1

2gkk
(gik,i − gii,k + gik,i) =

1

2gkk
(2gik,i − gii,k).

By hypothesis, we have g11 = g22 = λ(u1, u2) while g12 = 0 and the
lemma follows by examining the cases. If i = j = 1 then

Γ1
11 =

g11,1
2λ

=
λ1
2λ
.

If i = j = 2 then

Γ1
22 =

2 · 0− g22,1
2λ

= −λ1
2λ
.

Similar calculations yield the formulas for the coefficients Γ2
ij which are

all listed in the Table. �

An important example is the calculation of the geodesic equation
of the hyperbolic metric of Section 10.3.

10.2. The hyperbolic plane

Let x = u1 and y = u2.

Definition 10.2.1. The upper half-plane is H2 = {(x, y) : y > 0}.
Theorem 10.2.2. The metric with coefficients

gij =
1

y2
δij (10.2.1)

in the upper half-plane H2 has constant Gaussian curvature K = −1.
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Proof. In Theorem 11.2.2, we will prove that K = −∆LB ln f

where ∆LB = 1
f2

(
∂2

∂x2
+ ∂2

∂x2

)
. Hence

K = −∆LB ln f = ∆LB ln y = y2
(
− 1

y2

)
= −1,

as required. �

Definition 10.2.3. The metric (10.2.1) is called the hyperbolic
metric of the upper half-plane. The upper half-plane equipped with
the hyperbolic metric is called the hyperbolic plane.

This example is also discussed in Section 16.20.

10.3. Geodesics in the hyperbolic plane

Definition 10.3.1 (Isothermal coordinates). Coordinates (u1, u2)
with respect to which the metric is expressed by gij = λ(u1, u2)δij are
called isothermal coordinates.

See Section 10.4 for additional details.

Lemma 10.3.2. For the hyperbolic metric we have{
Γ1
11 = Γ1

22 = 0

Γ1
12 = − 1

y
.

(10.3.1)

Proof. In Section 10.1 we computed the Gamma symbols of a
metric relative to isothermal coordinates. We have Γ1

11 =
λ1
2λ
, Γ1

22 =
−λ1
2λ

,

and Γ1
12 = λ2

2λ
. Since λ(x, y) = y−2, we obtain Γ1

11 = Γ1
22 = 0 and

Γ1
12 =

λ2
2λ

= −2y−3

2y−2 = −y2

y3
= − 1

y
. �

Theorem 10.3.3 (Geodesics in the hyperbolic plane). The differ-
ential equations of a geodesic (x(s), y(s)) in the hyperbolic plane are

{
y x′′ − 2x′y′ = 0 for k = 1

y y′′ + (x′)2 − (y′)2 = 0 for k = 2.

Proof. The differential equation of a geodesic is

αk
′′
+ Γkijα

i′αj
′
= 0.

For k = 1, by Lemma 10.3.2 this becomes

α1′′ + 2Γ1
12α

1′α2′ = 0.

Since α1(s) = x(s) and α2(s) = y(s), we obtain x′′+2Γ1
12x

′y′ = 0 which
using formula (10.3.1) of Lemma 10.3.2 becomes

x′′ − 2

y
x′y′ = 0.
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Now let k = 2. We have 



Γ2
11 = −λ2

2λ
= 1

y

Γ2
22 = − 1

y

Γ2
12 =

λ1
2λ

= 0.

Therefore the geodesic equation for k = 2 is y′′+ 1
y
x′x′− 1

y
y′y′ = 0. �

Example 10.3.4 (Vertical ray). The exponential function y = es

(while x is constant as a function of s) satisfies both equations of The-
orem 10.3.3. Indeed, for a vertical line y = y(t), the first equation is
trivially satisfies. The second equation gives yy′′ − (y′)2 = 0 or

(
y′

y

)′
= 0.

Therefore y′

y
= C, or dy

ds
= Cy. Separating the variables we obtain dy

y
=

Cds. Integrating, we obtain ln y = Cs, or y = eCs. Therefore the
formula

y(s) = eCs

provides a constant speed parametrisation of a hyperbolic geodesic
which traces out a vertical half-line in the upper half-plane. Since
the exponential function is positive, the geodesic never reaches the
“boundary” x-axis.1

Example 10.3.5. The pseudosphere of Section 5.9 is an example
of a surface of constant Gaussian curvature −1 embedded in Euclidean
space; see Section 13.3. It is therefore locally isometric to the hyper-
bolic plane.

Corollary 10.3.6 (An identity for the Gamma symbols). A met-
ric in isothermal coordinates (u1, u2) satisfies the following identities:

{
Γ1
11 + Γ1

22 = 0

Γ2
11 + Γ2

22 = 0.

Proof. From Table 10.1.1 we have Γ1
11 + Γ1

22 = λ1
2λ
− λ1

2λ
= 0.

Similarly, Γ2
11 + Γ2

22 = −λ2
2λ

+ λ2
2λ

= 0. �

This corollary will be used in Section 10.4 to relate the Laplacian
to the mean curvature.

The Gaussian curvature takes a particularly simple form with re-
spect to isothermal coordinates; see Section 11.2.

1The same is true of all geodesics in the hyperbolic plane. By the Hopf–Rinow
theorem, this is equivalent to the completeness property of the hyperbolic plane.
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10.4. Minimal surfaces in isothermal coordinates

In this section we study the partial differential equation (PDE) of
a minimal surface M ⊆ R3. The following definition recalls Defini-
tion 10.3.1.

Definition 10.4.1. A parametrisation x(u1, u2) is called isothermal
if the following two equivalent conditions are satisfied:

(1) there is a function f = f(u1, u2) > 0 such that gij = f 2δij,
(2) 〈x1, x1〉 = 〈x2, x2〉 and 〈x1, x2〉 = 0.

Definition 10.4.2. The function f 2 is called the conformal factor
of the metric.

Sometimes the function f itself is called the conformal factor. The
usage will be clear from context.

Proposition 10.4.3. A surface M ⊆ R3 with parametrisation
x(u1, u2) in isothermal coordinates satisfies the PDE

∆x = −2f 2Hn,

where H = H(u1, u2) is the mean curvature and n = n(u1, u2) is the
normal vector to M ⊆ R3.

Proof. We use the formula xij = Γkijxk + Lijn to write

∆ x = x11 + x22

= Γ1
11x1 + Γ2

11x2 + L11n+ Γ1
22x1 + Γ2

22x2 + L22n

=
(
Γ1
11 + Γ1

22

)
x1 +

(
Γ2
11 + Γ2

22

)
x2 + (L11 + L22)n.

By Corollary 10.3.6, in isothermal coordinates we have Γ1
11 + Γ1

22 = 0
and Γ2

11 + Γ2
22 = 0. Hence ∆ x = (L11 + L22)n. Now recall that with

respect to isothermal coordinates, we have Lii = −f 2Lii for each i.

Therefore ∆ x = (L11 + L22)n = −(L1
1 + L2

2)f
2n = −2Hf 2n, as re-

quired. 2 �

2An alternative proof following Do Carmo [Ca76]. This material is optional.

Note that Lij = −Lm
jgmi = −Lm

jf
2δmi = −f2Li

j . Thus L
i
j = −

Lij

f2
so that the

mean curvature H satisfies

H =
1

2
Li

i = −
L11 + L22

2f2
. (10.4.1)

Differentiating 〈x1, x2〉 = 0 we obtain ∂
∂u2 〈x1, x2〉 = 0. Therefore

〈x12, x2〉+ 〈x1, x22〉 = 0. (10.4.2)

So −〈x12, x2〉 = 〈x1, x22〉. By Definition 10.4.1 of isothermal coordinates, we have

〈x1, x1〉 − 〈x2, x2〉 = 0. (10.4.3)
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10.5. Minimality and harmonic functions

In this section we study the relation between minimal surfaces and
harmonic functions. The latter are familiar from complex function
theory. The Laplacian was defined in Section 4.6, and already used in
Section 10.4.

Definition 10.5.1. We say that F is harmonic if ∆F = 0.

Harmonic functions are important in the study of heat flow, or heat
transfer.3

Theorem 10.5.2. Let M ⊆ R3 be a surface with parametrisa-
tion x(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2)) Assume that the coor-
dinates (u1, u2) are isothermal. Then M is minimal if and only if the
coordinate functions x, y, z are harmonic.

Proof. From Proposition 10.4.3 we have

|∆(x)| =
√
(∆x)2 + (∆y)2 + (∆z)2 = 2f 2|H|.

Therefore the Laplacian of x vanishes if and only if ∆x = ∆y = ∆z = 0,
which occurs if and only if H = 0. �

10.6. Catenoid is minimal

Theorem 10.6.1 (Catenoid is a minimal surface). Let a > 0. The
catenoid parametrized by

x(θ, φ) = (a coshφ cos θ, a coshφ sin θ, aφ),

is a minimal surface.

Proof. The generating curve is the curve r(φ) = a coshφ and
z(φ) = aφ.4 Then according to the general formula for a surface of
revolution, g11 = r2 = a2 cosh2 φ. Also,

g22 = ( dr
dφ
)2 + ( dz

dφ
)2 = (a sinhφ)2 + a2 = a2 cosh2 φ = g11,

Differentiating (10.4.3) and applying (10.4.2), we obtain 0 = ∂
∂u1 〈x1, x1〉 −

∂
∂u1 〈x2, x2〉 = 2〈x11, x1〉 − 2〈x21, x2〉 = 2〈x11, x1〉 + 2〈x22, x1〉 = 2〈x11 + x22, x1〉.
Inspecting the u2-derivatives, we similarly obtain 〈x11 + x22, x2〉 = 0. Since x1, x2
and n form an orthogonal basis, the sum x11+x22 is proportional to n. Write x11+
x22 = cn. Applying (10.4.1), we obtain c = 〈x11 + x22, n〉 = 〈x11, n〉 + 〈x22, n〉 =
L11 + L22 = −2f2H, as required.

3ma’avar chom.
4This is the catenary curve expressing the shape of suspension bridges.
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and g12 = 0. We conclude that the coordinates (θ, φ) are isothermal.
Finally,

x11 + x22 = (−a coshφ cos θ,−a coshφ sin θ, 0)t

+ (a coshφ cos θ, a coshφ sin θ, 0)t

= (0, 0, 0).

By Theorem 10.5.2, we have H = 0 and therefore the catenoid is a
minimal surface. �

See Figure 10.6.1.

Figure 10.6.1. Catenoid: a minimal surface

Remark 10.6.2. The catenoid is the only complete surface of rev-
olution which is minimal [We55, p. 179], other than the plane. The
helicoid (see Figure 10.6.2) and the catenoid are locally isometric.

10.7. Intro to theorema egregium

Understanding the intrinsic nature of Gaussian curvature, i.e. the
theorema egregium of Gauss, clarifies the geometric classification of
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Figure 10.6.2. Helicoid: a minimal surface

surfaces.5 A historical account and an analysis of Gauss’s proof of the
theorema egregium may be found in Dombrowski [Do79, p. 105].6

We will present a compact formula for Gaussian curvature in Sec-
tion 10.10, and its proof, along the lines of the argument in Manfredo
do Carmo’s book [Ca76].7 The appeal of an old-fashioned, computa-
tional, coordinate notation proof is that it obviates the need for higher
order objects such as connections, tensors, exponental map, etc, and

5Our formula (10.10.2) for Gaussian curvature is similar to the traditional for-
mula for the Riemann curvature tensor in terms of the Levi-Civita connection (note
the antisymmetrisation in both formulas, and the corresponding two summands),
without the burden of the connection formalism.

6The background, and the applications, have to do with practical surveying
of the earth’s surface. One of the uses Gauss makes of the theorema egregium
is a comparison theorem for small triangles when one compares a triangle in the
surface with the corresponding triangle of the same sidelengths in the plane. This
is discussed in Dombrowski, pages 114–115. The earth is less curved toward the
poles, with the result that the angular correction will be smaller for vertices closer
to the poles: “Gauss gives these different correction values according to (35) for
one of the largest terrestial triangles measured by him, namely with ‘vertices’ at
Brocken, Hohehagen and Inselsberg” (Dombrowski p. 115).

7Other undergraduate differential geometry textbooks are
discussed at https://mathoverflow.net/questions/7834/

undergraduate-differential-geometry-texts

https://mathoverflow.net/questions/7834/undergraduate-differential-geometry-texts
https://mathoverflow.net/questions/7834/undergraduate-differential-geometry-texts
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is, hopefully, directly accessible to a student not yet familiar with the
subject (see note 14).

Remark 10.7.1. We would like to distinguish two types of proper-
ties of a surface in Euclidean space: intrinsic and extrinsic.

Understanding the extrinsic/intrinsic dichotomy is equivalent to un-
derstanding the theorema egregium of Gauss. The theorema egregium is
the key insight lying at the foundation of differential geometry as con-
ceived by Bernhard Riemann in his essay [Ri1854] presented before
the Royal Scientific Society of Göttingen in 1854 (see Section 10.7).

The theorema egregium asserts that an infinitesimal invariant of a
surface in Euclidean space, called Gaussian curvature, is an “intrinsic”
invariant of the surface M . In other words, Gaussian curvature of M
is independent of its isometric embedding in Euclidean space. This
theorem paves the way for an intrinsic definition of curvature in modern
Riemannian geometry.

Remark 10.7.2. We will prove that Gaussian curvature K is an
intrinsic invariant of a surface in Euclidean space, in the following
precise sense: K can be expressed in terms of the coefficients of the
first fundamental form and their derivatives alone.

A priori the possibility of expressing K in such a fashion is not
obvious, as the naive definition of K is in terms of the Weingarten
map.

The intrinsic nature of Gaussian curvature paves the way for a tran-
sition from classical differential geometry, to a more abstract approach
of modern differential geometry (see also Subsection 13.4). The dis-
tinction can be described roughly as follows. Classically, one studies
surfaces in Euclidean space. Here the first fundamental form (gij) of
the surface is the restriction of the Euclidean inner product. Mean-
while, abstractly, a surface comes equipped with a set of coefficients,
which we deliberately denote by the same letters, (gij) in each coordi-
nate patch, or equivalently, its element of length. One then proceeds
to study its geometry without any reference to a Euclidean embedding,
cf. (16.7.2).

10.8. Riemann’s formula

Such an approach was pioneered in higher dimensions in Riemann’s
essay. The essay contains a single formula [Ri1854, p. 292]. See Spivak
[Sp79, p. 149]), where the formula appears on page 159. This is the
formula for the element of length of a surface of constant (Gaussian)
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curvature K ≡ α:
1

1 + α
4

∑
x2

√∑
dx2 (10.8.1)

where today, of course, we would incorporate a summation index i as
part of the notation, as in

ds =
1

1 + α
4

∑
i(x

i)2

√∑

i

(dxi)2 (10.8.2)

cf. formulas (16.7.3), (16.20.1).
We will explain the notation dxi in Section 13.9.

Remark 10.8.1. As noted in earlier sections, given a surface M in
3-space which is the graph of a function of two variables, at a critical
point p ∈ M , the Gaussian curvature of the surface at the critical
point p is the determinant of the Hessian of the function, i.e., the
determinant of the two-by-two matrix of its second derivatives.

The implicit function theorem allows us to view any point of a reg-
ular surface, as such a critical point, after a suitable rotation in R3. We
have thus given the simplest possible definition of Gaussian curvature
at any point of a regular surface.

Remark 10.8.2. The appeal if this definition is that it allows one
immediately to grasp the basic distinction between negative versus
positive curvature, in terms of the dichotomy “saddle point versus
cup/cap”.

It will be more convenient to use an alternative definition in terms
of the Weingarten map, which is readily shown to be equivalent to the
definition in terms of the Hessian (see further in Section 12.11).

(1) (u1, u2) are coordinates in R2.
(2) x = x(u1, u2) : R2 → R3 is a regular parametrized surface (i.e.,

the vector valued function x has Jacobian of rank 2 at every
point).

(3) We have the partial derivatives xi =
∂
∂ui

(x), where i = 1, 2.
Thus, vectors x1 and x2 form a basis for the tangent plane at
every point.

(4) We let xij =
∂2x

∂ui∂uj
∈ R3.

(5) 〈 , 〉 is the Euclidean inner product.
(6) We let n = n(u1, u2) be a unit normal to the surface at the

point x(u1, u2), so that 〈n, xi〉 = 0.
(7) The first fundamental form (gij) is given in coordinates by gij =
〈xi, xj〉.
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(8) The second fundamental form (Lij) is given in coordinates
by Lij = 〈n, xij〉.

(9) The symbols Γkij are uniquely defined by the decomposition

xij = Γkijxk + Lijn

= Γ1
ijx1 + Γ2

ijx2 + Lijn,
(10.8.3)

where the repeated (upper and lower) index k implies summa-
tion, in accordance with the Einstein summation convention.

(10) The Weingarten map (Lij) is an endomorphism of the tangent
plane Rx1 +Rx2. It is uniquely defined by the decomposition

nj = Lijxi

= L1
jx1 + L2

jx2,

where nj =
∂
∂uj

(n).

(11) We have the relation Lij = −Lki gjk.
(12) We use the notation Γkij,ℓ for the ℓ-th partial derivative of the

symbol Γkij.
(13) We will denote by square brackets [ ] the antisymmetrisa-

tion over the pair of indices found in between the brackets,
e.g. a[ij] =

1
2
(aij − aji).

(14) We have g[ij] = 0, L[ij] = 0, Γk[ij] = 0, and x[ij] = 0.

10.9. An identity involving the Γs and the Ls

Let x(u1, u2) be a regular parametrisation of a surface in R3.

Lemma 10.9.1. The third partial derivatives of x satisfy

xijk = (xij)k = (xik)j.

Proof. This is immediate from the equality of mixed partials of xi.
�

The following formula will be used in the proof of the theorema
egregium of Gauss.

Proposition 10.9.2. On a surface M , we have the relation

Γqi[j,k] + Γmi[j Γ
q
k]m = −Li[jLqk]

for each set of indices i, j, k, q (with, as usual, an implied summation
over the index m).

Proof. We leave out the underlines for simplicity. Consider the
third partial derivative xijk =

∂3x
∂ui∂uj∂uk

. Let us calculate its tangential



136 10. HYPERBOLIC PLANE; MINIMAL SURF; THEOREMA EGREGIUM

component relative to the basis (x1, x2, n) for R3. Recall that nk =
Lpkxp and xjk = Γℓjkxℓ + Ljkn. Thus, we have

(xij)k =
(
Γmijxm + Lijn

)
k

= Γmij,kxm + Γmijxmk + Lijnk + Lij,kn

= Γmij,kxm + Γmij
(
Γpmkxp + Lmkn

)
+ Lij (L

p
kxp) + Lij,kn.

Grouping together the tangential terms, we obtain

(xij)k = Γmij,kxm + Γmij
(
Γpmkxp

)
+ Lij (L

p
kxp) + (. . .)n

=
(
Γqij,k + ΓmijΓ

q
mk + LijL

q
k

)
xq + (. . .)n

=
(
Γqij,k + ΓmijΓ

q
km + LijL

q
k

)
xq + (. . .)n,

since the symbols Γqkm are symmetric in the two subscripts.
By Lemma 10.9.1, the symmetry in j, k (equality of mixed partials)

implies the following identity: xi[jk] = 0. Therefore

0 = xi[jk]

= (xi[j)k]

=
(
Γqi[j,k] + Γmi[jΓ

q
k]m + Li[jL

q
k]

)
xq + (. . .)n.

Since (x1, x2, n) is linearly independent, it follows that for each q = 1, 2,
we have Γqi[j,k] + Γmi[jΓ

q
k]m + Li[jL

q
k] = 0. �

10.10. The theorema egregium of Gauss

Recall from Section 9.9 that we have

K = det(Lij) = 2L1
[1L

2
2] = −

2

g11
L1[1L

2
2]. (10.10.1)

Theorem 10.10.1 (Theorema egregium). The Gaussian curvature
function K = K(u1, u2) of a surface can be expressed in terms of the
coefficients of the first fundamental form alone (and their first and
second derivatives) as follows:

K =
2

g11

(
Γ2
1[1,2] + Γj1[1Γ

2
2]j

)
, (10.10.2)

where the symbols Γkij can be expressed in terms of the derivatives of gij
be the formula Γkij =

1
2
(giℓ,j − gij,ℓ + gjℓ,i)g

ℓk, where (gij) is the inverse
matrix of (gij).
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In other words, we have

K =
1

g11

(
Γ2
11,2 − Γ2

12,1 + Γ1
11Γ

2
21 − Γ1

12Γ
2
11 + Γ2

11Γ
2
22 − Γ2

12Γ
2
12

)
(10.10.3)

Corollary 10.10.2. If the first fundamental form is diagonal, then

K = g11
(
Γ2
11,2 − Γ2

12,1 + Γ1
11Γ

2
21 − Γ1

12Γ
2
11 + Γ2

11Γ
2
22 − Γ2

12Γ
2
12

)

Proof. If the matrix of the first fundamental form is diagonal then
one can make the substitution g11 = 1

g11
in (10.10.3). �

Proof of theorema egregium. We present a streamlined version of
do Carmo’s proof [Ca76, p. 233]. The proof is in 3 steps.

(1) We express the third partial derivative xijk in terms of both the
Γ’s (intrinsic information) and the L’s (extrinsic information).

(2) The equality of mixed partials yields an identification of a suit-
able expression in terms of the Γ’s, with a certain combination
of the L’s.

(3) The combination of the L’s is expressed in terms of Gaussian
curvature.

The first two steps were carried out in Proposition 10.9.2. We
choose the valus i = j = 1 and k = q = 2 for the indices. Applying
Theorem 9.9.1(c) (namely, identity (10.10.1)) we obtain

Γ2
1[1,2] + Γm1[1Γ

2
2]m = −L1[1L

2
2]

= g1iL
i
[1L

2
2]

= g11L
1
[1L

2
2]

since the term L2
[1L

2
2] = 0 vanishes. This yields the desired formula

for K and completes the proof of the theorema egregium. �





CHAPTER 11

Laplace–Beltrami, Gauss–Bonnet

11.1. The Laplace–Beltrami operator

LetM be a surface. Recall that a (u1, u2)-chart in which the metric
on M becomes conformal (see Definition 10.1.1)1 to the standard flat
metric, is referred to as isothermal coordinates. The existence of the
latter is proved in [Bes87].

Consider a metric onM of the form gij = λ(u1, u2)δij, where λ > 0.
Then (u1, u2) are isothermal coordinates.

Definition 11.1.1. The Laplace–Beltrami operator of the met-
ric λ(u1, u2)δij is the operator

∆LB =
1

λ

(
∂2

∂(u1)2
+

∂2

∂(u2)2

)
.

The notation means that when we apply the operator ∆LB to a

function h = h(u1, u2), we obtain ∆LB(h) =
1
λ

(
∂2h
∂(u1)2

+ ∂2h
∂(u2)2

)
.

In more readable form, for a metric gij = λ(x, y)δij and an arbitrary
function h = h(x, y) ∈ C2(R2), we have

∆LB(h) =
1

λ

(
∂2h

∂x2
+
∂2h

∂y2

)
.

In other words ∆LBh = 1
λ
∆0h where ∆0 is the flat Laplacian with

respect to coordinates (x, y).

11.2. Laplace-Beltrami formula for Gaussian curvature

Let ln x be the natural logarithm so that d
dx

ln x = 1
x
.

Theorem 11.2.1. Given a metric in isothermal coordinates with
metric coefficients gij = λ(u1, u2)δij, its Gaussian curvature is minus
half the Laplace-Beltrami operator applied to the ln of the conformal
factor λ:

K = −1

2
∆LB(lnλ). (11.2.1)

1See also Definition 16.10.1
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Γ1
ij j = 1 j = 2

i = 1 µ1 µ2

i = 2 µ2 −µ1

Γ2
ij j = 1 j = 2

i = 1 −µ2 µ1

i = 2 µ1 µ2

Table 11.2.1. Symbols Γkij of a metric e2µ(u
1,u2)δij

Proof. In Section 10.1 we computed the Gamma symbols with
respect to isothermal coordinates. Recall from (10.10.2) that

K =
2

g11

(
Γ2
1[1,2] + Γj1[1Γ

2
2]j

)
, (11.2.2)

Step 1. We write λ = e2µ and tabulate the Γ in Table 11.2.1. We
have from Table 11.2.1 (based on Table 10.1.1):

2Γ2
1[1,2] = Γ2

11,2 − Γ2
12,1 = −µ22 − µ11.

Step 2. The ΓΓ term in the expression (11.2.2) for the Gaussian
curvature vanishes:

2Γj1[1Γ
2
2]j = 2Γ1

1[1Γ
2
2]1 + 2Γ2

1[1Γ
2
2]2

= Γ1
11Γ

2
21 − Γ1

12Γ
2
11 + Γ2

11Γ
2
22 − Γ2

12Γ
2
12

= µ1µ1 − µ2(−µ2) + (−µ2)µ2 − µ1µ1

= 0.

Step 3. Since the ΓΓ term vanishes by Step 2, from formula (10.10.2)
we have

K =
2

λ
Γ2
1[1,2] = −

1

λ
(µ11 + µ22) = −∆LBµ.

Meanwhile, ∆LB lnλ = ∆LB(2µ) = 2∆LB(µ), proving the result. �

Setting λ = f 2, we can restate the theorem as follows.

Corollary 11.2.2. Given a metric in isothermal coordinates with
metric coefficients gij = f 2(u1, u2)δij, its Gaussian curvature is minus
the Laplace-Beltrami operator of the ln of the conformal factor f :

K = −∆LB(ln f). (11.2.3)

Either one of the formulas (10.10.2), (11.2.1), or (11.2.3) can serve
as the intrinsic definition of Gaussian curvature, replacing the extrinsic
definition (10.10.1); cf. Remark 10.7.
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11.3. Area elements of the surface, orientability

Consider a surface M ⊆ R3 with local parametrisation x(u1, u2).
We have √

det(gij) =
∣∣x1 × x2

∣∣ ,

where xi =
∂x
∂ui

.2 We saw two cases of area elements of surfaces:

(1) the case of the area element r drdθ in the plane in polar coor-
dinates as in Section 7.6.7;

(2) the spherical element of area sinϕdϕdθ.

More generally, we have the following definition, which already ap-
peared in Definition 7.8.1.

Definition 11.3.1. The area element dAM of the surface M is

dAM =
√
det(gij) du

1du2 = |x1 × x2| du1du2 (11.3.1)

where the gij are the metric coefficients of the surface with respect to
the parametrisation x(u1, u2).

We have used the subscriptM so as to specify which surface we are
dealing with.3

Definition 11.3.2. A surface M ⊆ R3 is orientable if it admits a
continuous unit normal vector field N = Np, defined at each point p ∈
M .

The vector field N is a globally defined field along an orientable
surface. Note that the image vector N can be thought of as an element
of the unit sphere: Np ∈ S2 ⊆ R3. This observation leads to the
definition of the Gauss map for surfaces in Section 11.4.

11.4. Gauss map for surfaces in R3

Let M ⊆ R3 be an orientable surface. Let N be a globally defined
normal vector field along M .

Remark 11.4.1. Each point p ∈ M lies in a neighborhood with
a suitable parametrisation x(u1, u2). At a point p = x(u1, u2), we
have a normal vector n(u1, u2), obtained by normalizing the vector
product x1 × x2, which coincides with the globally selected normal N .
Thus, we have

n(u1, u2) = Nx(u1,u2).

2Cf. the Binet–Cauchy identity 11.10.3.
3This notion of area is discussed in more detail in Section 16.9.
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Definition 11.4.2. The Gauss map

GM : M → S2

of an orientable surface M ⊆ R3 is the map sending each point p =
x(u1, u2) to the normal vector G(p) = n(u1, u2), where at every point
we choose the normal that coincides with the global vector field N at p.

Example 11.4.3 (Gauss map of the plane is constant). If M =
R2 is the xy-plane then the normal vector at every point is e3 and
therefore GM(p) = e3 for all points p ∈ M . Thus the Gauss map is a
constant map in this case.

Example 11.4.4. If M = S2
r is the sphere of radius r > 0 then

we have GM(p) = 1
r
p for all p ∈ M . Thus the Gauss map GM is

proportional to the identity map in this case: GS2 = 1
r
IdS2 .

Recall that Wp : Tp → Tp is the Weingarten map.

Lemma 11.4.5. If K 6= 0 at a point p ∈M , then the tangent vectors
Wp(x1),Wp(x2) ∈ Tp are linearly independent.

Proof. The coefficients of the matrix (Li j) are by definition the

coordinates of ∂n
∂u1
, ∂n
∂u2

with respect to the basis (x1, x2). Hence inde-
pendence of the vectors n1 and n2 is equivalent to the condition K =
det(Li j) 6= 0. �

Theorem 11.4.6. Choose a point p = x(a, b) ∈ M of the surface.
If the Gaussian curvature is nonzero at p, then the map n(u1, u2) from
(a neighborhood of) M to S2 produces a regular parametrisation of a
spherical neighborhood of the point

GM(p) = n(a, b) ∈ S2

on the sphere, where GM is the Gauss map.

Proof. The parametrisation is given by the mapGM to the sphere.
We have

∂

∂ui
(GM) =

∂

∂ui
(n(u1, u2)) =

∂n

∂ui
= Wp(xi).

By Lemma 11.4.5, the two partial derivatives of the Gauss map GM are
linearly independent. Hence the parametrisation defined by n(u1, u2)
is regular in a neighborhood of p. �

11.5. Sphere S2 parametrized by Gauss map of M

The vector n(u1, u2) was originally defined as a normal to the origi-
nal surface M ⊆ R3. We now with to think of it as giving a parametri-
sation of an open neighborhood on the unit sphere S2 via the Gauss
map from M to S2.
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Definition 11.5.1 (Coefficients g̃αβ). AssumeKp 6= 0 at a point p ∈
M , and consider a neighborhood of the point GM(p) in S2. Let

g̃αβ = nα · nβ
be the metric coefficients of the regular parametrisation n(u1, u2) in

the neighborhood, where nα = ∂n(u1,u2)
∂uα

for all α = 1, 2, β = 1, 2.

Now consider the area element dAS2 (defined in Section 11.3) of the
unit sphere.

Theorem 11.5.2. LetM ⊆ R3 be a surface, and consider the corre-
sponding parametrisation n(u1, u2) of a neighborhood on the sphere S2.4

Then the area element dAS2 of S2 can be expressed as

dAS2 =
√

det(g̃αβ) du
1du2 = |n1 × n2|du1du2. (11.5.1)

Proof. Formula (11.5.1) is the definition of the element of area
for the surface S2, applied to the chosen parametrisation n(u1, u2) as
defined in Theorem 11.4.6, in place of the standard parametrisation in
spherical coordinates.5 �

Remark 11.5.3. We have used the subscript S2 to distinguish the
area element dAS2 of the sphere S2 from the area element dAM of the
surfaceM as in (11.3.1). Note that we need to distinguish the two area
elements

dAS2 and dAM

because both will occur in the proof of the Gauss–Bonnet theorem in
Section 11.7.

11.6. Comparison of two parametrisations

When the Gaussian curvature is nonzero, the normal vector of a
surface M ⊆ R3 allows us to define local coordinates n(u1, u2) on the
unit sphere S2 as in Section 11.4.

Proposition 11.6.1. Consider the following data:

(1) the metric coefficients (gij) of the parametrisation x(u1, u2) of
the surface M , and

(2) the metric coefficients (g̃αβ) of the sphere S2 relative to the
parametrisation n(u1, u2).

4As in Theorem 11.4.6.
5Cf. Binet–Cauchy in note 14.



144 11. LAPLACE–BELTRAMI, GAUSS–BONNET

Then we have the identity
√
det(g̃αβ) = |KM(u1, u2)|

√
det(gij)

where K = K(u1, u2) is the Gaussian curvature of the surface M .

Proof. Let L = (Lij) be the matrix of the Weingarten map Wp

with respect to the basis (x1, x2) at a point p = x(u1, u2). By definition
of curvature we have K = det(L). Recall that the coefficients Lij of
the Weingarten map are defined via the decomposition

nα = xiL
i
α. (11.6.1)

Consider the 3 × 2-matrices A = [x1 x2] and B = [n1 n2]. Then
formula (11.6.1) implies by definition of matrix multiplication that

B = AL.

Therefore the corresponding Gram matrices satisfy

Gram(n1, n2) = BtB = (AL)tAL = Lt(AtA)L = Lt Gram(x1, x2) L.

Applying the determinant, we obtain

det (Gram(n1, n2)) = det (Gram(x1, x2)) det
2(L),

completing the proof of the lemma since det(L) = K, and the Gram
matrix represents the first fundamental form. 6 �

11.7. Gauss–Bonnet theorem for surfaces with KM > 0

The Gauss–Bonnet theorem for surfaces7 asserts that an integral of
curvature has topological significance.8 We will only treat the Gauss–
Bonnet theorem in the case K > 0.

Example 11.7.1. A typical example of a compact surface of posi-
tive Gaussian curvature is an ellipsoid.

6By the Cauchy-Binet formula, the desired identity is equivalent to the for-
mula |nu1×nu2 | = |det(Li

j)| |xu1×xu2 |, immediate from the observation that a lin-
ear map multiplies the area of parallelograms by its determinant. Namely, the Wein-
garten map sends each vector xi to ni:Wp(xi) = ni ∈ Tp. A stronger identity is true
that is sensitive to the sign of the Gaussian curvature:W (u)×W (v) = det(W )(u×v)
where (u, v) is any basis of the tangent plane; e.g., the basis (x1, x2).

7as well as the theorem on the total curvature of a plane curve (Theorem 12.5.4).
8See also Section 12.8 for a version of the theorem for plane domains.
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Theorem 11.7.2 (Special case of Gauss–Bonnet). Let M be an
orientable compact surface in R3 of positive Gaussian curvature. Then
the curvature integral satisfies

∫

M

Kp dAM = 4π,

where Kp is the Gaussian curvature of M at the point p.

Remark 11.7.3. Note that 4π = 2π χ(S2) where χ is the Euler
characteristic (see Section 11.10).

To prove Theorem 11.7.2, we will use the existence of global coordi-
nates9 on the sphere to write down a concrete version of the calculation.
We recall the following five items.

(1) x(u1, u2) is a regular parametrisation of a surface M ⊆ R3.
(2) At every point ofM where the parametrisation x is defined, we

have the normal vector n(u1, u2) so that (x1, x2, n) is a basis
for R3.

(3) If M is an orientable surface, a continuous Gauss map

GM : M → S2

is defined by the normal vector n(u1, u2) as in Section 11.4.
(4) (θ, ϕ) are the usual spherical coordinates on the unit sphere.
(5) If Kp 6= 0 then the Gauss map GM : M → S2 is invertible

near p.

Since the Gauss map is invertible, we can consider the inverse map

G−1
M : S2 →M. (11.7.1)

Definition 11.7.4. Let Iθ = [0, 2π] and Iϕ = [0, π]. We consider
the usual parametrisation

σ = σ(θ, φ) : Iθ × Iϕ → S2

given by

σ(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ) ∈ S2,

of the sphere as a surface of revolution (omitting the problematic poles),
as in Section 5.4.

We also construct a special parametrisation of M based on the
parametrisation σ of the sphere, as follows.

9These have singularities only at the north and south poles, which does not
affect the calculation of area.
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Definition 11.7.5. Let x(θ, ϕ) be the parametrisation of M given
by the composition x = G−1

M ◦ σ using (11.7.1):

Iθ × Iϕ σ−→ S2 G−1

−→M,

and denote by (gij) the corresponding metric coefficients.

In Section 11.8, we will use this parametrisation to compute the
curvature integral on M .

11.8. Proof of Gauss–Bonnet Theorem

We can dispense with local coordinate charts and instead com-
pute the Gauss–Bonnet integral over M relative to the global coordi-
nates (θ, ϕ) as in Definition 11.7.5.10 Let (gij) be the metric coefficients
of M with respect to the parametrisation of Definition 11.7.5. Then
the area element of M can be written as

dAM =
√

det(gij) dθdϕ.

We will exploit the relation

K(θ, ϕ)
√

det(gij) =
√
det(g̃αβ) (11.8.1)

from Section 11.6, where u1 = θ and u2 = ϕ. Here g̃αβ are the metric
coefficients of the standard metric on S2 with respect to parametrisa-
tion defined by the Gauss map G ofM . We write the double integral

∫∫

as shorthand for the iterated integral
∫ ϕ=π

ϕ=0

∫ θ=2π

θ=0

.

Then we obtain using identity (11.8.1):
∫

M

K(θ, ϕ) dAM =

∫∫
K(θ, ϕ)

√
det(gij) dθdϕ

=

∫∫ √
det(g̃αβ) dθdϕ

=

∫∫
dAS2

= area(S2) = 4π,

as required.11

10These coordinates only omit two points, which does not affect area
calculations.

11Alternative proof. This material is optional. Here we present another
proof of Gauss–Bonnet theorem. The convexity of the surface guarantees that
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11.9. Gauss–Bonnet with boundary

There are various generalisations of the Gauss–Bonnet theorem of
Section 11.8. One of them is the following version with boundary.

Theorem 11.9.1 (Version with boundary of Gauss–Bonnet theo-
rem). Let M be a surface. Consider a geodesic triangle (homeomorphic
to a disk) T ⊆M with angles α, β, γ. Then the integral of the Gaussian
curvature over T is the angular excess:

∫

T

KdA = α + β + γ − π.

Corollary 11.9.2. The area of a spherical triangle with angles α,
β, and γ is the angular excess α + β + γ − π.

Proof. We apply the local Gauss–Bonnet theorem and notice that
for M = S2, we have K = 1 at every point. �

Remark 11.9.3 (Historical remarks). Stillwell [6, p. 329] notes that
the result for spherical triangles was known already to Thomas Harriot
in 1603. Giusti reports that Cavalieri found the area of a spherical
triangle to be the surplus of the sum of the angles over π (when the
radius is normalized), which is an important special case of the Gauss-
Bonnet theorem [3, p. 13].

11.10. Euler characteristic and Gauss–Bonnet theorem

Definition 11.10.1. Assume a surface M is partitioned into tri-
angles. Then the Euler characteristic χ(M) of M is

χ(M) = V − E + F,

where V,E, F are respectively the numbers of vertices, edges, and faces
(i.e., triangles) of M .

The Euler characteristic of a closed embedded surface in Euclidean
3-space can be computed via the integral of the Gaussian curvature.12

the map n is one-to-one (compare with the proof of Theorem on closed curves
in Section 12.4). The integrand K dAM in a coordinate chart (u1, u2) can be
written as K(u1, u2) dAM . By Proposition 11.6.1, we have K(u1, u2) dAM =

K(u1, u2)
√

det(gij)du
1du2 =

√
det(g̃αβ)du

1du2 = dAS2 . Thus, the expres-

sion K dAM coincides with the area element dAS2 of the unit sphere S2 in every
coordinate chart. Hence we can write

∫
M
K dAM =

∫
S2 dAS2 = 4π, proving the

theorem.
12It can be thought of as a generalisation of the rotation index of a plane closed

curve; see Chapter 12.
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Theorem 11.10.2 (Gauss–Bonnet). The Euler characteristic χ(M)
of a compact surface M satisfies∫

M

Kp dAM = 2π χ(M), (11.10.1)

where Kp is the Gaussian curvature at the point p ∈M .

Here we no longer assume that the curvature is positive.13

One way of proving Gauss–Bonnet for embedded surfaces is to use
the notion of algebraic degree for maps between surfaces, similar to the
algebraic degree of a self-map of a circle.

We note the following.

(1) The Gauss–Bonnet theorem holds for all surfaces, whether ori-
entable or not.

(2) For the real projective plane RP2 we have χ(RP2) = 1. There-
fore for every metric on RP2 we have

∫
RP2 K dARP2 = 2π.

(3) For the torus T 2 we have χ(T 2) = 0. Therefore for every metric
on T 2 we have

∫
T 2 K dAT 2 = 0. It follows that the torus does

not admit any metric of positive Gaussian curvature.14

13The relation (11.10.1) is similar to the line integral expression for the rotation
index in formula (13.1.1).

14 This material is optional. For a reader familiar with elements of Riemann-
ian geometry including Jacobi fields, it is worth mentioning that the Jacobi equa-
tion y′′ + Ky = 0 of a Jacobi field y on M (expressing an infinitesimal variation
by geodesics) sheds light on the nature of curvature in a way that no mere formula
for K could. Thus, in positive curvature, geodesics converge, while in negative
curvature, they diverge. However, to prove the Jacobi equation, one would need to
have already an intrinsically well-defined quantity on the left hand side, y′′ +Ky,
of the Jacobi equation. In particular, one would need an already intrinsic notion
of curvature K. Thus, a proof of the theorema egregium necessarily precedes the
deeper insights provided by the Jacobi equation. Similarly, the Gaussian curva-
ture at p ∈ M is the first significant term in the asymptotic expansion of the
length of a “small” circle of center p. This fact, too, sheds much light on the
nature of Gaussian curvature. However, to define what one means by a “small” cir-
cle, requires introducing higher order notions such as the exponential map, which
are usually understood at a later stage than the notion of Gaussian curvature,
cf. [Ca76, Car92, Ch93, GaHL04].

Theorem 11.10.3 (Binet–Cauchy identity). The 3-dimensional case of the
Binet–Cauchy identity is the identity (a · c)(b · d) = (a · d)(b · c) + (a× b) · (c× d),
where a, b, c, and d are vectors in R3.

The formula can also be written as a formula giving the dot product of two
wedge products, namely (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). A special case
of Binet–Cauchy is the case of vectors a = c and b = d, when we obtain |a× b|2 =
|a|2|b|2 − |a · b|2. When both vectors a, b are unit vectors, we obtain the usual
relation 1 = cos2(φ)+sin2(φ) (here the vector product gives the sine and the scalar
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product gives the cosine) where φ is the angle between the vectors. Let a = x1
and b = x2 be the two tangent vectors to the surface with parametrisation x(u1, u2).
Then |x1 × x2|2 = g11g22 − g212 = det(gij). Equivalently, we have |x1 × x2| =√
det(gij). This can be thought of as the area of the parallelogram spanned by the

two vectors.





CHAPTER 12

Signed curvature of curves; total curvature

12.1. Angle θ(s)

The signed curvature of a plane curve is a refinement of the ordi-
nary curvature of curves. Part of the motivation for introducing the
refinement is that the classical definition of Gaussian curvature is in
terms of the product of signed curvatures (see Section 12.10). Signed
curvatures are defined below.

We identify R2 with C so that a vector in the plane can be written as
a complex number. Let s be an arclength parameter along a curve α(s)
with tangent vector v(s) = α′(s). Since v is of unit norm we can write
it as v = eiθ.

Definition 12.1.1 (function theta). The angle θ(s) along the curve
α(s) with tangent vector v(s) = α′(s) is defined in one of the following
two equivalent ways:

(1) We write v(s) = eiθ(s), where the angle θ(s) is measured coun-
terclockwise, from the positive ray of the x-axis, to the vec-
tor v(s).

(2) Using a suitable branch of the complex logarithm, we can also
express θ(s) as follows: θ(s) = 1

i
log v(s) = −i log v(s).

Here log is a suitable branch of the inverse of the complex expo-
nential function ez, not to be confused with the real function ln.

Lemma 12.1.2. If α(s) = (x(s), y(s)) then dx
ds

= cos θ and dy
ds

=
sin θ.

Proof. By definition we have v(s) = dx
ds

+ i dy
ds
. Since v(s) = eiθ =

cos θ + i sin θ, we obtain the formulas of the lemma. �

Lemma 12.1.3. We have the relation d
dθ
eiθ = ieiθ, where θ(s) is the

angle of Definition 12.1.1.

This was proved in complex functions.

12.2. Signed curvature k̃ as θ′(s)

We are now ready to define a refinement of the curvature function
kα(s), called the signed curvature.

151
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Definition 12.2.1. The signed curvature function k̃α of the plane
curve α is

k̃α(s) =
dθ

ds
. (12.2.1)

This is discussed in more detail in Section 12.7. We have the follow-
ing relation between the signed curvature and the ordinary curvature
of a curve as defined in Section 4.2.

Theorem 12.2.2. We have
∣∣k̃α
∣∣ = kα.

Proof. We differentiate v(s) = eiθ(s) by chain rule to obtain

dv

ds
= ieiθ(s)

dθ

ds
,

and therefore

|k̃α(s)| =
∣∣∣∣
dθ

ds

∣∣∣∣ =
∣∣∣∣
dv

ds

∣∣∣∣ =
∣∣∣∣
d2α

ds2

∣∣∣∣ = kα(s)

as required. �

12.3. Signed curvature with respect to arbitrary parameter

We start with the following data.

(1) α(s) an arclength parametrisation of a plane curve;
(2) kα(s) = |α′′(s)| is the curvature of the curve (see formula (4.2.1));
(3) θ(s) is the angle defined so that α′(s) = eiθ(s) in the plane;

(4) k̃α(s) =
dθ
ds

is the signed curvature (see Section 12.1).

The signed curvature of a plane curve can be expressed in terms of
an arbitrary parameter t of a regular parametrisation, as follows. We
use dots (Newton’s notation) for derivatives with respect to t.

Theorem 12.3.1. Let α(t) = (x(t), y(t)) be an arbitrary regular
parametrisation (not necessarily arclength) of a plane curve. Then
signed curvature satisfies the following equivalent formulas:

k̃α(t) =





ẋÿ − ẏẍ
(ẋ2 + ẏ2)3/2

det
(
α̇ α̈
)

|α̇|3 for the 2 by 2 matrix
(
α̇ α̈
)
.

(12.3.1)

Proof. With respect to an arbitrary parameter t, the components
of α̇(t) are ẋ(t) and ẏ(t). Hence we have tan θ = ẏ

ẋ
or equivalently

ẋ sin θ = ẏ cos θ. (12.3.2)
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Differentiating (12.3.2) with respect to t, we obtain by product rule
and chain rule

ẍ sin θ + ẋ cos θ
dθ

dt
= ÿ cos θ − ẏ sin θ dθ

dt
. (12.3.3)

Grouping together terms containing dθ
dt
, we obtain

dθ

dt
(ẋ cos θ + ẏ sin θ) = −ẍ sin θ + ÿ cos θ. (12.3.4)

The arclength parameter s is defined by s(t) =
∫ t
0
|α̇| so that ds

dt
= |α̇|.

Multiplying (12.3.4) by ds
dt
, we obtain

dθ

dt

(
ẋ cos θ

ds

dt
+ ẏ sin θ

ds

dt

)
= −ẍ sin θds

dt
+ ÿ cos θ

ds

dt
.

Recall that by Lemma 12.1.2 we have
{
cos θ = dx

ds
,

sin θ = dy
ds
.

Therefore by chain rule, we obtain dθ
dt
(ẋ2 + ẏ2) = −ẍẏ + ÿẋ so that

dθ

dt
=
ẋÿ − ẍẏ
ẋ2 + ẏ2

.

Furthermore, dθ
dt

= dθ
ds
ds
dt

and therefore dθ
ds

= ẋÿ−ẍẏ
( ds

dt )
3 since ds

dt
= |α̇(t)| =

|dα
dt
|. Thus

dθ

ds
=
ẋÿ − ẏẍ
|α̇|3

and by (12.2.1) we obtain the desired pair of formulas (12.3.1) for the
signed curvature. �

Example 12.3.2. Calculate the curvature of the graph of y = f(x)
at a critical point x = c using formula (12.3.1).

We will return to the study of signed curvature in Section 12.7.

12.4. Global geometry of Jordan curves

In this section, we begin the study of the global geometry of plane
curves. The curvature invariants we have studied thus far are local
invariants. The global geometry of surfaces is studied in Section 11.3.

Definition 12.4.1. A Jordan curve in the Euclidean plane R2 =
C is a non-selfintersecting closed curve that can be represented by a
continuous map α(s) : [0, L] → R2 such that α(0) = α(L) and α is
injective elsewhere.
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Theorem 12.4.2 (Jordan curve theorem). A Jordan curve sepa-
rates the plane into two open regions: a bounded region and an un-
bounded region.

The bounded region is called the interior region. We will only deal
with smooth (i.e., infinitely differentiable) regular maps α. Consider a
smooth Jordan curve J ⊆ C of length L. By Theorem 4.15.3 there is
an arclength parametrisation α(s) of J , where

(1) s ∈ [0, L];
(2) α(0) = α(L);
(3) α′(0) = α′(L);
(4) the tangent vector v(s) = α′(s) satisfies v(s) ∈ S1 ⊆ C

where S1 is the unit circle.
(5) v(s) = α′(s) = eiθ(s) where θ ∈ [0, L].

See also note.1

Definition 12.4.3. A smooth Jordan curve J ⊆ R2 is called strictly
convex 2 if k̃ > 0.

Definition 12.4.4 (Orientation). A counterclockwise parametrisa-
tion (orientation) of a strictly convex Jordan curve J is the arclength
parametrisation such that the angle

θ(s) : [0, L]→ [0, 2π]

is an increasing function on [0, L].
See also note.3

1This is mainly motivation for the Gauss–Bonnet theorem. The normal vec-
tor n(s) = iv(s) defines a map G to the unit circle called the Gauss map, as follows.
TheGauss map G of a smooth Jordan curve J ⊆ C is the mapG : J → S1, α(s) 7→
n(s) = iv(s) for each point α(s) ∈ J , where v(s) = α′(s). The Gauss map is usually
defined (as we did) using the normal vector n(s) (see note 7) though (in the case
of curves unlike the case of surfaces) one could use v(s) as well. Example: If the
curve J is a circle Cr of radius r centered at the origin, then its Gauss map is the
map G = 1

r IdJ , i.e., a multiple of the identity map of the circle.
2kamur with kuf
3Recall the following set-theoretic notions. The set-theoretic complement of

a subset B ⊆ A is denoted A \ B. Any line ℓ ⊆ R2 divides the plane into two
open halfplanes, namely the two connected components (rechivei kshirut) of the
set complement R2 \ ℓ. More generally, one could define a strictly convex curve by
requiring one of the following two equivalent conditions: (1) the interior of each
segment joining a pair of points of J is contained in the interior region (Tchum
pnimi) of J ; (2) consider the tangent line Tp to J at a point p ∈ J ; then the
complement J \ {p} lies entirely in one of the open halfplanes of R2 \ Tp defined by
the tangent line, for all p ∈ J .
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See further in note.4

4Theorem. Given a strictly convex smooth regular Jordan curve J ⊆ C, the
Gauss map G : J → S1 is one-to-one and onto. [Proof of the “onto” part] To fix
ideas we will assume that J is parametrized counterclockwise. We will work instead
with the map v : J → S1 defined by the tangent vector v. This is legitimate since
the tangent vector only differs from the normal vector by a 90◦ rotation. Let α(s)
be an arclength parametrisation of J . First we consider the case of “horizontal”
vectors v(s) in the (x, y)-plane. These occur at points of J ⊆ C with maximal and
minimal imaginary part, i.e., the y-coordinate. We think of the y-coordinate as
defining a height function on the curve. By applying Rolle’s theorem to the height
function y(s), we obtain a minimum smin and a maximum smax. The points α(smin)
and α(smax) have “opposite” horizontal tangent vectors. Such points correspond
to the values θ = 0 and θ = π. We have G(α(smin)) = ei0, G(α(smax)) = eiπ.
This exhibits the points ei0 ∈ S1 and eiπ ∈ S1 as images of the Gauss map. To
treat the general case, the idea is to use an analog of the height function which is,
up to sign, the distance to the line Span

R
v spanned by the vector v = eiθ. Let us

show how one obtains the pair of opposite tangent vectors

v = eiθ and − v = ei(θ+π). (12.4.1)

Consider the vector

nθ = ei(θ+
π
2
) (12.4.2)

normal to v. Consider the function h(s) (h for “height”) given by the scalar product

h(s) = 〈α(s), nθ〉 (12.4.3)

The function h is analogous to the y-coordinate in Step 2 above. We seek the
extrema of the function h of (12.4.3). At a critical point s0 of the function h, we
have by Fermat’s theorem, d

ds

∣∣
s=s0

h(s) =
〈
dα
ds , nθ

〉
= 0. where nθ is the normal

vector of (12.4.2). Hence the tangent vector v(s0) = α′(s0) at each critical point s0
of h is parallel to the vector v of (12.4.1). The minimum and the maximum of h
give the tangents v = eiθ and −v = ei(θ+π), which are therefore both in the image
of the map G. As v ranges over S1, we thus obtain the points on the curve where
the tangent vector is parallel to v, provng surjectivity.

[Proof of the “one-to-one” part] We would like to show that the Gauss map is
one-to-one. As before, we will work with tangent vectors in place of the normal
vectors. We argue by contradiction. Suppose on the contrary that two distinct
points p ∈ J and q ∈ J have identical tangent vectors v(s) = eiθ. Then the tangent
lines Tp and Tq to J at p and q are parallel. By definition of convexity, the curve J
lies entirely on one side of each of the tangent lines Tp and Tq. Since the lines are
parallel, there are two possibilities: (1) the tangent lines coincide: Tp = Tq. (2)
The curve lies in the strip between the two tangent lines. However, in the second
case the tangent vectors at p and q have opposite directions v abd −v. It remains
to treat the case Tp = Tq. Thus we can assume that both p and q must lie on the
common line Tp = Tq. Therefore we obtain a straight line segment [p, q] ⊆ J . This
contradicts the hypothesis that the curve J is strictly convex. The contradiction
proves that the map is one-to-one.
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12.5. Total curvature of a convex Jordan curve

The result on the total curvature5 of a Jordan curve is of interest in
its own right. Furthermore, the result serves to motivate an analogous
statement of the Gauss–Bonnet theorem for surfaces in Section 11.6.

Definition 12.5.1. The total curvature Tot(C) of a curve C with
arclength parametrisation α(s) : [a, b]→ R2 is the integral

Tot(C) =

∫ b

a

kα(s)ds. (12.5.1)

Lemma 12.5.2. The total curvature of a circle Cr (of radius r) is 2π
and therefore indepedent of r.

Proof. Consider an arclength parametrisation

α(s) : [0, 2πr]→ R2

of the circle Cr given by the usual trigonometric functions. Then

Tot(Cr) =

∫ 2πr

0

kα(s)ds =

∫ 2πr

0

1

r
ds =

2πr

r
= 2π.

�

Definition 12.5.3 (Contour integral). If C is a twice differentiable
smooth closed curve parametrized by α : [a, b]→ R2, so that in partic-
ular α(a) = α(b) and α′(a) = α′(b), we will write the integral (12.5.1)
using the notation of a contour integral

Tot(C) =

∮

C

kα(s)ds. (12.5.2)

Theorem 12.5.4. Let C be a strictly convex smooth Jordan curve
with arclength parametrisation α(s). Then the total curvature of C is
Tot(C) =

∮
C
kα(s)ds = 2π.

Proof. Let α(s) be a unit speed parametrisation chosen so that α(0)
is the lowest point (i.e., y is minimal) of the curve, and assume the curve
is parametrized counterclockwise. Let

v(s) = α′(s) ∈ C.

Then v(0) = ei0 = 1 and therefore θ(0) = 0. The function θ = θ(s) is
monotone increasing from 0 to 2π.6 Applying the change of variable
formula for integration, we obtain

Tot(C) =

∮

C

kα(s)ds =

∮

C

∣∣∣∣
dv

ds

∣∣∣∣ ds =
∮

C

dθ

ds
ds =

∫ 2π

0

dθ = 2π,

5Akmumiyut kolelet
6By Theorem in Section 12.4.
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proving the theorem. �

See also note.7

12.6. Total curvature of conic sections

Applying Theorem 12.5.4 we obtain the following result about conic
sections. For the nondegeneracy condition of conic sections see Defini-
tion 2.6.5 and the main text there.

Corollary 12.6.1. Consider a closed convex curve given by an
ellipse E ⊆ R2 defined by a quadratic equation

ax2 + 2bxy + cy2 + dx+ ey + f = 0, ac− b2 > 0,

and assume that the ellipse is nondegenerate. Then

Tot(E) = 2π.

Namely 2π is the total curvature of the ellipse E.

Example 12.6.2 (Theorem inapplicable to hyperbola). The hyper-
bola H defined by λ1x

2+λ2y
2 = k is not a closed curve. In the special

case λ1 = −λ2 (see Definition 2.6.2) when the asymptotes of H are
orthogonal, the image of θ is precisely half the circle. Therefore we can
define the total curvature of this non-closed curve by a similar integral,
and a similar integration argument shows that the total curvature is π
(rather than 2π).

Remark 12.6.3 (Non-convex curves). A theorem similar to Theo-
rem 12.5.4 (on total curvature) in fact holds for an arbitrary regular
Jordan curve (even though in general θ(s) will not be a monotone func-
tion) provided we use signed curvature. In this section, we dealt only
with the convex case in order to simplify the topological considerations.
See further in Section 12.7.

Remark 12.6.4. A similar calculation yields the Gauss–Bonnet
theorem for convex surfaces in Section 11.6.

7 We can also consider the normal vector n(s) to the curve. The normal vector
satisfies n(s) = ei(θ+

π
2
) = iei(θ) and |dnds | = |dvds | = dθ

ds . Therefore we can also calcu-

late the total curvature as follows:
∮
C
kα(s)ds =

∮
C

∣∣dn
ds

∣∣ ds =
∮
C

dθ
dsds =

∫ 2π

0
dθ =

2π, with n(s) in place of v(s). For surfaces, an analogous Gauss map is defined by
means of the normal vector; see Section 11.4.
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12.7. Rotation index of a closed curve in the plane

In this section we will deal with arbitrary closed curves (not neces-
sarily convex). We start with the following data.

(1) α(s) is an arclength parametrisation of a closed curve in the
plane.

(2) L is the length of the curve.
(3) The curve is parametrized counterclockwise.8

(4) v(s) = α′(s).

As in Section 12.4, we have the following result. The result ap-
plies to closed curves that are not necessarily simple (i.e., non-self-
intersecting).

Theorem 12.7.1 (Existence of continuous branch of θ). α(s) ad-
mits a continuous single-valued branch of the angle θ(s), s ∈ [0, L],
where θ(s) is the angle measured counterclockwise from the positive x-
axis to the tangent vector v(s) = α′(s).

If the closed curve is not convex, the function θ(s) will not be
monotone and at certain points its derivative θ′(s) may be negative.

Once we have chosen a continuous branch of θ, we can define
the signed curvature k̃α of the parametrized closed curve as in Def-
inition 12.2.1 by setting k̃α(s) = dθ

ds
where θ = 1

i
log v, or equiva-

lently v(s) = α′(s) = eiθ(s).

Lemma 12.7.2. If C is a closed curve then the difference θ(L)−θ(0)
is necessarily an integer multiple of 2π.

Proof. Consider a regular closed plane curve of length L with an
arclength parametrisation α(s) with α′(s) = eiθ(s). By Theorem 12.7.1,
a continuous branch of θ(s) can be chosen even if the curve is not simple.
Such a branch is a map θ : [0, L]→ R. The values θ(L) and θ(0) must
agree up to a multiple of 2π since they define the same tangent vector
at the point α(0) = α(L). �

Definition 12.7.3. The rotation index ια of a closed unit speed

plane curve α(s) is the integer ια = θ(L)−θ(0)
2π

.

Theorem 12.7.4. The rotation index ι(J) of a smooth Jordan curve
J ⊆ C is ιJ = ±1 (namely, 1 for the counterclockwise orientation
and −1 for the clockwise orientation).

For a proof see Millman & Parker [MP77, p. 55]. We will analyze
the rotation index further in Section 13.1.

8In the sense of the course on complex functions.
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Figure 12.7.1. Three points on a curve with the
same tangent direction, but the middle one corresponds
to θ′(s) < 0.

12.8. Total signed curvature of Jordan curve

We have the following generalisation of Theorem 12.5.4 on the total
curvature.

Definition 12.8.1. The total signed curvature of a smooth curve
C ⊆ R2 of length L with arclength parametrisation α(s) for s ∈ [0, L]
is defined to be

T̃ot(C) =

∫ L

0

k̃α(s)ds.

We obtain the following generalisation of Theorem 12.5.4. As usual
we assume that Jordan curves are parametrized counterclockwise.

Theorem 12.8.2. The total signed curvature of a smooth Jordan
curve C oriented counterclockwise is

T̃ot(C) = 2π. (12.8.1)

Proof. We exploit a continuous branch θ(s) as in Theorem 12.5.4,
but without the absolute value signs on the derivative of θ(s). Applying
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the change of variable formula for integration, we obtain

T̃ot(C) =

∮

C

k̃α(s)ds =

∮

C

dθ

ds
ds =

∫ θ(0)+2π

θ(0)

dθ = 2π,

where the upper limit of integration is θ(0)+ 2π by Theorem 12.7.4 on
the rotation index. �

See also note.9

12.9. Connected components of curves

Until now we have only considered connected curves. A curve may
in general have several connected components (rechivei k’shirut), de-
fined in Infi 3.10 The curve C decomposes as a disjoint union

C =
⊔

i

Ci

of connected curves Ci. The set of connected components of C is de-
noted π0(C). The number of connected components is denoted |π0(C)|.

The total curvature can be similarly defined for a non-connected
curve, by summing the integrals over each connected components.

Definition 12.9.1. The total signed curvature of C =
⊔
iCi is

T̃ot(C) =
∑

i T̃ot(Ci).

We obtain the following corollary of the theorem on total curvature
of a Jordan curve, by applying the previous theorem to each connected
component and summing the resulting total curvatures.

9There is a generalisation (to plane domains) of the formula (12.8.1) for the total
signed curvature of a Jordan curve. The Euler characteristic χ(D) of a surface D,
defined via a triangulation, is χ(D) = V −E+F (vertices minus edges plus faces).
Theorem: Consider a plane domainD ⊆ R2 with (possibly several) smooth bundary
components. Assume that each of the components of ∂D is oriented in a way
compatible with the standard orientation in D, and let k̃ be the signed curvature.
Then

∫
∂D

k̃ = 2πχ(D). We mention some examples. (1) If D is a disk then χ(D) =
1 and total curvature of the boundary ofD is 2π. (2) IfD is an annulus then χ(D) =
0 and total curvature of the boundary of D is 0. (3) If D ⊆ R2 has two holes (in
addition to the outside boundary) then then χ(D) = −1 and total curvature of the
boundary is −2π. A more general Gauss–Bonnet theorem for surfaces is discussed
in Sections 11.7 and 11.10. The compatibility of orientations is discussed in more
detail in 88-826.

10Two points p, q on a curve C ⊆ R2 are said to lie in the same connected
component if there exists a continuous map h : [0, 1] → C such that h(0) = p
and h(1) = q. This defines an equivalence relation on the curve C.
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Corollary 12.9.2. If each connected component of a curve C is
a Jordan curve parametrized counterclockwise, then the total signed

curvature of C is T̃ot(C) = 2π |π0(C)|.
Example 12.9.3. Let F (x, y) = (x2+4y2− 1)((x− 10)2+4y2− 1),

and let CF be the curve defined by F (x, y) = 0. Then CF is the
union of a pair of disjoint ellipses. Therefore it has two connected
components: |π0(CF )| = 2. By Corollary 12.6.1, each component has
total curvature 2π. By Corollary 12.9.2, its total signed curvature is 4π.

12.10. Gaussian curvature as product of signed curvatures

We will exploit signed curvature defined in Section 12.1 to express
Gaussian curvature as a product of signed curvatures of planar curves.

We originally defined the Gaussian curvature K = K(u1, u2) as the
determinant of the Weingarten map Wp at p = x(u1, u2) ∈M .11

One can represent the Gaussian curvature as the product of signed
curvatures of plane curves obtained by intersecting M with the planes
spanned by n and each of the eigenvectors vi, as already mentioned
following Definition 9.5.1, in note (1). Then for signed curvatures one

has the formula K = k̃β1 k̃β2 as in Theorem 12.10.4 below. In this
spirit, some textbooks (following Gauss himself) define the Gaussian
curvature not as the determinant of the Weingarten map but rather as
the product of the signed curvatures k̃α of such a pair of plane curves.
We consider the following data.

(1) M ⊆ R3 is a surface.
(2) p ∈M .
(3) v1, v2 are orthonormal eigenvectors of the map Wp : Tp → Tp.
(4) We choose a unit normal n to the surface M at p ∈M .
(5) (v1, v2, n) is an orthonormal basis.

Definition 12.10.1 (Planes Ei). The plane Ei = Span(n, vi) ⊆ R3

is spanned by n and eigenvector vi, for each i = 1, 2.

Note that Ei ∩ Tp = Rvi, for i = 1, 2.

Definition 12.10.2 (Plane curves). The plane curve βi =M ∩ Ei
is the intersection of the surface and the plane. Choose unit speed
parametrisations βi(s) such that β′

i(0) = vi.

11In note 7, we saw that the absolute value |K| can be represented as the prod-
uct of the curvatures kβ1

and kβ2
of geodesics in the direction of the eigenvectors vi

of Wp, namely |K| = kβ1
kβ2

. In this section, we sharpen this result so as to express
the Gaussian curvature itself as a product of signed curvatures.
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Definition 12.10.3. The signed curvature k̃i (relative to n) of the

curves βi(s) is k̃i = 〈β′′
i (0), n〉, for each i = 1, 2.

The signed curvatures are the eigenvalues of Wp (see Section 12.11
for more details). We therefore obtain the following theorem.

Theorem 12.10.4. The Gaussian curvature Kp of M ⊆ R3 at p
satisfies

Kp = k̃1k̃2 (12.10.1)

where k̃i, i = 1, 2 is the signed curvature of the plane curves β1 and β2.

12.11. Connection to the Hessian

To explain formula (12.10.1) in terms of the Hessian, we can assume
without loss of generality that M is the graph of a function f(x, y)
vanishing at the origin, with a critical point at the origin. Furthermore,
we can assume without loss of generality that the eigendirections of the
Hessian of f coincide with the x-axis and the y-axis (by orthogonally
diagonalizing the quadratic part of f as in Theorem 2.5.3).12

Proposition 12.11.1. The Gaussian curvature at the origin of the
graph of f is the product of signed curvatures of the curves obtained as
the graphs of the restrictions of f respectively to the x-axis and the y-
axis.

Proof. By hypothesis, the Taylor formula with remainder for f
gives f(x, y) = ax2 + by2 + o(x2 + y2). In the notation of Defini-
tion 12.10.2, the curve β1 ⊆ E1 in the (x, z) plane is the graph of z =
ax2 + o(x2). The curve β2 ⊆ E2 in the (y, z) plane is the graph
of z = by2 + o(y2). With respect to the normal n = e3, the curves
have signed curvature respectively 2a and 2b at the origin. The Hes-

sian is the diagonal martix Hf =

(
2a 0
0 2b

)
. Therefore K = 4ab as

required. �

Remark 12.11.2. The value 2a is simultaneously the partial deriv-
ative fxx, the signed curvature of the curve β1, and also the eigenvalue
of the Hessian and of the Weingarten map corresponding to the eigen-
vector e1 (similarly, e2 belongs to the eigenvalue 2b).
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Weingarten
map (Lij)

Gaussian cur-
vature K

mean cur-
vature H

plane

(
0 0
0 0

)
0 0

cylinder

(
1 0
0 0

)
0 1

2

invariance
of curvature

yes no

Table 12.12.1. Plane and cylinder have the same intrinsic
geometry (K), but different extrinsic geometries (H)

12.12. Mean versus Gaussian curvature

Recall that by Gauss’ theorema egregium the Gaussian curvature
can be expressed in terms of the metric coefficients alone.

Theorem 12.12.1. Unlike Gaussian curvature K, the mean curva-
ture H = 1

2
Lii cannot be expressed in terms of the metric coefficients gij

and their derivatives.

Namely, the plane and the cylinder have parametrisations with
identical (gij), but with different mean curvature, cf. Table 12.12.1.
To summarize, Gaussian curvature is an intrinsic invariant, while mean
curvature an extrinsic invariant, of the surface.13

12In more detail, if the eigenspaces are not the axes, we adjust the coordinates
by a suitable rotation of R3 so that the x and y axes become the eigenspaces,
while the z-axis is the direction of the normal. Note that Gaussian curvature is
unchanged under such a rotation. as under all orthogonal transformations.

13[Algebraic degree] This material is optional. Let α(s) be a parametrisation of
a smooth closed curve C. Consider an arbitrary smooth map (not necessarily the
Gauss map) α(s) 7→ eiθ(s) from C to the circle. The algebraic degree of the map at
a point z ∈ S1 is defined to be the sum

∑
θ−1(z) sign

(
dθ
ds

)
, where the summation

is over all points in the inverse image of z. Here by Sard’s theorem z can be
chosen in such a way that the inverse image is finite so that the sum is well-defined.
Theorem: For Jordan curves (i.e., embedded curves), the algebraic degree of the
Gauss map is 1 if oriented counterclockwise and −1 if orientated counterclockwise.
For nonconvex Jordan curves, the Gauss map to the circle will not be one-to-one,
but will still have an algebraic degree one. This phenomenon has an analogue for
embedded surfaces in R3 where the algebraic degree is proportional to the Euler
characteristic. Example: If the curve is not simple, the degree may be different
from ±1. Thus, the map defined by z 7→ zn restricted to the unit circle gives a
map eiθ 7→ einθ of algebraic degree n. The preimage of 1 = ei0 consists precisely of
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the nth roots of unity e
2πik
n , k = 0, 1, 2, . . . , n − 1. Altogether there are n of them

and therefore the algebraic degree is n.



CHAPTER 13

Rotation index, isothermisation, pseudosphere

13.1. Rotation index of closed curves and total curvature

The rotation index was defined in Section 12.7 where we mostly
dealt with Jordan curves. For general regular closed curves (with pos-
sible self-intersections) we have the following result.

The result is analogous to the relation between the Euler character-
istic of a surface and its total Gaussian curvature (see Section 11.10).

Theorem 13.1.1. Let α(s) be an arclength parametrisation of a
geometric curve C ⊆ R2. Then the rotation index ια is related to the

total signed curvature T̃ot(C) as follows:

T̃ot(C) = 2πια. (13.1.1)

Proof. The proof is similar to that given in Section 12.7. We
exploit the continuous branch θ(s) = 1

i
logα′(s), s ∈ [0, L] as in The-

orem 12.5.4. Applying the change of variable formula for integration,
we obtain

T̃ot(C) =

∮

C

k̃α(s)ds =

∮

C

dθ

ds
ds =

∫ 2πια

0

dθ = 2πια,

where the upper limit of integration is 2πια (by definition of the rotation
index). �

Example 13.1.2. The rotation index of a figure-8 curve (known as
the lemniscate of Gerono, one of the Lissajous curves) is 0. Hence its
total signed curvature vanishes.

Example 13.1.3. Describe an immersed curve with rotation in-
dex 2.

13.2. Surfaces of revolution and isothermalisation

Below we will express the metric of a surface of revolution in isother-
mal coordinates. Recall that if a surface is obtained by revolving a
curve (r(φ), z(φ)), we obtain metric coefficients g11 = r2 and g22 =(
dr
dφ

)2
+
(
dz
dφ

)2
. Thus we obtain the following theorem.

165
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Theorem 13.2.1. We have the following expression of the metric
of a surface of revolution in coordinates u1 = r, u2 = φ:

g11 = r2, g22 =
(
dr
dφ

)2
+
(
dz
dφ

)2
, g12 = 0. (13.2.1)

We will use this theorem to carry out explicit isothermalisation in
the case of a surface of revolution.

Proposition 13.2.2. Let (r(φ), z(φ)), where r(φ) > 0, be an ar-
clength parametrisation of the generating curve of a surface of revolu-
tion M . Then the change of variable

ψ =

∫
1

r(φ)
dφ,

produces an isothermal parametrisation ofM in terms of variables (θ, ψ).
With respect to the new coordinates, the first fundamental form is given
by a scalar matrix with metric coefficients r(φ(ψ))2δij.

Remark 13.2.3. The existence of such a parametrisation is pre-
dicted by the uniformisation theorem (Theorem 13.12.2) in the case of
a general surface but the general result is less explicit.

Proof of Proposition 13.2.2. We will carry out a change of
variables affecting only the second variable φ.

Step 1. Consider an arbitrary monotone change of parameter φ =
φ(ψ). By chain rule,

dr

dψ
=
dr

dφ

dφ

dψ
.

Step 2. Consider the (possibly non-scalar) first fundamental form
as given by (13.2.1). We need to impose the condition

g11 = g22 (13.2.2)

to ensure that the matrix of metric coefficients be a scalar matrix. By
Theorem 13.2.1, equality (13.2.2) is equivalent to the equation

r2 =

(
dr

dψ

)2

+

(
dz

dψ

)2

. (13.2.3)

Step 3. By chain rule, (13.2.3) is equivalent to the formula r2 =((
dr
dφ

)2
+
(
dz
dφ

)2)(
dφ
dψ

)2
, or

r =

√(
dr

dφ

)2

+

(
dz

dφ

)2
dφ

dψ
. (13.2.4)
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Step 4. In the case when the original generating curve is para-
metrized by arclength (as in our proposition), equation (13.2.4) be-
comes r = dφ

dψ
. Solving for ψ, we obtain ψ(φ) =

∫
dφ
r(φ)

.

Step 5. Since the change of parameter is monotone, we can solve
the equation ψ = ψ(φ) for φ obtaining φ = φ(ψ). Substituting the
new variable φ(ψ) in place of φ in the parametrisation of the surface,
we obtain a new parametrisation of the surface of revolution in coordi-
nates (θ, ψ).

Step 6. With respect to the new parametrisation, the first fun-
damental form is scalar with conformal factor λ = r2(φ(ψ)) as per
equation (13.2.3). �

13.3. Gaussian Curvature of pseudosphere

As an application of the isothermalisation of Section 13.2, we cal-
culate the curvature of the pseudosphere. The pseudosphere (see Sec-
tion 5.9) is the surface of revolution generated by functions r(φ) = eφ

and z(φ) =
∫ φ
0

√
1− e2τdτ = −

∫ 0

φ

√
1− e2τdτ , where −∞ < φ ≤ 0.

Its metric coefficients are given by the matrix (gij) =

(
e2φ 0
0 1

)
, which

is not a scalar matrix.

Theorem 13.3.1. The pseudosphere has constant Gaussian curva-
ture K = −1.

Proof. Instead of applying the general formula for curvature, we
use the trick of a change of coordinates that results in isothermal co-
ordinates so we can apply the formula for curvature in terms of the
Laplace–Beltrami operator. We apply Proposition 13.2.2 to introduce
the change of coordinates

ψ =

∫
dφ

r(φ)
=

∫
e−φdφ = −e−φ. (13.3.1)

From (13.3.1) we obtain φ = − ln(−ψ). This results in isothermal
coordinates (θ, ψ) with conformal factor f(ψ) = r(φ(ψ)). Therefore

f(ψ) = r(φ(ψ)) = e− ln(−ψ) =
1

eln(−ψ)
= − 1

ψ
.

We have λ = f 2 = 1
ψ2 . Recall that the metric with gij(θ, ψ) =

1
ψ2 δij is

by definition hyperbolic (here we merely use the variables θ, ψ in place
of x, y). Therefore it has curvature K = −1 as shown in Section 10.2.
For completeness we carry out the calculation as follows. In isother-
mal coordinates (θ, ψ), Gaussian curvature is given by the formula in
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terms of the Laplace–Beltrami operator. The Gaussian curvature of
the pseudosphere is

K = −∆LB ln f

= −1

λ

∂2

∂ψ2
ln f(ψ)

= −ψ2 ∂
2

∂ψ2
ln((−ψ)−1)

= ψ2 ∂
2

∂ψ2
ln(−ψ).

Differentiating with respect to ψ, we obtain

K = ψ2 ∂

∂ψ

(−1
−ψ

)

= ψ2 ∂

∂ψ

(
1

ψ

)

= ψ2

(
− 1

ψ2

)

= −1,
as required. �

13.4. Transition from classical to modern diff geom

Remark 13.4.1. The theorema egregium of Gauss marks the tran-
sition from classical differential geometry of curves and surfaces em-
bedded in 3-space, to modern differential geometry of surfaces (and
manifolds) studied intrinsically.

More specifically, once we have a notion of Gaussian curvature (and
more generally sectional curvature) that only depends on the metric
on a surface (or manifold), we can study the geometry of the surface
(or manifold) intrinsically, i.e., without any reference to a Euclidean
embedding.

Remark 13.4.2. To formulate the intrinsic viewpoint, one needs
the notion of duality of vector and covector. This theme is treated in
Section 13.5.

13.5. Duality in linear algebra; 1-forms

Let V be a finite-dimensional real vector space.

Example 13.5.1. Euclidean space Rn is an example of a real vector
space of dimension n with basis (e1, . . . , en).
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Example 13.5.2. The tangent plane TpM of a regular surface M
at a point p ∈M is a real vector space of dimension 2.

Definition 13.5.3. A linear form, also called 1-form, φ on V is a
linear functional

φ : V → R.

Definition 13.5.4 (dx, dy). In the usual Euclidean plane of vectors

v = v1e1 + v2e2

represented by arrows, we denote by dx the 1-form which extracts the
abscissa of the vector, and by dy the 1-form which extracts the ordinate
of the vector:

dx(v) = v1,

and
dy(v) = v2.

Example 13.5.5. For a vector v = 3e1+4e2 with components (3, 4)
we obtain

dx(v) = 3, dy(v) = 4.

Definition 13.5.6. The quadratic forms dx2 and dy2 are defined
by squaring the value of the 1-form on v:

dx2(v) = (dx(v))2.

Such quadratic forms are called rank-1 quadratic forms.

Thus,
dx2(v) = (v1)2, dy2(v) = (v2)2.

Example 13.5.7. In the case v = 3e1 + 4e2 we obtain dx2(v) = 9
and dy2(v) = 16.

13.6. Dual vector space

Definition 13.6.1. The dual space of V , denoted V ∗, is the space
of all linear forms on V :

V ∗ = {φ : φ is a 1-form on V } .
Evaluating φ at an element x ∈ V produces a scalar φ(x) ∈ R.

Definition 13.6.2. The evaluation map1 is the natural pairing be-
tween V and V ∗, namely a linear map denoted

〈 , 〉 : V × V ∗ → R,

defined by evaluating y at x, i.e., setting 〈x, y〉 = y(x), for all x ∈ V
and y ∈ V ∗.

1hatzava?
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Remark 13.6.3. Note we are using the same notation for the pair-
ing as for the scalar product in Euclidean space. The notation is quite
widespread.

Definition 13.6.4. If V admits a basis of vectors

(xi) = (x1, x2, . . . , xn),

then the dual space V ∗ admits a unique basis, called the dual ba-
sis (yj) = (y1, . . . , yn), satisfying

〈xi, yj〉 = δij , (13.6.1)

for all i, j = 1, . . . , n, where δij is the Kronecker delta function.

Example 13.6.5. Let V = R2. We have the standard basis e1, e2
for V . The 1-forms dx, dy form a basis for the dual space V ∗. Then
the basis (dx, dy) is the dual basis to the basis (e1, e2).

Example 13.6.6. Let V = R2 identified with C for convenience.
We have the basis (1, e

iπ
3 ) for V where 1 = e1 + 0e2 while

e
iπ
3 =

1

2
e1 +

√
3

2
e2.

Find the dual basis in V ∗. The answer is y1 = dx− 1√
3
dy, y2 =

2√
3
dy.

13.7. Derivations

Let E be a space of dimension n, and let p ∈ E be a fixed point.
The following definition is independent of coordinates.

Definition 13.7.1. Let

Dp = {f : f ∈ C∞}
be the ring of real C∞-functions f defined in an arbitrarily small open
neighborhood of p ∈ E.

Remark 13.7.2. The ring operations are pointwise multiplication
and pointwise addition, where we choose the intersection of the two
domains as the domain of the new function.

Note that Dp is infinite-dimensional as it includes all polynomials.

Theorem 13.7.3. Choose coordinates (u1, . . . , un) in E. A partial
derivative ∂

∂ui
at p is a 1-form

∂

∂ui
: Dp → R
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on the space Dp, satisfying Leibniz rule

∂(fg)

∂ui

∣∣∣∣
p

=
∂f

∂ui

∣∣∣∣
p

g(p) + f(p)
∂g

∂ui

∣∣∣∣
p

(13.7.1)

for all f, g ∈ Dp.

Formula (13.7.1) can be written briefly as

∂
∂ui

(fg) = ∂
∂ui

(f)g + f ∂
∂ui

(g),

with the understanding that both sides are evaluated at the point p.
This was proved in calculus. Formula (13.7.1) motivates the following
more general definition of a derivation.

Definition 13.7.4. A derivation X at the point p ∈ E is a 1-form

X : Dp → R

on the space Dp satisfying Leibniz rule:

X(fg) = X(f)g(p) + f(p)X(g) (13.7.2)

for all f, g ∈ Dp.

Remark 13.7.5. Linearity of a derivation is required only with
regard to scalars in R, not with respect to functions.

13.8. Characterisation of derivations

It turns out that the space of derivations is spanned by partial
derivatives.

Proposition 13.8.1. Let E be an n-dimensional space, and p ∈
E. Then the collection of all derivations at p is a vector space of
dimension n.

Proof in case n = 1. We will first prove the result in the case n =
1 of a single variable u at the point p = 0. Let X : Dp → R be a
derivation. Then X(1) = X(1 · 1) = 2X(1) by Leibniz rule. There-
fore X(1) = 0, and similarly for any constant by linearity of X.

Now consider the monic polynomial u = u1 of degree 1, viewed
as a linear function u ∈ Dp=0. We evaluate the derivation X at the
element u ∈ D and set c = X(u). By the Taylor remainder formula, any
function f ∈ Dp=0 can be written as f(u) = a+ bu+ g(u)u where b =
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∂f
∂u
(0) and g is smooth and g(0) = 0. Now we have by linearity

X(f) = X(a+ bu+ g(u)u)

= bX(u) +X(g)u(0) + g(0) ·X(u)

= bc+ 0 + 0

= c
∂

∂u
(f).

Thus the derivation X coincides with the derivation c ∂
∂u

for all f ∈
Dp. Hence the tangent space is 1-dimensional and spanned by the
element ∂

∂u
, proving the theorem in this case. �

2

13.9. Tangent space and cotangent space

Definition 13.9.1. Let p ∈ E. The space of derivations at p is
called the tangent space Tp = TpE at p.

The results of the previous section can be formulated as follows.

2Proof in case n = 2. This material is optional. Let us prove the
result in the case n = 2 of two variables u, v at the origin p = (0, 0). Let X
be a derivation. Then X(1) = X(1 · 1) = 2X(1) by Leibniz rule. There-
foreX(1) = 0, and similarly for any constant by linearity ofX. Now consider
the monic polynomial u = u1 of degree 1, i.e., the linear function u ∈ Dp=0.
We evaluate the derivation X at u and set c = X(u). Similarly, consider
the monic polynomial v = v1 of degree 1, i.e., the linear function v ∈ Dp=0.
We evaluate the derivation X at v and set c̃ = X(v). By the Taylor re-
mainder formula, any function f ∈ Dp=0, where f = f(u, v), can be written

as f(u, v) = a+ bu+ b̃v + g(u, v)u2 + h(u, v)uv + k(u, v)v2, where the func-
tions g(u, v), h(u, v), and k(u, v) are smooth. Note that the coefficients b

and b̃ are the first partial derivatives of f at the origin. Now we have

X(f) = X(a+ bu+ b̃v + g(u, v)u2 + h(u, v)uv + k(u, v)v2)

= bX(u) + b̃X(v) +
(
X(g)u2 + g(u, v)2uX(u) + · · ·

)

= bX(u) + b̃X(v)

= bc+ b̃c̃

= c
∂

∂u
(f) + c̃

∂

∂v
(f)

by evaluating at the point (0, 0). Thus the derivation X coincides with the
derivation c ∂∂u+c̃

∂
∂v for all test functions f ∈ Dp. Hence the two partials span

the tangent space. Therefore the tangent space is 2-dimensional, proving the
theorem in this case.
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Corollary 13.9.2. Let (u1, . . . , un) be coordinates for E, and let p ∈
E. Then a basis for the tangent space Tp is given by the n partial
derivatives (

∂

∂ui

)
, i = 1, . . . , n.

Definition 13.9.3. The space dual to the tangent space Tp is called
the cotangent space, and denoted T ∗

p .

Definition 13.9.4. An element of a tangent space is a vector, while
an element of a cotangent space is called a 1-form, or a covector.

Definition 13.9.5. The basis dual to the basis
(
∂
∂ui

)
is denoted

(duj), j = 1, . . . , n.

Thus each duj is by definition a linear form, or cotangent vector
(covector for short). We are therefore working with dual bases

(
∂
∂ui

)

for vectors, and (duj) for covectors. The evaluation map as in (13.6.1)
gives 〈

∂

∂ui
, duj

〉
= duj

(
∂

∂ui

)
= δji , (13.9.1)

where δji is the Kronecker delta.

13.10. Constructing bilinear forms out of 1-forms

Recall that the polarisation formula (see Definition 1.4.3) allows
one to reconstruct a symmetric bilinear form B = B(v, w), from the
quadratic form Q(v) = B(v, v), at least if the characteristic is not 2:

B(v, w) =
1

4
(Q(v + w)−Q(v − w)). (13.10.1)

Similarly, one can construct bilinear forms out of the 1-forms dui,
as follows.

Example 13.10.1. Consider a quadratic form ai(du
i)2 defined by

a linear combination of the rank-1 quadratic forms (dui)2, as in Defi-
nition 13.5.6.

Polarizing the quadratic form, one obtains a bilinear form on the
tangent space Tp.

Example 13.10.2. Let v = v1e1 + v2e2 be an arbitrary vector in
the plane. Let dx and dy be the standard covectors, extracting, respec-
tively, the first and second coordinates of v. Consider the quadratic
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form Q given by Q = Edx2 + Fdy2, where E,F ∈ R. Here Q(v) is
calculated as

Q(v) = E(dx(v))2 + F (dy(v))2 = E(v1)2 + F (v2)2.

Polarisation then produces the bilinear form B = B(v, w), where v
and w are arbitrary vectors, given by the formula

B(v, w) = E dx(v) dx(w) + F dy(v) dy(w).

Example 13.10.3. Setting E = F = 1 in the previous example, we
obtain the standard scalar product in the plane:

B(v, w) = v · w = dx(v) dx(w) + dy(v) dy(w) = v1w1 + v2w2.

13.11. First fundamental form

Definition 13.11.1. A metric (or first fundamental form) g is a
symmetric bilinear form on the tangent space at p, namely g : Tp×Tp →
R, defined for all p and varying continuously and smoothly in p.

Remark 13.11.2. In Riemannian geometry one requires the asso-
ciated quadratic form to be positive definite. In relativity theory one
uses a form of type (3, 1).

Recall that the basis for Tp in coordinates (ui) is given by the
tangent vectors ∂

∂ui
. These are given by certain derivations (see Sec-

tion 13.7).
The first fundamental form g is traditionally expressed by a matrix

of coefficients called metric coefficients gij, giving the inner product of
the i-th and the j-th vector in the basis: gij = g

(
∂
∂ui
, ∂
∂uj

)
, where g is

the first fundamental form.

Definition 13.11.3. The square norm the i-th vector is given by

the coefficient gii =
∥∥ ∂
∂ui

∥∥2.
We will express the first fundamental form in more intrinsic notation

of quadratic forms built from 1-forms (covectors).

13.12. Dual bases in differential geometry

Let us now restrict attention to the case of 2 dimensions, i.e., the
case of surfaces. At every point p = (u1, u2), we have the metric coef-
ficients gij = gij(u

1, u2). Each metric coefficient is thus a function of
two variables.

We will only consider the case when the matrix is diagonal. This can
always be achieved, in two dimensions, at a point by a suitable change
of coordinates, by the uniformisation theorem (see Theorem 13.12.2).
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We set x = u1 and y = u2 to simplify notation. In the notation
developed in Section 13.10, we can write the quadratic form associated
with the first fundamental form as follows:

g = g11(x, y)(dx)
2 + g22(x, y)(dy)

2. (13.12.1)

For example, if the metric coefficients form an identity matrix: gij =
δij, we obtain the standard flat metric

g = (dx)2 + (dy)2 (13.12.2)

or simply g = dx2 + dy2.

Example 13.12.1 (Hyperbolic metric). Let g11 = g22 =
1
y2

at each

point (x, y) where y > 0. This means that
∣∣ ∂
∂u1

∣∣ = 1
y
and

∣∣ ∂
∂u2

∣∣ = 1
y
.

The resulting hyperbolic metric in the upper half plane {y > 0} is ex-
pressed by the quadratic form 1

y2
(dx2 + dy2). Note that this expression

is undefined whenever y = 0. See Section 10.2. The hyperbolic metric
in the upper half plane is a complete metric.

Closely related results are the Riemann mapping theorem and the
conformal representation theorem.

Theorem 13.12.2 (Riemann mapping/uniformisation). Every met-
ric on a connected3 surface is conformally equivalent to a metric of
constant Gaussian curvature.

From the complex analytic viewpoint, the uniformisation theorem
states that every Riemann surface is covered by either the sphere, the
plane, or the upper halfplane. Thus no notion of curvature is needed for
the statement of the uniformisation theorem. However, from the dif-
ferential geometric point of view, what is relevant is that every confor-
mal class of metrics contains a metric of constant Gaussian curvature.
See [Ab81] for a lively account of the history of the uniformisation
theorem. A lot of information on the uniformisation theorem and the
Riemann mapping theorem can be found at https://mathoverflow.
net/q/10516.

13.13. More on dual bases

Recall that if (x1, . . . , xn) is a basis for a vector space V then the
dual vector space V ∗ possesses a basis called the dual basis and de-
noted (y1, . . . , yn) satisfying 〈xi, yj〉 = yj(xi) = δij .

3kashir

https://mathoverflow.net/q/10516
https://mathoverflow.net/q/10516
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Example 13.13.1. In R2 we have a basis (x1, x2) =
(
∂
∂x
, ∂
∂y

)
in the

tangent plane Tp at a point p. The dual basis of 1-forms (y1, y2) for T
∗
p

is denoted (dx, dy). Thus we have
〈
∂

∂x
, dx

〉
= dx

(
∂

∂x

)
= 1

and 〈
∂

∂y
, dy

〉
= dy

(
∂

∂y

)
= 1,

while 〈
∂

∂x
, dy

〉
= dy

(
∂

∂x

)
= 0,

etcetera.

Similarly, in polar coordinates at a point p 6= 0 we have a basis(
∂
∂r
, ∂
∂θ

)
for Tp, and a dual basis (dr, dθ) for T ∗

p . Thus we have
〈
∂

∂r
, dr

〉
= dr

(
∂

∂r

)
= 1

and 〈
∂

∂θ
, dθ

〉
= dθ

(
∂

∂θ

)
= 1,

while 〈
∂

∂r
, dθ

〉
= dθ

(
∂

∂r

)
= 0,

etcetera.
Now in polar coordinates we have a natural area element r dr dθ.

Area of a region D is calculated by Fubini’s theorem as
∫∫

D

r dr dθ =

∫ (∫
rdr

)
dθ.

Thus we have a natural basis (y1, y2) = (rdr, dθ) in T ∗
p when p 6= 0,

i.e., y1 = rdr while y2 = dθ. Its dual basis (x1, x2) in Tp can be easily
identified. It is

(x1, x2) =

(
1

r

∂

∂r
,
∂

∂θ

)
.

Indeed, we have

〈x1, y1〉 =
〈
1

r

∂

∂r
, rdr

〉
= rdr

(
1

r

∂

∂r

)
= r

1

r
dr

(
∂

∂r

)
= 1,

etcetera.



CHAPTER 14

Lattices and tori

14.1. Circle via the exponential map

We will discuss lattices in Euclidean space Rb in Section 14.2. Here
we give an intuitive introduction in the simplest case b = 1. Every
lattice (discrete1 subgroup; see definition below in Section 14.2) in R =
R1 is of the form

Lα = αZ = {nα : n ∈ Z} ⊆ R,

for some real α > 0. It is spanned by the vector αe1 (or −αe1).
The lattice Lα ⊆ R is in fact an additive subgroup. Therefore

we can form the quotient group R/Lα. This quotient is a circle (see
Theorem 14.1.1). The 1-volume, i.e. the length, of the quotient circle
is precisely α. We will give a description in terms of the complex
function ez.

Theorem 14.1.1. The quotient group R/Lα is isomorphic to the
circle S1 ⊆ C.

Proof. Consider the map φ̂ : R→ C defined by

φ̂(x) = e
i2πx
α .

By the usual addition rule for the exponential function, this map is a
homomorphism from the additive structure on R to the multiplicative
structure in the group C \ {0}. Namely, we have

(∀x ∈ R)(∀y ∈ R) φ̂(x+ y) = φ̂(x)φ̂(y).

Furthermore, we have φ̂(x + αm) = φ̂(x) for all m ∈ Z and there-

fore ker φ̂ = Lα. By the group-theoretic isomorphism theorem, the
map φ̂ descends to a map

φ : R/Lα → C,

which is injective. Its image is the unit circle S1 ⊆ C, which is a group
under multiplication. �

1b’didah
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14.2. Lattice, fundamental domain

Let b > 0 be an integer.

Definition 14.2.1. A lattice L ⊆ Rb is the integer span of a linearly
independent set of b vectors.

Thus, if vectors v1, . . . , vb are linearly independent, then they span
a lattice

L = {n1v1 + . . .+ nbvb : ni ∈ Z} = Zv1 + Zv2 · · ·+ Zvb

Note that the subgroup is isomorphic to Zb.

Definition 14.2.2. An orbit of a point x0 ∈ Rb under the action
of a lattice L is the subset of Rb given by the collection of elements

{x0 + g : g ∈ L} .
These can also be viewed as the cosets of the lattice in Rb.

Definition 14.2.3. The quotient

Rb/L

is called a b-torus.

At this point tori are understood at the group-theoretic level as in
the case of the circle R/L.

14.3. Fundamental domain

Definition 14.3.1. A fundamental domain for the torus Rb/L is a
closed set F ⊆ Rb satisfying the following three conditions:

• every orbit meets F in at least one point;
• every orbit meets the interior Int(F ) of F in at most one point;
• the boundary ∂F is of zero b-dimensional volume (and can be
thought of as a union of (b− 1)-dimensional hyperplanes).

In the literature, one often replaces “n-dimensional volume” by n-
dimensional “Lebesgue measure”.

Example 14.3.2. The interval [0, α] is a fundamental domain for
the circle R/Lα.

Example 14.3.3. The parallelepiped spanned by a collection of
basis vectors for L ⊆ Rb is a fundamental domain fot L.

More concretely, consider the following example.
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Example 14.3.4. The vectors e1 and e2 in R2 span the unit square
which is a fundamental domain for the lattice Z2 ⊆ R2 = C of Gaussian
integers.

Example 14.3.5. Consider the vectors v = (1, 0) and w = (1
2
,
√
3
2
)

in R2 = C. Their span is a parallelogram giving a fundamental domain
for the lattice of Eisenstein integers (see Example 14.4.2).

Definition 14.3.6. The total volume of the b-torus Rb/L is by
definition the b-volume of a fundamental domain.

It is shown in advanced calculus that the total volume thus defined
is independent of the choice of a fundamental domain.

14.4. Lattices in the plane

Let b = 2. Every lattice L ⊆ R2 is of the form

L = SpanZ(v, w) ⊆ R2,

where {v, w} is a linearly independent set. For example, let α and β
be nonzero reals. Set

Lα,β = SpanZ(αe1, βe2) ⊆ R2.

This lattice admits an orthogonal basis, namely {αe1, βe2}.

Example 14.4.1 (Gaussian integers). For the standard lattice Zb ⊆
Rb, the torus Tb = Rb/Zb satisfies vol(Tb) = 1 as it has the unit cube
as a fundamental domain.

In dimension 2, the resulting lattice in C = R2 is called theGaussian
integers LG. It contains 4 elements of least length. These are the fourth
roots of unity. We have

LG = SpanZ(1, i) ⊆ C.

Example 14.4.2 (Eisenstein integers). Consider the lattice LE ⊆
R2 = C spanned by 1 ∈ C and the sixth root of unity e

2πi
6 ∈ C:

LE = SpanZ(e
iπ/3, 1) = Z eiπ/3 + Z 1 ⊆ C. (14.4.1)

The resulting lattice is called the Eisenstein integers. The torus T2 =

R2/LE satisfies area(T2) =
√
3
2
. The Eisenstein lattice contains 6 ele-

ments of least length, namely all the sixth roots of unity.
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14.5. Successive minima of a lattice

Let B be Euclidean space, and let ‖ ‖ be the Euclidean norm.
Let L ⊆ (B, ‖ ‖) be a lattice, i.e., span of a collection of b linearly
independent vectors where b = dim(B).

Definition 14.5.1. The first successive minimum, λ1(L, ‖ ‖) is the
least length of a nonzero vector in L.

We can express the definition symbolically by means of the formula

λ1(L, ‖ ‖) = min
{
‖v1‖

∣∣ v1 ∈ L \ {0}
}
.

We illustrate the geometric meaning of λ1 in terms of the circle of
Theorem 14.1.1.

Theorem 14.5.2. Consider a lattice L ⊆ R. Then the circle R/L
satisfies

length(R/L) = λ1(L).

Proof. This follows by choosing the fundamental domain F =
[0, α] where α = λ1(L), so that L = αZ, cf. Example 14.2 above. �

Remark 14.5.3. When α = 1, we can choose a representative from
the orbit of x to be the fractional part {x} of x.

Definition 14.5.4. For k = 2, define the second successive min-
imum of the lattice L with rank(L) ≥ 2 as follows. Given a pair of
vectors S = {v, w} in L, define the size2 |S| of S by setting

|S| = max(‖v‖, ‖w‖).
Then the second successive minimum, λ2(L, ‖ ‖) is the least size of a
pair of non-proportional vectors in L:

λ2(L) = inf
S
|S|,

where S runs over all linearly independent (i.e. non-proportional) pairs
of vectors {v, w} ⊆ L.

Example 14.5.5. For both the Gaussian and the Eisenstein integers
we have λ1 = λ2 = 1.

Example 14.5.6. For the lattice Lα,β we have λ1(Lα,β) = min(|α|, |β|)
and λ2(Lα,β) = max(|α|, |β|).

2Quotation marks: merka’ot.
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14.6. Gram matrix

The volume of the torus Rb/L (see Definition 14.2.3) is also called
the covolume of the lattice L. It is by definition the volume of a funda-
mental domain for L, e.g. a parallelepiped spanned by a Z-basis for L.

The Gram matrix was defined in Definition 5.5.3.

Theorem 14.6.1. Let L ⊂ Rb be a lattice spanned by linearly inde-
pendent vectors (v1, . . . , vb). Then the volume of the torus Rb/L is the
square root of the determinant of the Gram matrix Gram(v1, . . . , vb).

In geometric terms, the parallelepiped P spanned by the vectors {vi}
satisfies

vol(P ) =
√

det(Gram(S)). (14.6.1)

Proof. Let A be the square matrix whose columns are the column
vectors v1, v2 . . . , vn in Rn. It is shown in linear algebra that

vol(P ) = |det(A)|.
Let B = AtA, and let B = (bij). Then

bij = vti vj = 〈vi, vj〉
Hence B = Gram(S). Thus

det(Gram(S)) = det(At A) = det(A)2 = vol(P )2

proving the theorem. �

14.7. Sphere and torus as topological surfaces

The topology of surfaces will be discussed in more detail in Chap-
ter 17. For now, we will recall that a compact surface can be either
orientable or non-orientable. An orientable surface is characterized
topologically by its genus, i.e. number of “handles”.

Recall that the unit sphere in R3 can be represented implicitly by
the equation

x2 + y2 + z2 = 1.

Parametric representations of surfaces are discussed in Section 5.2.

Example 14.7.1. The sphere has genus 0 (no handles).

Theorem 14.7.2. The 2-torus is characterized topologically in one
of the following four equivalent ways:

(1) the Cartesian product of a pair of circles: S1 × S1;
(2) the surface of revolution in R3 obtained by starting with the

following circle in the (x, z)-plane: (x − 10)2 + z2 = 1 (for
example), and rotating it around the z-axis;
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(3) a quotient R2/L of the plane by a lattice L;
(4) a compact 2-dimensional manifold of genus 1.

The equivalence between items (2) and (3) can be seen by marking
a pair of generators of L by different color, and using the same colors to
indicate the corresponding circles on the embedded torus of revolution,
as follows:

Figure 14.7.1. Torus viewed by means of its lattice
(left) and by means of a Euclidean embedding (right)

Note by comparison that a circle can be represented either by its
fundamental domain which is [0, 2π] (with endpoints identified), or as
the unit circle embedded in the plane.3

14.8. Standard fundamental domain

We will discuss the case b = 2 in detail. An important role is played
in this dimension by the standard fundamental domain.

3The Hermite constant γb is defined in one of the following two equivalent ways:

(1) γb is the square of the maximal first successive minimum λ1, among all
lattices of unit covolume;

(2) γb is defined by the formula

√
γb = sup

{
λ1(L)

vol(Rb/L)
1

b

∣∣∣∣L ⊆ (Rb, ‖ ‖)
}
, (14.7.1)

where the supremum is extended over all lattices L in Rb with a Euclidean
norm ‖ ‖.

A lattice realizing the supremum may be thought of as the one realizing the densest
packing in Rb when we place the balls of radius 1

2λ1(L) at the points of L. In
dimensions b ≥ 3, the Hermite constants are harder to compute, but explicit values
(as well as the associated critical lattices) are known for small dimensions, e.g. γ3 =

2
1

3 = 1.2599..., while γ4 =
√
2 = 1.4142....



14.9. CONFORMAL PARAMETER τ OF A LATTICE 183

Definition 14.8.1. The standard fundamental domain, denotedD,
is the set

D =

{
z ∈ C

∣∣∣∣ |z| ≥ 1, |Re(z)| ≤ 1

2
, Im(z) > 0

}
(14.8.1)

cf. [Ser73, p. 78].

The domain D a fundamental domain for the action of PSL(2,Z)
in the upper half-plane of C.

Lemma 14.8.2. Multiplying a lattice L ⊆ C by nonzero complex
numbers does not change the value of the quotient

λ1(L)
2

area(C/L)
.

Proof. We write such a complex number as reiθ. Note that multi-
plication by reiθ can be thought of as a composition of a scaling by the
real factor r, and rotation by angle θ. The rotation is an isometry (con-
gruence) that preserves all lengths, and in particular the length λ1(L)
and the area of the quotient torus.

Meanwhile, multiplication by r results in a cancellation

λ1(rL)
2

area(C/rL)
=

(rλ1(L))
2

r2 area(C/L)
=

r2λ1(L)
2

r2 area(C/L)
=

λ1(L)
2

area(C/L)
,

proving the lemma. �

14.9. Conformal parameter τ of a lattice

Two lattices in C are said to be similar if one is obtained from the
other by multiplication by a nonzero complex number.

Theorem 14.9.1. Every lattice in C is similar to a lattice spanned
by {τ, 1} where τ is in the standard fundamental domain D of (14.8.1).
The value τ = eiπ/3 corresponds to the Eisenstein integers (14.4.1).

Proof. Let L ⊆ C be a lattice. Choose a “shortest” vector z ∈
L, i.e. we have |z| = λ1(L). By Lemma 14.8.2, we may replace the
lattice L by the lattice z−1L.

Thus, we may assume without loss of generality that the com-
plex number +1 ∈ C is a shortest element in the lattice L. Thus
we have λ1(L) = 1. Now complete the element +1 to a Z-basis

{τ̄ ,+1}
for L. Here we may assume, by replacing τ̄ by−τ̄ if necessary, that Im(τ̄) >
0.



184 14. LATTICES AND TORI

Now consider the real part Re(τ̄). We adjust the basis by adding a
suitable integer k to τ̄ :

τ = τ̄ − k where k =
[
Re(τ̄) + 1

2

]
(14.9.1)

(the brackets denote the integer part), so it satisfies the condition

−1

2
≤ Re(τ) ≤ 1

2
.

Since τ ∈ L, we have |τ | ≥ λ1(L) = 1. Therefore the element τ lies in
the standard fundamental domain (14.8.1). �

Example 14.9.2. For the “rectangular” lattice Lα,β = SpanZ(α, βi),
we obtain

τ(Lα,β) =

{ |β|
|α| i if |β| > |α|
|α|
|β| i if |α| > |β|.

Corollary 14.9.3. Let b = 2. Then we have the following value
for the Hermite constant: γ2 = 2√

3
= 1.1547.... The corresponding

optimal lattice is homothetic to the Z-span of cube roots of unity in C
(i.e. the Eisenstein integers).

Proof. Choose τ as in (14.9.1) above. The pair

{τ,+1}

is a basis for the lattice. The imaginary part satisfies Im(τ) ≥
√
3
2
, with

equality possible precisely for

τ = ei
π
3 or τ = ei

2π
3 .

Moreover, if τ = r exp(iθ), then

|τ | sin θ = Im(τ) ≥
√
3

2
.

The proof is concluded by calculating the area of the parallelogram
in C spanned by τ and +1;

λ1(L)
2

area(C/L)
=

1

|τ | sin θ ≤
2√
3
,

proving the theorem. �

Definition 14.9.4. A τ ∈ D is said to be the conformal parameter
of a flat torus T 2 if T 2 is similar to a torus C/L where L = Zτ + Z1.
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14.10. Conformal parameter τ of tori of revolution

The results of Section 13.2 have the following immediate conse-
quence.

Corollary 14.10.1. Consider a torus of revolution in R3 formed
by rotating a Jordan curve of length L > 0, with unit speed param-
etisation (f(φ), g(φ)) where φ ∈ [0, L]. Then the torus is conformally
equivalent to a flat torus

R2/Lc,d.

Here R2 is the (θ, ψ)-plane, where ψ is the antiderivative of 1
f(φ)

as in

Section 13.2; while the rectangular lattice Lc,d ⊂ R2 is spanned by the
orthogonal vectors c ∂

∂θ
and d ∂

∂ψ
, so that

Lc,d = Span

(
c
∂

∂θ
, d

∂

∂ψ

)
= cZ⊕ dZ,

where c = 2π and d =
∫ L
0

dφ
f(φ)

.

Figure 14.10.1. Torus: lattice (left) and embedding (right)

In Section 14.8 we showed that every flat torus C/L is similar to
the torus spanned by τ ∈ C and 1 ∈ C, where τ is in the standard
fundamental domain

D = {z = x+ iy ∈ C : |x| ≤ 1
2
, y > 0, |z| ≥ 1}.

Definition 14.10.2. The parameter τ is called the conformal pa-
rameter of the torus.

Corollary 14.10.3. The conformal parameter τ of a torus of rev-
olution is pure imaginary:

τ = iσ2
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of absolute value

σ2 = max

{
c

d
,
d

c

}
≥ 1.

Proof. The proof is immediate from the fact that the lattice is
rectangular. �

14.11. θ-loops and φ-loops on tori of revolution

Consider a torus of revolution (T 2, g) generated by a Jordan curve C
in the (x, z)-plane, i.e., by a simple loop C, parametrized by a pair of
functions f(φ), g(φ), so that x = f(φ) and z = g(φ).

Definition 14.11.1. A φ-loop on the torus is a simple loop ob-
tained by fixing the coordinate θ (i.e., the variable φ is changing). A θ-
loop on the torus is a simple loop obtained by fixing the coordinate φ
(i.e., the variable θ is changing).

Proposition 14.11.2. All φ-loops on the torus of revolution have
the same length equal to the length L of the generating curve C (see
Corollary 14.10.1).

Proof. The surface is rotationally invariant. In other words, all
rotations around the z-axis are isometries. Therefore all φ-loops have
the same length. �

Proposition 14.11.3. The θ-loops on the torus of revolution have
variable length, depending on the φ-coordinate of the loop. Namely, the
length is 2πx = 2πf(φ).

Proof. The proof is immediate from the fact that the function f(φ)
gives the distance r to the z-axis. �

Definition 14.11.4. We denote by λφ the (common) length of all
φ-loops on a torus of revolution.

Definition 14.11.5. We denote by λθmin
the least length of a θ-

loop on a torus of revolution, and by λθmax the maximal length of such
a θ-loop.

14.12. Tori generated by round circles

Let a, b > 0. We assume a > b so as to obtain tori that are em-
bedded in 3-space. We consider the 2-parameter family ga,b of tori
of revolution in 3-space with circular generating loop. The torus of
revolution ga,b generated by a round circle is the locus of the equation

(r − a)2 + z2 = b2, (14.12.1)
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where r =
√
x2 + y2. Note that the angle θ of the cylindrical coordi-

nates (r, θ, z) does not appear in the equation (14.12.1). The torus is
obtained by rotating the circle

(x− a)2 + z2 = b2 (14.12.2)

around the z-axis in R3. The torus admits a parametrisation in terms
of the functions4 f(φ) = a + b cosφ and g(φ) = b sinφ. Namely, we
have

x(θ, φ) = ((a+ b cosφ) cos θ, (a+ b cosφ) sin θ, b sinφ). (14.12.3)

Here the θ-loop (see Section 14.11) has length 2π(a+ b cosφ). The
shortest θ-loop is therefore of length

λθmin
= 2π(a− b),

and the longest one is

λθmax = 2π(a+ b).

Meanwhile, the φ-loop has length

λφ = 2πb.

14.13. Conformal parameter of tori of revolution, residues

This section is optional.
We would like to compute the conformal parameter τ of the stan-

dard tori as in (14.12.3). We first modify the parametrisation so as to
obtain a generating curve parametrized by arclength:

f(ϕ) = a+ b cos
ϕ

b
, g(ϕ) = b sin

ϕ

b
, (14.13.1)

where ϕ ∈ [0, L] with L = 2πb.

Theorem 14.13.1. The corresponding flat torus is given by the

lattice L in the (θ, ψ) plane of the form L = SpanZ

(
c ∂
∂θ
, d ∂

∂φ

)

where c = 2π and d = 2π√
(a/b)2−1

. Thus the conformal parameter τ

of the flat torus satisfies τ = imax
(
((a/b)2 − 1)−1/2, ((a/b)2 − 1)1/2

)
.

Proof. By Corollary 14.10.3, replacing ϕ by ϕ(ψ) produces isother-
mal coordinates (θ, ψ) for the torus generated by (14.13.1), where ψ =∫

dϕ
f(ϕ)

=
∫

dϕ
a+b cos ϕ

b
, and therefore the flat metric is defined by a lattice

in the (θ, ψ) plane with c = 2π and d =
∫ L=2πb

0
dϕ

a+b cos ϕ
b
. Changing

the variable to to φ = ϕ
b
we obtain d =

∫ 2π

0
dφ

(a/b)+cosφ
, where a/b > 1.

4We use φ here and ϕ for the modified arclength parameter in the next section
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Let α = a/b. Now the integral is the real part Re of the complex

integral d =
∫ 2π

0
dφ

α+cosφ
=
∫

dφ
α+Re(eiφ)

. Thus

d =

∫
2dφ

2α + eiφ + e−iφ
. (14.13.2)

The change of variables z = eiφ yields dφ = −idz
z

and along the circle

we have d =
∮ −2idz

z(2α+z+z−1)
=
∮ −2idz

z2+2αz+1
=
∮ −2idz

(z−λ1)(z−λ2) , where λ1 =

−α+
√
α2 − 1 and λ2 = −α−

√
α2 − 1. The root λ2 is outside the unit

circle. Hence we need the residue at λ1 to apply the residue theorem.
The residue at λ1 equals Resλ1 = −2i

λ1−λ2 = −2i
2
√
α2−1

= −i√
α2−1

. The inte-

gral is determined by the residue theorem in terms of the residue at the
pole z = λ1. Therefore the lattice parameter d from Corollary 14.10.3
can be computed from (14.13.2) as d =

(
2πiResλ1

)
= 2π√

(α)2−1
. proving

the theorem. �



CHAPTER 15

A hyperreal view

15.1. Successive extensions N, Z, Q, R, ∗R

Our reference for true infinitesimal calculus is Keisler’s textbook
[Ke74], downloadable at
http://www.math.wisc.edu/~keisler/calc.html

We start by motivating the familiar sequence of extensions of num-
ber systems

N →֒ Z →֒ Q →֒ R
in terms of their applications in arithmetic, algebra, and geometry.
Each successive extension is introduced for the purpose of solving prob-
lems, rather than enlarging the number system for its own sake. Thus,
the extension Q ⊆ R enables one to express the length of the diagonal
of the unit square and the area of the unit disc in our number system.

The familiar continuum R is an Archimedean continuum, in the
sense that it satisfies the following Archimedean property.

Definition 15.1.1. An ordered field extending N is said to satisfy
the Archimedean property if

(∀ǫ > 0)(∃n ∈ N) [nǫ > 1] .

We will provisionally denote the real continuum A where “A” stands
for Archimedean. Thus we obtain a chain of extensions

N →֒ Z →֒ Q →֒ A,

as above. In each case one needs an enhanced ordered1 number system
to solve an ever broader range of problems from algebra or geometry.

The next stage is the extension

N →֒ Z →֒ Q →֒ A →֒ B,

where B is a Bernoullian continuum containing infinitesimals, defined
as follows.

Definition 15.1.2. A Bernoullian extension of R is any proper
extension which is an ordered field.

1sadur
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Any Bernoullian extension allows us to define infinitesimals and do
interesting things with those. But things become really interesting if
we assume the Transfer Principle (Section 15.4), and work in a true
hyperreal field, defined as in Definition 15.3.4 below. We will provide
some motivating comments for the transfer principle in Section 15.3.

15.2. Motivating discussion for infinitesimals

Infinitesimals can be motivated from three different angles: geo-
metric, algebraic, and arithmetic/analytic.

θ

Figure 15.2.1. Horn angle θ is smaller than every rec-
tilinear angle

(1) Geometric (horn angles): Some students have expressed
the sentiment that they did not understand infinitesimals until
they heard a geometric explanation of them in terms of what
was classically known as horn angles. A horn angle is the
crivice between a circle and its tangent line at the point of
tangency. If one thinks of this crevice as a quantity, it is easy to
convince oneself that it should be smaller than every rectilinear
angle (see Figure 15.2.1). This is because a sufficiently small
arc of the circle will be contained in the convex region cut
out by the rectilinear angle no matter how small. When one
renders this in terms of analysis and arithmetic, one gets a
positive quantity smaller than every positive real number. We
cite this example merely as intuitive motivation (our actual
construction is different).
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(2) Algebraic (passage from ring to field): The idea is to
represent an infinitesimal by a sequence tending to zero. One
can get something in this direction without reliance on any
form of the axiom of choice. Namely, take the ring S of all
sequences of real numbers, with arithmetic operations defined
term-by-term. Now quotient the ring S by the equivalence
relation that declares two sequences to be equivalent if they
differ only on a finite set of indices. The resulting object S/K
is a proper ring extension of R, where R is embedded by means
of the constant sequences. However, this object is not a field.
For example, it has zero divisors. But quotienting it further
in such a way as to get a field, by extending the kernel K to a
maximal ideal K ′, produces a field S/K ′, namely a hyperreal
field.

(3) Analytic/arithmetic: One can mimick the construction of
the reals out of the rationals as the set of equivalence classes
of Cauchy sequences, and construct the hyperreals as equiva-
lence classes of sequences of real numbers under an appropriate
equivalence relation.

15.3. Introduction to the transfer principle

The transfer principle is a type of theorem that, depending on the
context, asserts that rules, laws or procedures valid for a certain num-
ber system, still apply (i.e., are “transfered”) to an extended number
system.

Example 15.3.1. The familiar extensionQ ⊆ R preserves the prop-
erty of being an ordered field.

Example 15.3.2. To give a negative example, the extension R ⊆
R∪{±∞} of the real numbers to the so-called extended reals does not
preserve the property of being an ordered field.

The hyperreal extension R ⊆ ∗R (defined below) preserves all first-
order properties (i.e., properties involving quantification over elements
but not over sets.

Example 15.3.3. The formula sin2 x+cos2 x = 1, true over R for all
real x, remains valid over ∗R for all hyperreal x, including infinitesimal
and infinite values of x ∈ ∗R.

Thus the transfer principle for the extension R ⊆ ∗R is a theo-
rem asserting that any statement true over R is similarly true over ∗R,
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and vice versa. Historically, the transfer principle has its roots in the
procedures involving Leibniz’s Law of continuity.2

We will explain the transfer principle in several stages of increasing
degree of abstraction. More details can be found in Section 15.4.

Definition 15.3.4. An ordered field B, properly including the field
A = R of real numbers (so that A $ B) and satisfying the Transfer
Principle, is called a hyperreal field. If such an extended field B is fixed
then elements of B are called hyperreal numbers,3 while the extended
field itself is usually denoted ∗R.

Theorem 15.3.5. Hyperreal fields exist.

For example, a hyperreal field can be constructed as the quotient of
the ring RN of sequences of real numbers, by an appropriate maximal
ideal.

Definition 15.3.6. A positive infinitesimal is a positive hyperreal
number ǫ such that

(∀n ∈ N) [nǫ < 1]

More generally, we have the following.

Definition 15.3.7. A hyperreal number ε is said to be infinitely
small or infinitesimal if

−a < ε < a

for every positive real number a.

In particular, one has ε < 1
2
, ε < 1

3
, ε < 1

4
, ε < 1

5
, etc. If ε > 0

is infinitesimal then N = 1
ε
is positive infinite, i.e., greater than every

real number.
A hyperreal number that is not an infinite number are called finite.

Sometimes the term limited is used in place of finite.
Keisler’s textbook exploits the technique of representing the hyper-

real line graphically by means of dots indicating the separation between
the finite realm and the infinite realm. One can view infinitesimals with
microscopes as in Figure 15.6.1. One can also view infinite numbers
with telescopes as in Figure 15.3.1. We have an important subset

{finite hyperreals} ⊆ ∗R

2Leibniz’s theoretical strategy in dealing with infinitesimals was analyzed in
a number of detailed studies recently, which found Leibniz’ strategy to be more
robust than George Berkeley’s flawed critique thereof.

3Similar terminology is used with regard to integers and hyperintegers.
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Finite

−2 −1 0 1 2

Positive

infinite

Infinite

telescope
1
ǫ
− 1

1/ǫ

1
ǫ
+ 1

Figure 15.3.1. Keisler’s telescope

which is the domain of the function called the standard part function
(also known as the shadow) which rounds off each finite hyperreal to
the nearest real number (for details see Section 15.6).

Example 15.3.8. Slope calculation of y = x2 at x0. Here we use
standard part function (also called the shadow)

st : {finite hyperreals} → R

(for details concerning the shadow see Section 15.6). If a curve is de-
fined by y = x2 we wish to find the slope at the point x0. To this end
we use an infinitesimal x-increment ∆x and compute the correspond-
ing y-increment

∆y = (x0+∆x)2−x20 = (x0+∆x+x0)(x+∆x−x0) = (2x0+∆x)∆x.

The corresponding “average” slope is therefore

∆y

∆x
= 2x0 +∆x

which is infinitely close to 2x, and we are naturally led to the definition
of the slope at x0 as the shadow of ∆y

∆x
, namely st

(
∆y
∆x

)
= 2x0.
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The extension principle expresses the idea that all real objects have
natural hyperreal counterparts. We will be mainly interested in sets,
functions and relations. We then have the following extension principle.

Extension principle. The order relation on the hyperreals con-
tains the order relation on the reals. There exists a hyperreal number
greater than zero but smaller than every positive real. Every set D ⊆ R
has a natural extension ∗D ⊆ ∗R. Every real function f with domain D
has a natural hyperreal extension ∗f with domain ∗D.4

Here the naturality of the extension alludes to the fact that such
an extension is unique, and the coherence refers to the fact that the
domain of the natural extension of a function is the natural extension
of its domain.

A positive infinitesimal is a positive hyperreal smaller than every
positive real. A negative infinitesimal is a negative hyperreal greater
than every negative real. An arbitrary infinitesimal is either a positive
infinitesimal, a negative infinitesimal, or zero.

Ultimately it turns out counterproductive to employ asterisks for
hyperreal functions (in fact we already dropped it in equation (15.4.1)).

15.4. Transfer principle

Definition 15.4.1. The Transfer Principle asserts that every first-
order statement true over R is similarly true over ∗R, and vice versa.

Here the adjective first-order alludes to the limitation on quantifi-
cation to elements as opposed to sets.

Listed below are a few examples of first-order statements.

Example 15.4.2. The commutativity rule for addition x+y = y+x
is valid for all hyperreal x, y by the transfer principle.

Example 15.4.3. The formula

sin2 x+ cos2 x = 1 (15.4.1)

is valid for all hyperreal x by the transfer principle.

Example 15.4.4. The statement

0 < x < y =⇒ 0 <
1

y
<

1

x
(15.4.2)

holds for all hyperreal x, y.

4Here the noun principle (in extension principle) means that we are going to
assume that there is a function ∗f : B → B which satisfies certain properties.
It is a separate problem to define B which admits a coherent definition of ∗f for
all f : A→ A, to be solved below.
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Example 15.4.5. The characteristic function χQ of the rational
numbers equals 1 on rational inputs and 0 on irrational inputs. By
the transfer principle, its natural extension ∗χQ = χ∗Q will be 1 on
hyperrational numbers ∗Q and 0 on hyperirrational numbers (namely,
numbers in the complement ∗R \ ∗Q).

To give additional examples of real statements to which transfer
applies, note that all ordered field -statements are subject to Trans-
fer. As we will see below, it is possible to extend Transfer to a much
broader category of statements, such as those containing the function
symbols exp or sin or those that involve infinite sequences of reals.

A hyperreal number x is finite if there exists a real number r such
that |x| < r. A hyperreal number is called positive infinite if it is
greater than every real number, and negative infinite if it is smaller
than every real number.

15.5. Orders of magnitude

Hyperreal numbers come in three orders of magnitude: infinitesi-
mal, appreciable, and infinite. A number is appreciable if it is finite
but not infinitesimal. In this section we will outline the rules for ma-
nipulating hyperreal numbers.

To give a typical proof, consider the rule that if ǫ is positive in-
finitesimal then 1

ǫ
is positive infinite. Indeed, for every positive real r

we have 0 < ǫ < r. It follows from (15.4.2) by transfer that that 1
ǫ
is

greater than every positive real, i.e., that 1
ǫ
is infinite.

Let ǫ, δ denote arbitrary infinitesimals. Let b, c denote arbitrary
appreciable numbers. Let H,K denote arbitrary infinite numbers. We
have the following theorem.

Theorem 15.5.1. We have the following rules for addition:

• ǫ+ δ is infinitesimal;
• b+ ǫ is appreciable;
• b+ c is finite (possibly infinitesimal);
• H + ǫ and H + b are infinite.

We have the following rules for products.

• ǫδ and bǫ are infinitesimal;
• bc is appreciable;
• Hb and HK are infinite.

We have the following rules for quotients.

• ǫ
b
, ǫ
H
, b
H

are infinitesimal;

• b
c
is appreciable;
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• b
ǫ
, H
ǫ
, H
b
are infinite provided ǫ 6= 0.

We have the following rules for roots, where n is a standard natural
number.

• if ǫ > 0 then n
√
ǫ is infinitesimal;

• if b > 0 then n
√
b is appreciable;

• if H > 0 then n
√
H is infinite.

Note that the traditional topic of the so-called “indeterminate forms”
can be treated without introducing any ad-hoc terminology by means
of the following remark.

Remark 15.5.2. We have no rules in certain cases, such as ǫ
δ
, H
K
,Hǫ,

and H +K.

These cases correspond to what are known since Moigno5 as inde-
terminate forms.

Theorem 15.5.3. Arithmetic operations on the hyperreal numbers
are governed by the following rules.

(1) every hyperreal number between two infinitesimals is infinites-
imal.

(2) Every hyperreal number which is between two finite hyperreal
numbers, is finite.

(3) Every hyperreal number which is greater than some positive
infinite number, is positive infinite.

(4) Every hyperreal number which is less than some negative infi-
nite number, is negative infinite.

Example 15.5.4. The difference
√
H + 1 −

√
H − 1 (where H is

infinite) is infinitesimal. Namely,

√
H + 1−

√
H − 1 =

(√
H + 1−

√
H − 1

) (√
H + 1 +

√
H − 1

)
(√

H + 1 +
√
H − 1

)

=
H + 1− (H − 1)(√
H + 1 +

√
H − 1

)

=
2√

H + 1 +
√
H − 1

is infinitesimal. Once we introduce limits, this example can be refor-
mulated as follows: limn→∞

(√
n+ 1−

√
n− 1

)
= 0.

5Elaborate on this historical note.
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Definition 15.5.5. Two hyperreal numbers a, b are said to be in-
finitely close, written

a ≈ b,

if their difference a− b is infinitesimal.

It is convenient also to introduce the following terminology and
notation.

Definition 15.5.6. Two nonzero hyperreal numbers a, b are said
to be adequal, written

a pq b,

if either a
b
≈ 1 or a = b = 0.

Note that the relation sin x ≈ x for infinitesimal x is immediate
from the continuity of sine at the origin (in fact both sides are infin-
itely close to 0), whereas the relation sin x pq x is a subtler relation
equivalent to the computation of the first order Taylor approximation
of sine.

15.6. Standard part principle

Theorem 15.6.1 (Standard Part Principle). Every finite hyperreal
number x is infinitely close to an appropriate real number.

Proof. The result is generally true for an arbitrary proper ordered
field extension E of R. Indeed, if x ∈ E is finite, then x induces a
Dedekind cut on the subfield Q ⊆ R ⊆ E via the total order of E. The
real number corresponding to the Dedekind cut is then infinitely close
to x. �

The real number infinitely close to x is called the standard part, or
shadow, denoted st(x), of x.

We will use the notation ∆x, ∆y for infinitesimals.

Remark 15.6.2. There are three consecutive stages in a typical
calculation: (1) calculations with hyperreal numbers, (2) calculation
with standard part, (3) calculation with real numbers.

15.7. Differentiation

An infinitesimal increment ∆x can be visualized graphically by
means of a microscope as in the Figure 15.7.1.

The slope s of a function f at a real point a is defined by setting

s = st

(
f(a+∆x)− f(a)

∆x

)
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r r + β r + γr + α

st

−1

−1

0

0

1

1

2

2

3

3

4

4r

Figure 15.6.1. The standard part function, st, “rounds
off” a finite hyperreal to the nearest real number. The func-
tion st is here represented by a vertical projection. Keisler’s
“infinitesimal microscope” is used to view an infinitesimal
neighborhood of a standard real number r, where α, β,
and γ represent typical infinitesimals. Courtesy of
Wikipedia.

whenever the shadow exists (i.e., the ratio is finite) and is the same
for each nonzero infinitesimal ∆x. The construction is illustrated in
Figure 15.7.2.

Definition 15.7.1. Let f be a real function of one real variable.
The derivative of f is the new function f ′ whose value at a real x is
the slope of f at x. In symbols,

f ′(x) = st

(
f(x+∆x)− f(x)

∆x

)

whenever the slope exists.

Equivalently, we can write f ′(x) ≈ f(x+∆x)−f(x)
∆x

. When y = f(x)
we define a new dependent variable ∆y by settting

∆y = f(x+∆x)− f(x)

called the y-increment, so we can write the derivative as st
(
∆y
∆x

)
.
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a

a a+∆x

Figure 15.7.1. Infinitesimal increment ∆x under the microscope

Example 15.7.2. If f(x) = x2 we obtain the derivative of y = f(x)
by the following direct calculation:

f ′(x) ≈ ∆y

∆x

=
(x+∆x)2 − x2

∆x

=
(x+∆x− x)(x+∆x+ x)

∆x

=
∆x(2x+∆x)

∆x
= 2x+∆x

≈ 2x.
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a

|f(a+∆x)− f(a)|

a a+∆x

Figure 15.7.2. Defining slope of f at a

Given a function y = f(x) one defines the dependent variable ∆y =
f(x+∆x)−f(x) as above. One also defines a new dependent variable dy
by setting dy = f ′(x)∆x at a point where f is differentiable, and sets
for symmetry dx = ∆x. Note that we have

dy pq ∆y

as in Definition 15.5.6 whenever dy 6= 0. We then have Leibniz’s nota-
tion

dy

dx
for the derivative f ′(x), and rules like the chain rule acquire an appeal-
ing form.



CHAPTER 16

Global and systolic geometry

16.1. Definition of systole

The unit circle S1 ⊂ C bounds the unit disk D. A loop on a
surface M is a continuous map S1 →M .

Definition 16.1.1. A loop S1 → M is called contractible if the
map f extends from S1 to the disk D by means of a continuous map F :
D →M .

Thus the restriction of F to S1 is f .
The notions of contractible loops and simply connected spaces were

reviewed in more detail in Section 17.1.

Definition 16.1.2. A loop is called noncontractible if it is not
contractible.

Definition 16.1.3. Given a metric g onM , we will denote by sys1(g),
the infimum of lengths, referred to as the “systole” of g, of a non-
contractible loop β in a compact, non-simply-connected Riemannian
manifold (M, g):

sys1(g) = inf
β
length(β), (16.1.1)

where the infimum is over all noncontractible loops β in M . In graph
theory, a similar invariant is known as the girth [Tu47].1

It can be shown that for a compact Riemannian manifold, the in-
fimum is always attained, cf. Theorem 16.13.1. A loop realizing the
minimum is necessarily a simple closed geodesic.

In systolic questions about surfaces, integral-geometric identities
play a particularly important role. Roughly speaking, there is an inte-
gral identity relating area on the one hand, and an average of energies
of a suitable family of loops, on the other. By the Cauchy-Schwarz
inequality, there is an inequality relating energy and length squared,
hence one obtains an inequality between area and the square of the
systole.

1The notion of systole expressed by (16.1.1) is unrelated to the systolic arrays
of [Ku78].

201
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Such an approach works both for the Loewner inequality (16.2.1)
and Pu’s inequality (16.1.6) (biographical notes on C. Loewner and
P. Pu appear in respectively). One can prove an inequality for the
Möbius band this way, as well [Bl61b].

Here we prove the two classical results of systolic geometry, namely
Loewner’s torus inequality as well as Pu’s inequality for the real pro-
jective plane.

16.1.1. Three systolic invariants. The material in this subsec-
tion is optional.

LetM be a Riemannian manifold. We define the homology 1-systole

sys1(M) (16.1.2)

by minimizing vol(α) over all nonzero homology classes. Namely, sys1(M)
is the least length of a loop C representing a nontrivial homology
class [C] in H1(M ;Z).

We also define the stable homology systole

stsys1(M) = λ1 (H1(M)/T1, ‖ ‖) , (16.1.3)

namely by minimizing the stable norm ‖ ‖ of a class of infinite order
(see Definition 17.13.1 for details).

Remark 16.1.4. For the real projective plane, these two systolic in-
variants are not the same. Namely, the homology systole sys1 equals the
least length of a noncontractible loop (which is also nontrivial homolog-
ically), while the stable systole is infinite being defined by a minimum
over an empty set.

Recall the following example from the previous section:

Example 16.1.5. For an arbitrary metric on the 2-torus T2, the
1-systole and the stable 1-systole coincide by Theorem 17.5.3:

sys1(T
2) = stsys1(T

2),

for every metric on T2.

Using the notion of a noncontractible loop, we can define the ho-
motopy 1-systole

sys1(M) (16.1.4)

as the least length of a non-contractible loop in M .
In the case of the torus, the fundamental group Z2 is abelian and

torsionfree, and therefore sys1(T
2) = sys1(T

2), so that all three invari-
ants coincide in this case.
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16.1.2. Isoperimetric inequality and Pu’s inequality. The
material in this section is optional.

Pu’s inequality can be thought of as an “opposite” isoperimetric
inequality, in the following precise sense.

The classical isoperimetric inequality in the plane is a relation be-
tween two metric invariants: length L of a simple closed curve in the
plane, and area A of the region bounded by the curve. Namely, every
simple closed curve in the plane satisfies the inequality

A

π
≤
(
L

2π

)2

.

This classical isoperimetric inequality is sharp, insofar as equality is
attained only by a round circle.

In the 1950’s, Charles Loewner’s student P. M. Pu [Pu52] proved
the following theorem. Let RP2 be the real projective plane endowed
with an arbitrary metric, i.e. an embedding in some Rn. Then

(
L

π

)2

≤ A

2π
, (16.1.5)

where A is its total area and L is the length of its shortest non-
contractible loop. This isosystolic inequality, or simply systolic inequal-
ity for short, is also sharp, to the extent that equality is attained only
for a metric of constant Gaussian curvature, namely antipodal quotient
of a round sphere, cf. Section 16.14. In our systolic notation (16.1.1),
Pu’s inequality takes the following form:

sys1(g)
2 ≤ π

2
area(g), (16.1.6)

for every metric g on RP2. See Theorem 16.16.2 for a discussion of
the constant. The inequality is proved in http://u.math.biu.ac.il/

~katzmik/egreg826.pdf

Pu’s inequality can be generalized as follows. We will say that a
surface is aspherical if it is not a 2-sphere.

Theorem 16.1.6. Every aspherical surface (M, g) satisfies the op-
timal bound (16.1.6), attained precisely when, on the one hand, the
surface M is a real projective plane, and on the other, the metric g is
of constant Gaussian curvature.

The extension to aspherical surfaces follows from Gromov’s inequal-
ity (16.1.7) below (by comparing the numerical values of the two con-
stants). Namely, every aspherical compact surface (M, g) admits a
metric ball

B = Bp

(
1
2
sys1(g)

)
⊆M

http://u.math.biu.ac.il/~katzmik/egreg826.pdf
http://u.math.biu.ac.il/~katzmik/egreg826.pdf
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of radius 1
2
sys1(g) which satisfies [Gro83, Corollary 5.2.B]

sys1(g)
2 ≤ 4

3
area(B). (16.1.7)

16.1.3. Hermite and Bergé-Martinet constants. The mate-
rial in this subsection is optional.

Most of the material in this section has already appeared in earlier
chapters.

Let b ∈ N. The Hermite constant γb is defined in one of the following
two equivalent ways:

(1) γb is the square of the biggest first successive minimum, cf. Defi-
nition 16.17.1, among all lattices of unit covolume;

(2) γb is defined by the formula

√
γb = sup

{
λ1(L)

vol(Rb/L)1/b

∣∣∣∣L ⊆ (Rb, ‖ ‖)
}
, (16.1.8)

where the supremum is extended over all lattices L in Rb with
a Euclidean norm ‖ ‖.

A lattice realizing the supremum is called a critical lattice. A crit-
ical lattice may be thought of as the one realizing the densest packing
in Rb when we place balls of radius 1

2
λ1(L) at the points of L.

The existence of the Hermite constant, as well as the existence of
critical lattices, are both nontrivial results [Ca71].

Theorem 14.9.1 provides the value for γ2.

Example 16.1.7. In dimensions b ≥ 3, the Hermite constants are
harder to compute, but explicit values (as well as the associated crit-

ical lattices) are known for small dimensions (≤ 8), e.g. γ3 = 2
1
3 =

1.2599 . . ., while γ4 =
√
2 = 1.4142 . . .. Note that γn is asymptotically

linear in n, cf. (16.1.11).

A related constant γ′b is defined as follows, cf. [BeM].

Definition 16.1.8. The Bergé-Martinet constant γ′b is defined by
setting

γ′b = sup
{
λ1(L)λ1(L

∗)
∣∣L ⊆ (Rb, ‖ ‖)

}
, (16.1.9)

where the supremum is extended over all lattices L in Rb.

Here L∗ is the lattice dual to L. If L is the Z-span of vectors (xi),
then L∗ is the Z-span of a dual basis (yj) satisfying 〈xi, yj〉 = δij,
cf. relation (16.7.1).
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Thus, the constant γ′b is bounded above by the Hermite constant γb
of (16.1.8). We have γ′1 = 1, while for b ≥ 2 we have the following
inequality:

γ′b ≤ γb ≤
2

3
b for all b ≥ 2. (16.1.10)

Moreover, one has the following asymptotic estimates:

b

2πe
(1 + o(1)) ≤ γ′b ≤

b

πe
(1 + o(1)) for b→∞, (16.1.11)

cf. [LaLS90, pp. 334, 337]. Note that the lower bound of (16.1.11)
for the Hermite constant and the Bergé-Martinet constant is noncon-
structive, but see [RT90] and [ConS99].

Definition 16.1.9. A lattice L realizing the supremum in (16.1.9)
or (16.1.9) is called dual-critical.

Remark 16.1.10. The constants γ′b and the dual-critical lattices
in Rb are explicitly known for b ≤ 4, cf. [BeM, Proposition 2.13]. In
particular, we have γ′1 = 1, γ′2 =

2√
3
.

Example 16.1.11. In dimension 3, the value of the Bergé-Martinet

constant, γ′3 =
√

3
2
= 1.2247 . . ., is slightly below the Hermite con-

stant γ3 = 2
1
3 = 1.2599 . . .. It is attained by the face-centered cu-

bic lattice, which is not isodual [MilH73, p. 31], [BeM, Proposition
2.13(iii)], [CoS94].

This is the end of the three subsections containing optional material.

16.2. Loewner’s torus inequality

Historically, the first lower bound for the volume of a Riemannian
manifold in terms of a systole is due to Charles Loewner. In 1949,
Loewner proved the first systolic inequality, in a course on Riemannian
geometry at Syracuse University, cf. [Pu52]. Namely, he showed the
following result, whose proof appears in Section 19.2.

Theorem 16.2.1 (C. Loewner). Every Riemannian metric g on the
torus T2 satisfies the inequality

sys1(g)
2 ≤ γ2 area(g), (16.2.1)

where γ2 = 2√
3
is the Hermite constant (16.1.8). A metric attaining

the optimal bound (16.2.1) is necessarily flat, and is homothetic to the
quotient of C by the Eisenstein integers, i.e. lattice spanned by the cube
roots of unity, cf. Lemma 14.9.1.



206 16. GLOBAL AND SYSTOLIC GEOMETRY

The result can be reformulated in a number of ways.2 Loewner’s
torus inequality relates the total area, to the systole, i.e. least length
of a noncontractible loop on the torus (T2, g):

area(g)−
√
3
2
sys1(g)

2 ≥ 0. (16.2.2)

The boundary case of equality is attained if and only if the metric is
homothetic to the flat metric obtained as the quotient of R2 by the
lattice formed by the Eisenstein integers.

16.3. Loewner’s inequality with remainder term

See http://u.math.biu.ac.il/~katzmik/egreg826.pdf

16.4. Global geometry of surfaces

Discussion of Local versus Global: The local behavior is by def-
inition the behavior in an open neighborhood of a point. The local
behavior of a smooth curve is well understood by the implicit function
theorem. Namely, a smooth curve in the plane or in 3-space can be
thought of as the graph of a smooth function. A curve in the plane is
locally the graph of a scalar function. A curve in 3-space is locally the
graph of a vector-valued function.

Example 16.4.1. The unit circle in the plane can be defined im-
plicitly by

x2 + y2 = 1,

or parametrically by
t 7→ (cos t, sin t).

Alternatively, it can be given locally as the graph of the function

f(x) =
√
1− x2.

Note that this presentation works only for points on the upper halfcir-
cle. For points on the lower halfcircle we use the function

−
√
1− x2.

Both of these representations fail at the points (1, 0) and (−1, 0).
To overcome this difficulty, we must work with y as the independent

variable, instead of x. Thus, we can parametrize a neighborhood of
(1,0) by using the function

x = g(y) =
√
1− y2.

2Thus, in the case of the torus T2, the fundamental group is abelian. Hence
the systole can be expressed in this case as follows: sys1(T

2) = λ1
(
H1 (T

2;Z), ‖ ‖
)
,

where ‖ ‖ is the stable norm.

http://u.math.biu.ac.il/~katzmik/egreg826.pdf
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Example 16.4.2. The helix given in parametric form by

(x, y, z) = (cos t, sin t, t).

It can also be defined as the graph of the vector-valued function f(z),
with values in the (x, y)-plane, where

(x(z), y(z)) = f(z) = (cos z, sin z).

In this case the graph representation in fact works even globally.

Example 16.4.3. The unit sphere in 3-space can be represented
locally as the graph of the function of two variables

f(x, y) =
√
1− x2 − y2.

As above, concerning the local nature of the presentation necessitates
additional functions to represent neighborhoods of points not in the
open northern hemisphere (this example is discussed in more detail in
Section 16.6).

16.5. Definition of manifold

Motivated by the examples given in the previous section, we give a
general definition as follows.

A manifold is defined as a subset of Euclidean space which is lo-
cally a graph of a function, possibly vector-valued. This is the original
definition of Poincaré who invented the notion (see Arnold [1, p. 234]).

Definition 16.5.1. By a 2-dimensional closed Riemannian mani-
fold we mean a compact subset

M ⊆ Rn

such that in an open neighborhood of every point p ∈ M in Rn, the
compact subsetM can be represented as the graph of a suitable smooth
vector-valued function of two variables.

Here the function has values in (n− 2)-dimensional vectors.
The usual parametrisation of the graph can then be used to calcu-

late the coefficients gij of the first fundamental form, as, for example,
in Theorem 16.16.2 and Definition 5.9.2. The collection of all such data
is then denoted by the pair (M, g), where

g = (gij)

is referred to as the metric.
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Remark 16.5.2. Differential geometers like the (M, g) notation, be-
cause it helps separate the topology M from the geometry g. Strictly
speaking, the notation is redundant, since the object g already incorpo-
rates all the information, including the topology. However, geometers
have found it useful to use g when one wants to emphasize the geome-
try, and M when one wants to emphasize the topology.

Note that, as far as the intrinsic geometry of a Riemannian mani-
fold is concerned, the embedding in Rn referred to in Definition 16.5.1
is irrelevant to a certain extent, all the more so since certain basic
examples, such as flat tori, are difficult to imbed in a transparent way.

16.6. Sphere as a manifold

The round 2-sphere S2 ⊆ R3 defined by the equation

x2 + y2 + z2 = 1

is a closed Riemannian manifold. Indeed, consider the function f(x, y)

defined in the unit disk x2+ y2 < 1 by setting f(x, y) =
√
1− x2 − y2.

Define a coordinate chart

x1(u
1, u2) = (u1, u2, f(u1, u2)).

Thus, each point of the open northern hemisphere admits a neighbor-
hood diffeomorphic to a ball (and hence to R2). To cover the southern
hemisphere, use the chart

x2(u
1, u2) = (u1, u2,−f(u1, u2)).

To cover the points on the equator, use in addition charts x3(u
1, u2) =

(u1, f(u1, u2), u2), x4(u
1, u2) = (u1,−f(u1, u2), u2), as well as the pair of

charts x5(u
1, u2) = (f(u1, u2), u1, u2), x6(u

1, u2) = (−f(u1, u2), u1, u2).

16.7. Dual bases

Tangent space, cotangent space, and the notation for bases in these
spaces were discussed in Section 13.7.

We will work with dual bases
(
∂
∂ui

)
for vectors, and (dui) for cov-

ectors (i.e. elements of the dual space), such that

dui
(

∂

∂uj

)
= δij, (16.7.1)

where δij is the Kronecker delta.
Recall that the metric coefficients are defined by setting

gij = 〈xi, xj〉,
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where x is the parametrisation of the surface. We will only work with
metrics whose first fundamental form is diagonal. We can thus write
the first fundamental form as follows:

g = g11(u
1, u2)(du1)2 + g22(u

1, u2)(du2)2. (16.7.2)

Remark 16.7.1. Such data can be computed from a Euclidean
embedding as usual, or it can be given apriori without an embedding,
as we did in the case of the hyperlobic metric.

We will work with such data independently of any Euclidean em-
bedding, as discussed in Section 10.7. For example, if the metric coef-
ficients form an identity matrix, we obtain

g =
(
du1
)2

+
(
du2
)2
, (16.7.3)

where the interior superscript denotes an index, while exterior super-
script denotes the squaring operation.

16.8. Jacobian matrix

The Jacobian matrix of v = v(u) is the matrix

∂(v1, v2)

∂(u1, u2)
,

which is the matrix of partial derivatives. Denote by

Jacv(u) = det

(
∂(v1, v2)

∂(u1, u2)

)
.

It is shown in advanced calculus that for any function f(v) in a do-
main D, one has

∫

D

f(v)dv1dv2 =

∫

D

g(u)Jacv(u)du
1du2, (16.8.1)

where g(u) = f(v(u)).

Example 16.8.1. Let u1 = r, u2 = θ. Let v1 = x, v2 = y. We
have x = r cos θ and y = r sin θ. One easily shows that the Jacobian
is Jacv(u) = r. The area elements are related by

dv1dv2 = Jacv(u)du
1du2,

or

dxdy = rdrdθ.

A similar relation holds for integrals.
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16.9. Area of a surface, independence of partition

Partition3 is what allows us to perform actual calculations with
area, but the result is independent of partition (see below).

Based on the local definition of area discussed in an earlier chapter,
we will now deal with the corresponding global invariant.

Definition 16.9.1. The area element dA of the surface is the ele-
ment

dA :=
√
det(gij)du

1du2,

where det(gij) = g11g22 − g212 as usual.

Theorem 16.9.2. Define the area of (M, g) by means of the formula

area =

∫

M

dA =
∑

{U}

∫

U

√
det(gij)du

1du2, (16.9.1)

namely by choosing a partition {U} of M subordinate to a finite open
cover as in Definition 16.5.1, performing a separate integration in each
open set, and summing the resulting areas. Then the total area is in-
dependent of the partition and choice of coordinates.

Proof. Consider a change from a coordinate chart (ui) to another
coordinate chart, denoted (vα). In the overlap of the two domains, the
coordinates can be expressed in terms of each other, e.g. v = v(u), and
we have the 2 by 2 Jacobian matrix Jacv(u).

Denote by g̃αβ the metric coefficients with respect to the chart (vα).
Thus, in the case of a metric induced by a Euclidean embedding defined
by x = x(u) = x(u1, u2), we obtain a new parametrisation

y(v) = x(u(v)).

Then we have

g̃αβ =

〈
∂y

∂vα
,
∂y

∂vβ

〉

=

〈
∂x

∂ui
∂ui

∂vα
,
∂x

∂uj
∂uj

∂vβ

〉

=
∂ui

∂vα
∂uj

∂vβ

〈
∂x

∂ui
,
∂x

∂uj

〉

= gij
∂ui

∂vα
∂uj

∂vβ
.

3ritzuf or chaluka?
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The right hand side is a product of three square matrices:

∂ui

∂vα
gij

∂uj

∂vβ
.

The matrices on the left and on the right are both Jacobian matrices.
Since determinant is multiplicative, we obtain

det(g̃αβ) = det(gij)det

(
∂(u1, u2)

∂(v1, v2)

)2

.

Hence using equation (16.8.1), we can write the area element as

dA = det
1
2 (g̃αβ)dv

1dv2

= det
1
2 (g̃αβ) Jacv(u)du

1du2

= det
1
2 (gij) det

(
∂(u1, u2)

∂(v1, v2)

)
Jacv(u)du

1du2

= det
1
2 (gij) du

1du2

since inverse maps have reciprocal Jacobians by chain rule. Thus the
integrand is unchanged and the area element is well defined. �

16.10. Conformal equivalence

Definition 16.10.1. Two metrics, g = gijdu
iduj and h = hijdu

iduj,
onM are called conformally equivalent , or conformal for short, if there
exists a function f = f(u1, u2) > 0 such that

g = f 2h,

in other words,

gij = f 2hij ∀i, j. (16.10.1)

Definition 16.10.2. The function f above is called the conformal
factor (note that sometimes it is more convenient to refer, instead, to
the function λ = f 2 as the conformal factor).

Theorem 16.10.3. Note that the length of every vector at a given
point (u1, u2) is multiplied precisely by f(u1, u2).

Proof. More speficially, a vector v = vi ∂
∂ui

which is a unit vector
for the metric h, is “stretched” by a factor of f , i.e. its length with
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respect to g equals f . Indeed, the new length of v is

√
g(v, v) = g

(
vi

∂

∂ui
, vj

∂

∂uj

) 1
2

=

(
g

(
∂

∂ui
,
∂

∂uj

)
vivj

) 1
2

=
√
gijvivj

=
√
f 2hijvivj

= f
√
hijvivj

= f,

proving the theorem. �

Definition 16.10.4. An equivalence class of metrics on M con-
formal to each other is called a conformal structure on M (mivneh
conformi).

16.11. Geodesic equation

The material in this section has already been dealt with in an earlier
chapter.

Perhaps the simplest possible definition of a geodesic β on a surface
in 3-space is in terms of the orthogonality of its second derivative β′′ to
the surface. The nonlinear second order ordinary differential equation
defining a geodesic is, of course, the “true” if complicated definition.
We will now prove the equivalence of the two definitions. Consider a
plane curve

R
s
−→
α

R2

(u1,u2)

where α = (α1(s), α2(s)). Let x : R2 → R3 be a regular parametrisation
of a surface in 3-space. Then the composition

R
s
−→
α

R2

(u1,u2)
−→
x

R3

yields a curve

β = x ◦ α.
Definition 16.11.1. A curve β = x◦α is a geodesic on the surface x

if one of the following two equivalent conditions is satisfied:

(a) we have for each k = 1, 2,

(αk)
′′

+ Γkij(α
i)

′

(αj)
′

= 0 where
′

=
d

ds
, (16.11.1)
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meaning that

(∀k) d2αk

ds2
+ Γkij

dαi

ds

dαj

ds
= 0;

(b) the vector β′′ is perpendicular to the surface and one has

β′′ = Lijα
i′αj

′
n. (16.11.2)

To prove the equivalence, we write β = x ◦ α, then β′ = xiα
i′ by

chain rule. Furthermore,

β′′ =
d

ds
(xi ◦ α)αi′ + xiα

i′′ = xijα
j ′αi

′
+ xkα

k ′′.

Since xij = Γkijxk + Lijn holds, we have

β′′ − Lijαi′αj ′n = xk

(
αk

′′
+ Γkijα

i′αj
′
)
.

16.12. Closed geodesic

Definition 16.12.1. A closed geodesic in a Riemannian 2-manifoldM
is defined equivalently as

(1) a periodic curve β : R → M satisfying the geodesic equa-

tion αk
′′
+ Γkijα

i′αj
′
= 0 in every chart x : R2 →M , where, as

usual, β = x◦α and α(s) = (α1(s), α2(s)) where s is arclength.
Namely, there exists a period T > 0 such that β(s+T ) = β(s)
for all s.

(2) A unit speed map from a circle R/LT → M satisfying the
geodesic equation at each point, where LT = TZ ⊆ R is the
rank one lattice generated by T > 0.

Definition 16.12.2. The length L(β) of a path β : [a, b] → M is
calculated using the formula

L(β) =

∫ b

a

‖β′(t)‖dt,

where ‖v‖ =
√
gijvivj whenever v = vixi. The energy is defined

by E(β) =
∫ b
a
‖β′(t)‖2dt.

A closed geodesic as in Definition 16.12.1, item 2 has length T .

Remark 16.12.3. The geodesic equation (16.11.1) is the Euler-
Lagrange equation of the first variation of arc length. Therefore when a
path minimizes arc length among all neighboring paths connecting two
fixed points, it must be a geodesic. A corresponding statement is valid
for closed loops, cf. proof of Theorem 16.13.1. See also Section 16.1.
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In Sections 16.14 and 16.18 we will give a complete description of the
geodesics for the constant curvature sphere, as well as for flat tori.

16.13. Existence of closed geodesic

Theorem 16.13.1. Every free homotopy class of loops in a closed
manifold contains a closed geodesic.

Proof. We sketch a proof for the benefit of a curious reader, who
can also check that the construction is independent of the choices in-
volved. The relevant topological notions are defined in Section 17.1
and [Hat02]. A free homotopy class α of a manifold M corresponds
to a conjugacy class gα ⊂ π1(M). Pick an element g ∈ gα. Thus g acts
on the universal cover M̃ of M . Let fg : M → R be the displacement
function of g, i.e.

fg(x) = d(x̃, g.x̃).

Let x0 ∈M be a minimum of fg. A first variation argument shows that
any length-minimizing path between x̃0 and g.x̃0 descends to a closed
geodesic in M representing α, cf. [Car92, Ch93, GaHL04]. �

16.14. Surfaces of constant curvature

By the uniformisation theorem 13.12.2, all surfaces fall into three
types, according to whether they are conformally equivalent to metrics
that are:

(1) flat (i.e. have zero Gaussian curvature K ≡ 0);
(2) spherical (K ≡ +1);
(3) hyperbolic (K ≡ −1).
For closed surfaces, the sign of the Gaussian curvature K is that of

its Euler characteristic, cf. formula (17.9.1).

Theorem 16.14.1 (Constant positive curvature). There are only
two compact surfaces, up to isometry, of constant Gaussian curva-
ture K = +1. They are the round sphere S2 of Example 16.6; and
the real projective plane, denoted RP2.

16.15. Real projective plane

Intuitively, one thinks of the real projective plane as the quotient
surface obtained if one starts with the northern hemisphere of the 2-
sphere, and “glues” together pairs of opposite points of the equatorial
circle (the boundary of the hemisphere).

More formally, the real projective plane can be defined as follows.
Let

m : S2 → S2
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denote the antipodal map of the sphere, i.e. the restriction of the map

v 7→ −v
in R3. Then m is an involution. In other words, if we consider the
action of the group Z2 = {e,m} on the sphere, each orbit of the Z2

action on S2 consists of a pair of antipodal points

{±p} ⊆ S2. (16.15.1)

Definition 16.15.1. On the set-theoretic level, the real projective
plane RP2 is the set of orbits of type (16.15.1), i.e. the quotient of S2

by the Z2 action.

Denote by Q : S2 → RP2 the quotient map. The smooth structure
and metric on RP2 are induced from S2 in the following sense. Let x :
R2 → S2 be a chart on S2 not containing any pair of antipodal points.
Let gij be the metric coefficients with respect to this chart.

Let y = m◦x = −x denote the “opposite” chart, and denote by hij
its metric coefficients. Then

hij = 〈
∂y

∂ui
,
∂y

∂uj
〉 = 〈− ∂x

∂ui
,− ∂x

∂uj
〉 = 〈 ∂x

∂ui
,
∂x

∂uj
〉 = gij. (16.15.2)

Thus the opposite chart defines the identical metric coefficients. The
composition Q ◦ x is a chart on RP2, and the same functions gij form
the metric coefficients for RP2 relative to this chart.

We can summarize the preceeding discussion by means of the fol-
lowing definition.

Definition 16.15.2. The real projective plane RP2 is defined in
the following two equivalent ways:

(1) the quotient of the round sphere S2 by (the restriction to S2

of) the antipodal map v 7→ −v in R3. In other words, a typical
point of RP2 can be thought of as a pair of opposite points of
the round sphere.

(2) the northern hemisphere of S2, with opposite points of the
equator identified.

The smooth structure of RP2 is induced from the round sphere.
Since the antipodal map preserves the metric coefficients by the cal-
culation (16.15.2), the metric structure of constant Gaussian curva-
ture K = +1 descends to RP2, as well.

16.16. Simple loops for surfaces of positive curvature

Definition 16.16.1. A loop α : S1 → X of a space X is called
simple if the map α is one-to-one, cf. Definition 17.1.1.
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Theorem 16.16.2. The basic properties of the geodesics on surfaces
of constant positive curvature as as follows:

(1) all geodesics are closed;
(2) the simple closed geodesics on S2 have length 2π and are de-

fined by the great circles;
(3) the simple closed geodesics on RP2 have length π;
(4) the simple closed geodesics of RP2 are parametrized by half-

great circles on the sphere.

Proof. We calculate the length of the equator of S2. Here the
sphere ρ = 1 is parametrized by

x(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)

in spherical coordinates (θ, ϕ). The equator is the curve x◦α where α(s) =
(s, π

2
) with s ∈ [0, 2π]. Thus α1(s) = θ(s) = s. Recall that the metric

coefficients are given by g11(θ, ϕ) = sin2 ϕ, while g22 = 1 and g12 = 0.
Thus

‖β′(s)‖ =
√
gij
(
s, π

2

)
αi′αj ′ =

√(
sin π

2

) (
dθ
ds

)2
= 1.

Thus the length of β is
∫ 2π

0

‖β′(s)‖ds =
∫ 2π

0

1ds = 2π.

A geodesic on RP2 is twice as short as on S2, since the antipodal points
are identified, and therefore the geodesic “closes up” sooner than (i.e.
twice as fast as) on the sphere. For example, a longitude of S2 is
not a closed curve, but it descends to a closed curve on RP2, since
its endpoints (north and south poles) are antipodal, and are therefore
identified with each other. �

16.17. Successive minima

The material in this section has already been dealt with in an earlier
chapter.

Let B be a finite-dimensional Banach space, i.e. a vector space to-
gether with a norm ‖ ‖. Let L ⊆ (B, ‖ ‖) be a lattice of maximal rank,
i.e. satisfying rank(L) = dim(B). We define the notion of successive
minima of L as follows, cf. [GruL87, p. 58].

Definition 16.17.1. For each k = 1, 2, . . . , rank(L), define the k-th
successive minimum λk of the lattice L by

λk(L, ‖ ‖) = inf

{
λ ∈ R

∣∣∣∣
∃ lin. indep. v1, . . . , vk ∈ L
with ‖vi‖ ≤ λ for all i

}
. (16.17.1)
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Thus the first successive minimum, λ1(L, ‖ ‖) is the least length of
a nonzero vector in L.

16.18. Flat surfaces

A metric is called flat if its Gaussian curvature K vanishes at every
point.

Theorem 16.18.1. A closed surface of constant Gaussian curva-
ture K = 0 is topologically either a torus T2 or a Klein bottle.

Let us give a precise description in the former case.

Example 16.18.2 (Flat tori). Every flat torus is isometric to a
quotient T2 = R2/L where L is a lattice, cf. [Lo71, Theorem 38.2].
In other words, a point of the torus is a coset of the additive ac-
tion of the lattice in R2. The smooth structure is inherited from R2.
Meanwhile, the additive action of the lattice is isometric. Indeed, we
have dist(p, q) = ‖q − p‖, while for any ℓ ∈ L, we have

dist(p+ ℓ, q + ℓ) = ‖q + ℓ− (p+ ℓ)‖ = ‖q − p‖ = dist(p, q).

Therefore the flat metric on R2 descends to T2.

Note that locally, all flat tori are indistinguishable from the flat
plane itself. However, their global geometry depends on the metric in-
variants of the lattice, e.g. its successive minima, cf. Definition 16.17.1.
Thus, we have the following.

Theorem 16.18.3. The least length of a nontrivial closed geodesic
on a flat torus T2 = R2/L equals the first successive minimum λ1(L).

Proof. The geodesics on the torus are the projections of straight
lines in R2. In order for a straight line to close up, it must pass through
a pair of points x and x+ℓ where ℓ ∈ L. The length of the corresponding
closed geodesic on T2 is precisely ‖ℓ‖, where ‖ ‖ is the Euclidean norm.
By choosing a shortest element in the lattice, we obtain a shortest
closed geodesic on the corresponding torus. �

16.19. Hyperbolic surfaces

Most closed surfaces admit neither flat metrics nor metrics of pos-
itive curvature, but rather hyperbolic metrics. A hyperbolic surface is
a surface equipped with a metric of constant Gaussian curvature K =
−1. This case is far richer than the other two.
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Example 16.19.1. The pseudosphere (so called because its Gauss-
ian curvature is constant, and equals −1) is the surface of revolution

(f(ϕ) cos θ, f(ϕ) sin θ, g(ϕ))

in R3 defined by the functions f(φ) = eφ and

g(φ) =

∫ φ

0

(
1− e2ψ

)1/2
dψ,

where φ ranges through the interval −∞ < φ ≤ 0. The usual formu-

las g11 = f 2 as well as g22 =
(
dr
dφ

)2
+
(
dg
dφ

)2
yield in our case g11 = e2φ,

while

g22 =
(
eφ
)
2 +

(√
1− e2φ

)2

= e2φ + 1− e2φ
= 1.

Thus (gij) =

(
e2φ 0
0 1

)
. The pseudosphere has constant Gaussian

curvature −1, but it is not a closed surface (as it is unbounded in R3).

16.20. Hyperbolic plane

This was already discussed in Section 10.2. The metric

gH2 =
1

y2
(dx2 + dy2) (16.20.1)

in the upper half-plane

H2 = {(x, y) | y > 0}
is called the hyperbolic metric of the upper half plane.

Theorem 16.20.1. The metric (16.20.1) has constant Gaussian
curvature K = −1.

Proof. By Theorem 11.2.2, we have

K = −∆LB ln f = ∆LB ln y = y2
(
− 1

y2

)
= −1,

as required. �

In coordinates (u1, u2), we can write it, a bit awkwardly, as

gH2 =
1

(u2)2

((
du1
)2

+
(
du2
)2)

.

The Riemannian manifold (H2, gH2) is referred to as the Poincaré upper
half-plane. Its significance resides in the following theorem.
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Theorem 16.20.2. Every closed hyperbolic surface M is isomet-
ric to the quotient of the Poincaré upper half-plane by the action of a
suitable group Γ:

M = H2/Γ.

Here the nonabelian group Γ is a discrete subgroup Γ ⊆ PSL(2,R),

where a matrix A =

(
a b
c d

)
acts on H2 = {z ∈ C|ℑ(z) > 0} by

z 7→ az + b

cz + d
,

called fractional linear transformations, of Mobius transformations. All
such transformations are isometries of the hyperbolic metric. The fol-
lowing theorem is proved, for example, in [Kato92].

Theorem 16.20.3. Every geodesic in the Poincaré upper half-plane
is either a vertical ray, or a semicircle perpendicular to the x-axis.

The foundational significance of this model in the context of the
parallel postulate of Euclid has been discussed by numerous authors.

Example 16.20.4. The length of a vertical interval joining i to ci
can be calculated as follows. Recall that the conformal factor is f(x, y) =
1
y
. The length is therefore given by

∣∣∣∣
∫ c

1

1

y
dy

∣∣∣∣ = | ln c|.

Here the substitution y = es gives an arclength parametrisation.





CHAPTER 17

Elements of the topology of surfaces

17.1. Loops, simply connected spaces

We would like to provide a self-contained explanation of the topo-
logical ingredient which is necessary so as to understand Loewner’s
torus inequality, i.e. essentially the notion of a noncontractible loop
and the fundamental group of a topological space X. See [Hat02,
Chapter 1] for a more detailed account.

Definition 17.1.1. A loop in X can be defined in one of two equiv-
alent ways:

(1) a continuous map β : [a, b]→ X satisfying β(a) = β(b);
(2) a continuous map λ : S1 → X from the circle S1 to X.

Lemma 17.1.2. The two definitions of a loop are equivalent.

Proof. Consider the unique increasing linear function

f : [a, b]→ [0, 2π]

which is one-to-one and onto. Thus, f(t) = 2π(t−a)
b−a . Given a map

λ(eis) : S1 → X,

we associate to it a map β(t) = λ
(
eif(t)

)
, and vice versa. �

Definition 17.1.3. A loop S1 → X is said to be contractible if
the map of the circle can be extended to a continuous map of the unit
disk D→ X, where S1 = ∂D.

Definition 17.1.4. A space X is called simply connected if every
loop in X is contractible.

Theorem 17.1.5. The sphere Sn ⊆ Rn+1 which is the solution set
of x20+ . . .+x

2
n = 1 is simply connected for n ≥ 2. The circle S1 is not

simply connected.

17.2. Orientation on loops and surfaces

Let S1 ⊆ C be the unit circle. The choice of an orientation on the
circle is an arrow pointing clockwise or counterclockwise. The standard

221
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choice is to consider S1 as an oriented manifold with orientation chosen
counterclockwise.

If a surface is embedded in 3-space, one can choose a continuous
unit normal vector n at every point. Then an orientation is defined by
the right hand rule with respect to n thought of as the thumb (agudal).

17.3. Cycles and boundaries

The singular homology groups with integer coefficients, Hk(M ;Z)
for k = 0, 1, . . . ofM are abelian groups which are homotopy invariants
of M . Developing the singular homology theory is time-consuming.
The case that we will be primarily interested in as far as these notes
are concerned, is that of the 1-dimensional homology group:

H1(M ;Z).

In this case, the homology groups can be characterized easily without
the general machinery of singular simplices.

Let S1 ⊆ C be the unit circle, which we think of as a 1-dimensional
manifold with an orientation given by the counterclockwise direction.

Definition 17.3.1. A 1-cycle α on a manifold M is an integer
linear combination

α =
∑

i

nifi

where ni ∈ Z is called the multiplicity (ribui), while each

fi : S
1 →M

is a loop given by a smooth map from the circle to M , and each loop
is endowed with the orientation coming from S1.

Definition 17.3.2. The space of 1-cycles on M is denoted

Z1(M ;Z).

Let (Σg, ∂Σg) be a surface with boundary ∂Σg, where the genus g
is irrelevant for the moment and is only added so as to avoid confusion
with the summation symbol

∑
.

The boundary ∂Σg is a disjoint union of circles. Now assume the
surface Σg is oriented.

Proposition 17.3.3. The orientation of the surface induces an
orientation on each boundary circle.

Thus we obtain an orientation-preserving identification of each bound-
ary component with the standard unit circle S1 ⊆ C (with its counter-
clockwise orientation).



17.4. FIRST SINGULAR HOMOLOGY GROUP 223

Given a map Σg → M , its restriction to the boundary therefore
produces a 1-cycle

∂Σg ∈ Z1(M ;Z).

Definition 17.3.4. The space

B1(M ;Z) ⊆ Z1(M ;Z)

of 1-boundaries in M is the space of all cycles
∑

i

nifi ∈ Z1(M ;Z)

such that there exists a map of an oriented surface Σg →M (for some g)
satisfying

∂Σg =
∑

i

nifi.

Example 17.3.5. Consider the cylinder

x2 + y2 = 1, 0 ≤ z ≤ 1

of unit height. The two boundary components correspond to the two
circles: the “bottom” circle Cbottom defined by z = 0, and the “top”
circle Ctop defined by and z = 1. Consider the orientation on the
cylinder defined by the outward pointing normal vector. It induces the
counterclockwise orientation on Cbottom, and a clockwise orientation
on Ctop.

Now let C0 and C1 be the same circles with the following choice of
orientation: we choose a standard counterclockwise parametrisation on
both circles, i.e., parametrize them by means of (cos θ, sin θ). Then the
boundary of the cylinder is the difference of the two circles: C0 − C1,
or C1 − C0, depending on the choice of orientation.

Example 17.3.6. Cutting up a circle of genus 2 into two once-holed
tori shows that the separating curve is a 1-boundary.

Theorem 17.3.7. On a closed orientable surface, a separating curve
is a boundary, while a non-separating loop is never a boundary.

17.4. First singular homology group

Definition 17.4.1. The 1-dimensional homology group of M with
integer coefficients is the quotient group

H1(M ;Z) = Z1(M ;Z)/B1(M ;Z).

Definition 17.4.2. Given a cycle C ∈ Z1(M ;Z), its homology
class will be denoted [C] ∈ H1(M ;Z).
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Example 17.4.3. A non-separating loop on a closed surface repre-
sents a non-trivial homology class of the surface.

Theorem 17.4.4. The 1-dimensional homology group H1(M ;Z) is
the abelianisation of the fundamental group π1(M):

H1(M ;Z) = (π1M)ab .

Note that a significant difference between the fundamental group
and the first homology group is the following. While only based loops
participate in the definition of the fundamental group, the definition
of H1(M ;Z) involves free (not based) loops.

Example 17.4.5. The fundamental groups of the real projective
plane RP2 and the 2-torus T2 are already abelian. Therefore one ob-
tains

H1(RP2;Z) = Z/2Z,
and

H1(T
2;Z) = Z2.

Example 17.4.6. The fundamental group of an orientable closed
surface Σg of genus g is known to be a group on 2g generators with a
single relation which is a product of g commutators. Therefore one has

H1(Σg;Z) = Z2g.

17.5. Stable norm in 1-dimensional homology

Assume the manifoldM has a Riemannian metric. Given a smooth
loop f : S1 → M , we can measure its volume (length) with respect to
the metric of M . We will denote this length by

vol(f)

with a view to higher-dimensional generalisation.

Definition 17.5.1. The volume (length) of a 1-cycle C =
∑

i nifi
is defined as

vol(C) =
∑

i

|ni| vol(fi).

Definition 17.5.2. Let α ∈ H1(M ;Z) be a 1-dimensional homol-
ogy class. We define the volume of α as the infimum of volumes of
representative 1-cycles:

vol(α) = inf {vol(C) | C ∈ α} ,
where the infimum is over all cycles C =

∑
i nifi representing the

class α ∈ H1(M ;Z).
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The following phenomenon occurs for orientable surfaces.

Theorem 17.5.3. LetM be an orientable surface, i.e. 2-dimensional
manifold. Let α ∈ H1(M ;Z). For all j ∈ N, we have

vol(jα) = j vol(α), (17.5.1)

where jα denotes the class α + α + . . .+ α, with j summands.

Proof. To fix ideas, let j = 2. By Lemma 17.5.4 below, a mini-
mizing loop C representing a multiple class 2α will necessarily intersect
itself in a suitable point p. Then the 1-cycle represented by C can be
decomposed into the sum of two 1-cycles (where each can be thought
of as a loop based at p). The shorter of the two will then give a min-
imizing loop in the class α which proves the identity (17.5.1) in this
case. The general case follows similarly. �

Lemma 17.5.4. A loop going around a cylinder twice necessarily
has a point of self-intersection.

Proof. We think of the loop as the graph of a 4π-periodic func-
tion f(t) (or alternatively a function on [0, 4π] with equal values at the
endpoints). Consider the difference g(t) = f(t) − f(t + 2π). Then g
takes both positive and negative values. By the intermediate function
theorem, the function g must have a zero t0. Then f(t0) = f(t0 + 2π)
hence t0 is a point of self-intersection of the loop. �

17.6. The degree of a map

An example of a degree d map is most easily produced in the case
of a circle. A self-map of a circle given by

eiθ 7→ eidθ

has degree d.
We will discuss the degree in the context of surfaces only.

Definition 17.6.1. The degree

df

of a map f between closed surfaces is the algebraic number of points
in the inverse image of a generic point of the target surface.

We can use the 2-dimensional homology groups defined elsewhere
in these notes, so as to calculate the degree as follows. Recall that

H2(M ;Z) = Z,

where the generator is represented by the identity self-map of the sur-
face.
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Theorem 17.6.2. A map

f :M1 →M2

induces a homomorphism

f∗ : H2(M1;Z)→ H2(M2;Z),

corresponding to multiplication by the degree df once the groups are
identified with Z:

Z→ Z, n 7→ df n.

17.7. Degree of normal map of an embedded surface

Theorem 17.7.1. Let Σ ⊆ R3 be an embedded surface. Let p be its
genus. Consider the normal map

fn : Σ→ S2

defined by sending each point x ∈ Σ to the normal vector n = nx at x.
Then the degree of the normal map is precisely 1− p.

Example 17.7.2. For the unit sphere, the normal map is the iden-
tity map. The genus is 0, while the degree of the normal map is 1−p =
1.

Example 17.7.3. For the torus, the normal map is harder to visu-
alize. The genus is 1, while the degree of the normal map is 0.

Example 17.7.4. For a genus 2 surface embedded in R3, the degree
of the normal map is 1 − 2 = −1. This means that if the surface is
oriented by the outward-pointing normal vector, the normal map is
orientation-reversing.

17.8. Euler characteristic of an orientable surface

The Euler characteristic χ(M) is even for closed orientable surfaces,
and the integer p = p(M) ≥ 0 defined by

χ(M) = 2− 2p

is called the genus of M .

Example 17.8.1. We have p(S2) = 0, while p(T2) = 1.

In general, the genus can be understood intuitively as the number of
“holes”, i.e. “handles”, in a familiar 3-dimensional picture of a pretzel.
We see from formula (17.9.1) that the only compact orientable surface
admitting flat metrics is the 2-torus. See [Ar83] for a friendly topo-
logical introduction to surfaces, and [Hat02] for a general definition of
the Euler characteristic.
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17.9. Gauss–Bonnet theorem

Every embedded closed surface in 3-space admits a continuous choice
of a unit normal vector n = nx at every point x. Note that no such
choice is possible for an embedding of the Mobius band, see [Ar83] for
more details on orientability and embeddings.

Closed embedded surfaces in R3 are called orientable.

Remark 17.9.1. The integrals of type
∫

M

will be understood in the sense of Theorem 16.9.2, namely using an
implied partition subordinate to an atlas, and calculating the integral
using coordinates (u1, u2) in each chart, so that we can express the
metric in terms of metric coefficients

gij = gij(u
1, u2)

and similarly the Gaussian curvature

K = K(u1, u2).

Theorem 17.9.2 (Gauss–Bonnet theorem). Every closed surfaceM
satisfies the identity

∫

M

K(u1, u2)
√
det(gij)du

1du2 = 2πχ(M), (17.9.1)

where K is the Gaussian curvature function on M , whereas χ(M) is
its Euler characteristic.

17.10. Change of metric exploiting Gaussian curvature

We will use the term pseudometric for a quadratic form (or the
associated bilinear form), possibly degenerate.

We would like to give an indication of a proof of the Gauss–Bonnet
theorem. We will have to avoid discussing some technical points. Con-
sider the normal map

F :M → S2, x 7→ nx.

Consider a neigborhood in M where the map F is a homeomorphism
(this is not always possible, and is one of the technical points we are
avoiding).

Definition 17.10.1. Let gM the metric of M , and h the standard
metric of S2.
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Given a point x ∈M in such a neighborhood, we can calculate the
curvature K(x). We can then consider a new metric in the conformal
class of the metric gM , defined as follows.

Definition 17.10.2. We define a new pseudometric, denoted ĝM ,
on M by multiplying by the conformal factor K(x) at the point x.
Namely, ĝM is the pseudometric which at the point x is given by the
quadratic form

ĝx = K(x)gx.

If K ≥ 0 then the length of vectors is multiplied by
√
K.

The key to understanding the proof of the Gauss–Bonnet theorem
in the case of embedded surfaces is the following theorem.

Theorem 17.10.3. Consider the restriction of the normal map F
to a neighborhood as above. We modify the metric on the source M by
the conformal factor given by the Gaussian curvature, as above. Then
the map

F : (M, ĝM )→ (S2, h)

preserves areas: the area of the neighborhood in M (with respect to the
modified metric) equals to the “area” of its image on the sphere.

17.11. Gauss map

Definition 17.11.1. The Gauss map is the map

F :M → S2, p 7→ Np

defined by sending a point p of M the unit normal vector N = Np

thought of as a point of S2.

The map F sends an infinitesimal parallelogram on the surface, to
an infinitesimal parallelogram on the sphere.

We may identify the tangent space to M at p and the tangent
space to S2 at F (p) ∈ S2. Then the differential of the map F is the
Weingarten map

W : TpM → TF (p)S
2.

The element of area KdA of the surface is mapped to the element of
area of the sphere. In other words, we modify the element of area
by multiplying by the determinant (Jacobian) of the Weingarten map,
namely the Gaussian curvature K(p). Hence the image of the area
element KdA is precisely area 2-form h on the sphere, as discussed in
the previous section.

It remains to be checked that the map has topological degree given
by half the Euler characteristic of the surface M , proving the theo-
rem in the case of embedded surfaces. Since degree is invariant under
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continuous deformations, the result can be checked for a particular
standard embedding of a surface of arbitrary genus in R3.

17.12. An identity

Another way of writing identity (17.5.1) is as follows:

vol(α) =
1

j
vol(jα).

This phenomenon is no longer true for higher-dimensional mani-
folds. Namely, the volume of a homology class is no longer multiplica-
tive. However, the limit as j →∞ exists and is called the stable norm.

Definition 17.12.1. Let M be a compact manifold of arbitrary
dimension. The stable norm ‖ ‖ of a class α ∈ H1(M ;Z) is the limit

‖α‖ = lim
j→∞

1

j
vol(jα). (17.12.1)

It is obvious from the definition that one has ‖α‖ ≤ vol(α). How-
ever, the inequality may be strict in general. As noted above, for
2-dimensional manifolds we have ‖α‖ = vol(α).

Proposition 17.12.2. The stable norm vanishes for a class of finite
order.

Proof. If α ∈ H1(M,Z) is a class of finite order, one has finitely
many possibilities for vol(jα) as j varies. The factor of 1

j
in (17.12.1)

shows that ‖α‖ = 0. �

Similarly, if two classes differ by a class of finite order, their stable
norms coincide. Thus the stable norm passes to the quotient lattice
defined below.

Definition 17.12.3. The torsion subgroup of H1(M ;Z) will be
denoted T1(M) ⊂ H1(M ;Z). The quotient lattice L1(M) is the lattice

L1(M) = H1(M ;Z)/T1(M).

Proposition 17.12.4. The lattice L1(M) is isomorphic to Zb1(M),
where b1 is called the first Betti number of M .

Proof. This is a general result in the theory of finitely generated
abelian groups. �
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17.13. Stable systole

Definition 17.13.1. Let M be a manifold endowed with a Rie-
mannian metric, and consider the associated stable norm ‖ ‖. The
stable 1-systole of M , denoted stsys1(M), is the least norm of a 1-
homology class of infinite order:

stsys1(M) = inf
{
‖α‖ | α ∈ H1 (M,Z) \ T1(M)

}

= λ1
(
L1(M), ‖ ‖

)
.

Example 17.13.2. For an arbitrary metric on the 2-torus T2, the
1-systole and the stable 1-systole coincide by Theorem 17.5.3:

sys1(T
2) = stsys1(T

2),

for every metric on T2.

17.14. Free loops, based loops, and fundamental group

One can refine the notion of simple connectivity by introducing a
group, denoted

π1(X) = π1(X, x0),

and called the fundamental group of X relative to a fixed “base”
point x0 ∈ X.

Definition 17.14.1. A based loop is a loop α : [0, 1]→ X satisfying
the condition α(0) = α(1) = x0.

In terms of the second item of Definition 17.1.1, we choose a fixed
point s0 ∈ S1. For example, we can choose s0 = ei0 = 1 for the
usual unit circle S1 ⊆ C, and require that α(s0) = x0. Then the
group π1(X) is the quotient of the space of all based loops modulo
the equivalence equivalence relation defined by homotopies fixing the
basepoint, cf. Definition 17.14.2.

The equivalence class of the identity element is precisely the set
of contractible loops based at x0. The equivalence relation can be
described as follows for a pair of loops in terms of the second item of
Definition 17.1.1.

Definition 17.14.2. Two based loops α, β : S1 → X are equiva-
lent, or homotopic, if there is a continuous map of the cylinder S1 ×
[c, d]→ X whose restriction to S1×{c} is α, whose restriction to S1×
{d} is β, while the map is constant on the segment {s0} × [c, d] of the
cylinder, i.e. the basepoint does not move during the homotopy.
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Definition 17.14.3. An equivalence class of based loops is called
a based homotopy class. Removing the basepoint restriction (as well as
the constancy condition of Definition 17.14.2), we obtain a larger class
called a free homotopy class (of loops).

Definition 17.14.4. Composition of two loops is defined most con-
veniently in terms of item 1 of Definition 17.1.1, by concatenating their
domains.

In more detail, the product of a pair of loops, α : [−1, 0] → X
and β : [0,+1] → X, is a loop α.β : [−1, 1] → X, which coincides
with α and β in their domains of definition. The product loop α.β
is continuous since α(0) = β(0) = x0. Then Theorem 17.1.5 can be
refined as follows.

17.15. Fundamental groups of surfaces

Theorem 17.15.1. We have π1(S
1) = Z, while π1(Sn) is the trivial

group for all n ≥ 2.

Definition 17.15.2. The 2-torus T2 is defined to be the following
Cartesian product: T2 = S1 × S1, and can thus be realized as a subset

T2 = S1 × S1 ⊆ R2 × R2 = R4.

We have π1(T2) = Z2. The familiar doughnut picture realizes T2 as
a subset in Euclidean space R3.

Definition 17.15.3. A 2-dimensional closed Riemannian manifold
(i.e. surface) M is called orientable if it can be realized by a subset
of R3.

Theorem 17.15.4. The fundamental group of a surface of genus g
is isomorphic to a group on 2g generators a1, b1, . . . , ag, bg satisfying
the unique relation

g∏

i=1

aibia
−1
i b−1

i = 1.

Note that this is not the only possible presentation of the group in
terms of a single relation.





CHAPTER 18

Pu’s inequality

See http://u.math.biu.ac.il/~katzmik/egreg826.pdf
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CHAPTER 19

Approach To Loewner via energy-area identity

19.1. An integral-geometric identity

Let T2 be a torus with an arbitrary metric. Let T0 = R2/L be the
flat torus conformally equivalent to T2. Let ℓ0 = ℓ0(x) be a simple

closed geodesic of T0. Thus ℓ0 is the projection of a line ℓ̃0 ⊆ R2.
Let ℓ̃y ⊆ R2 be the line parallel to ℓ̃0 at distance y > 0 from ℓ0 (here

we must “choose sides”, e.g. by orienting ℓ̃0 and requiring ℓ̃y to lie to

the left of ℓ̃0). Denote by ℓy ⊆ T0 the closed geodesic loop defined by

the image of ℓ̃y. Let y0 > 0 be the smallest number such that ℓy0 = ℓ0,

i.e. the lines ℓ̃y0 and ℓ̃0 both project to ℓ0.
Note that the loops in the family {ℓy} ⊆ T2 are not necessarily

geodesics with respect to the metric of T2. On the other hand, the
family satisfies the following identity.

Lemma 19.1.1 (An elementary integral-geometric identity). The
metric on T2 satisfies the following identity:

area(T2) =

∫ y0

0

E(ℓy)dy, (19.1.1)

where E is the energy of a loop with respect to the metric of T2, see
Definition 16.12.2.

Proof. Denote by f 2 the conformal factor of T2 with respect to
the flat metric T0. Thus the metric on T2 can be written as

f 2(x, y)(dx2 + dy2).

By Fubini’s theorem applied to a rectangle with sides lengthT0
(ℓ0)

and y0, combined with Theorem 16.10.3, we obtain

area(T2) =

∫

T0

f 2dxdy

=

∫ y0

0

(∫

ℓy

f 2(x, y)dx

)
dy

=

∫ y0

0

E(ℓy)dy,

235
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proving the lemma. �

Remark 19.1.2. The identity (19.1.1) can be thought of as the
simplest integral-geometric identity.

19.2. Two proofs of the Loewner inequality

We give a slightly modified version of M. Gromov’s proof [Gro96],
using conformal representation and the Cauchy-Schwarz inequality, of
the Loewner inequality (16.2.1) for the 2-torus, see also [CK03]. We
present the following slight generalisation: there exists a pair of closed
geodesics on (T2, g), of respective lengths λ1 and λ2, such that

λ1λ2 ≤ γ2 area(g), (19.2.1)

and whose homotopy classes form a generating set for π1(T2) = Z×Z.

Proof. The proof relies on the conformal representation

φ : T0 → (T2, g),

where T0 is flat, cf. uniformisation theorem 13.12.2. Here the map φ
may be chosen in such a way that (T2, g) and T0 have the same area.
Let f be the conformal factor, so that

g = f 2
(
(du1)2 + (du2)2

)

as in formula (16.10.1), where (du1)2+(du2)2 (locally) is the flat metric.
Let ℓ0 be any closed geodesic in T0. Let {ℓs} be the family of

geodesics parallel to ℓ0. Parametrize the family {ℓs} by a circle S1 of
length σ, so that

σℓ0 = area(T0).

Thus T0 → S1 is a Riemannian submersion. Then

area(T2) =

∫

T0

f 2.

By Fubini’s theorem, we have area(T2) =
∫
S1 ds

∫
ℓs
f 2dt. Therefore by

the Cauchy-Schwarz inequality,

area(T2) ≥
∫

S1

ds

(∫
ℓs
fdt
)2

ℓ0
=

1

ℓ0

∫

S1

ds (lengthφ(ℓs))
2 .

Hence there is an s0 such that area(T2) ≥ σ
ℓ0
lengthφ(ℓs0)

2, so that

lengthφ(ℓs0) ≤ ℓ0.

This reduces the proof to the flat case. Given a lattice in C, we choose
a shortest lattice vector λ1, as well as a shortest one λ2 not proportional
to λ1. The inequality now follows from Lemma 14.9.1. In the boundary
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case of equality, one can exploit the equality in the Cauchy-Schwarz
inequality to prove that the conformal factor must be constant. �

Alternative proof. Let ℓ0 be any simple closed geodesic in T0.
Since the desired inequality (19.2.1) is scale-invariant, we can assume
that the loop has unit length:

lengthT0
(ℓ0) = 1,

and, moreover, that the corresponding covering transformation of the
universal cover C = T̃0 is translation by the element 1 ∈ C. We
complete 1 to a basis {τ, 1} for the lattice of covering transformations
of T0. Note that the rectangle defined by

{z = x+ iy ∈ C | 0 < x < 1, 0 < y < Im(τ)]}
is a fundamental domain for T0, so that area(T0) = Im(τ). The maps

ℓy(x) = x+ iy, x ∈ [0, 1]

parametrize the family of geodesics parallel to ℓ0 on T0. Recall that
the metric of the torus T is f 2(dx2 + dy2).

Lemma 19.2.1. We have the following relation between the length
and energy of a loop:

length(ℓy)
2 ≤ E(ℓy).

Proof. By the Cauchy-Schwarz inequality,

∫ 1

0

f 2(x, y)dx ≥
(∫ 1

0

f(x, y)dx

)2

,

proving the lemma. �

Now by Lemma 19.1.1 and Lemma 19.2.1, we have

area(T2) ≥
∫ Im(τ)

0

(
length(ℓy)

)2
dy.

Hence there is a y0 such that

area(T2) ≥ Im(τ) length(ℓy0)
2,

so that length(ℓy0) ≤ 1. This reduces the proof to the flat case. Given
a lattice in C, we choose a shortest lattice vector λ1, as well as a
shortest one λ2 not proportional to λ1. The inequality now follows
from Lemma 14.9.1. �
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19.3. Remark on capacities

Define a conformal invariant called the capacity of an annulus as
follows. Consider a right circular cylinder

ζκ = R/Z× [0, κ]

based on a unit circle R/Z. Its capacity C(ζκ) is defined to be its
height, C(ζκ) = κ. Recall that every annular region in the plane is con-
formally equivalent to such a cylinder, and therefore we have defined a
conformal invariant of an arbitrary annular region. Every annular re-
gion R satisfies the inequality area(R) ≥ C(R) sys1(R)

2. Meanwhile, if
we cut a flat torus along a shortest loop, we obtain an annular region R

with capacity at least C(R) ≥ γ−1
2 =

√
3
2
. This provides an alternative

proof of the Loewner theorem. In fact, we have the following identity:

confsys1(g)
2C(g) = 1, (19.3.1)

where confsys is the conformally invariant generalisation of the homol-
ogy systole, while C(g) is the largest capacity of a cylinder obtained
by cutting open the underlying conformal structure on the torus.

Question 19.3.1. Is the Loewner inequality (16.2.1) satisfied by
every orientable nonsimply connected compact surface? Inspite of its
elementary nature, and considerable research devoted to the area, the
question is still open. Recently the case of genus 2 was settled as well
as genus g ≥ 20

19.4. A table of optimal systolic ratios of surfaces

Denote by SR(M) the supremum of the systolic ratios,

SR(M) = sup
g

sys1(g)
2

area(g)
,

ranging over all metrics g on a surface M . The known values of the
optimal systolic ratio are tabulated in Figure 19.4.1. It is interesting to
note that the optimal ratio for the Klein bottle RP2#RP2 is achieved
by a singular metric, described in the references listed in the table.
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SR(M) numerical value where to find it

M = RP2 =
π

2
[Pu52] ≈ 1.5707 site for 88826

infinite π1(M) <
4

3
[Gro83] < 1.3333 . . . (16.1.7)

M = T2 = 2√
3
(Loewner) ≈ 1.1547 (16.2.1)

M =
RP2#RP2

=
π

23/2
≈ 1.1107 [Bav86, Bav06,

Sak88]

M of genus 2 > 1
3

(√
2 + 1

)
> 0.8047 ?

M of genus 3 ≥ 8
7
√
3

> 0.6598 [Cal96]

Figure 19.4.1. Values for optimal systolic ratio SR of surface M





CHAPTER 20

A primer on surfaces

In this Chapter, we collect some classical facts on Riemann surfaces.
More specifically, we deal with hyperelliptic surfaces, real surfaces, and
Katok’s optimal bound for the entropy of a surface.

20.1. Hyperelliptic involution

Let M be an orientable closed Riemann surface which is not a
sphere. By a Riemann surface, we mean a surface equipped with a
fixed conformal structure, cf. Definition 16.10.4, while all maps are
angle-preserving.

Furthermore, we will assume that the genus is at least 2.

Definition 20.1.1. A hyperelliptic involution of a Riemann sur-
face M of genus p is a holomorphic (conformal) map, J : M → M ,
satisfying J2 = 1, with 2p + 2 fixed points.

Definition 20.1.2. A surface M admitting a hyperelliptic involu-
tion will be called a hyperelliptic surface.

Remark 20.1.3. The involution J can be identified with the non-
trivial element in the center of the (finite) automorphism group of M
(cf. [FK92, p. 108]) when it exists, and then such a J is unique,
cf. [Mi95, p.204] (recall that the genus is at least 2).

It is known that the quotient of M by the involution J produces a
conformal branched 2-fold covering

Q :M → S2 (20.1.1)

of the sphere S2.

Definition 20.1.4. The 2p + 2 fixed points of J are called Weier-
strass points. Their images in S2 under the ramified double cover Q of
formula (20.1.1) will be referred to as ramification points.

A notion of a Weierstrass point exists on any Riemann surface, but
will only be used in the present text in the hyperelliptic case.
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Example 20.1.5. In the case p = 2, topologically the situation
can be described as follows. A simple way of representing the figure 8
contour in the (x, y) plane is by the reducible curve

(((x− 1)2 + y2)− 1)(((x+ 1)2 + y2)− 1) = 0 (20.1.2)

(or, alternatively, by the lemniscate r2 = cos 2θ in polar coordinates,
i.e. the locus of the equation (x2 + y2)2 = x2 − y2).

Now think of the figure 8 curve of (20.1.2) as a subset of R3. The
boundary of its tubular neighborhood in R3 is a genus 2 surface. Rota-
tion by π around the x-axis has six fixed points on the surface, namely,
a pair of fixed points near each of the points −2, 0, and +2 on the x-
axis. The quotient by the rotation can be seen to be homeomorphic to
the sphere.

A similar example can be repackaged in a metrically more precise
way as follows.

Example 20.1.6. We start with a round metric on RP2. Now
attach a small handle. The orientable double cover M of the resulting
surface can be thought of as the unit sphere in R3, with two little
handles attached at north and south poles, i.e. at the two points where
the sphere meets the z-axis. Then one can think of the hyperelliptic
involution J as the rotation of M by π around the z-axis. The six
fixed points are the six points of intersection of M with the z-axis.
Furthermore, there is an orientation reversing involution τ onM , given
by the restriction toM of the antipodal map in R3. The composition τ◦
J is the reflection fixing the xy-plane, in view of the following matrix
identity:



−1 0 0
0 −1 0
0 0 −1





−1 0 0
0 −1 0
0 0 1


 =



1 0 0
0 1 0
0 0 −1


 . (20.1.3)

Meanwhile, the induced orientation reversing involution τ0 on S2 can
just as well be thought of as the reflection in the xy-plane. This is
because, at the level of the 2-sphere, it is “the same thing as” the
composition τ ◦ J . Thus the fixed circle of τ0 is precisely the equator,
cf. formula (20.3.3). Then one gets a quotient metric on S2 which is
roughly that of the western hemisphere, with the boundary longitude
folded in two, The metric has little bulges along the z-axis at north
and south poles, which are leftovers of the small handle.
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20.2. Hyperelliptic surfaces

For a treatment of hyperelliptic surfaces, see [Mi95, p. 60-61].
By [Mi95, Proposition 4.11, p. 92], the affine part of a hyperellip-
tic surface M is defined by a suitable equation of the form

w2 = f(z) (20.2.1)

in C2, where f is a polynomial. On such an affine part, the map J is
given by J(z, w) = (z,−w), while the hyperelliptic quotient map Q :
M → S2 is represented by the projection onto the z-coordinate in C2.

A slight technical problem here is that the map

M → CP2, (20.2.2)

whose image is the compactification of the solution set of (20.2.1), is
not an embedding. Indeed, there is only one point at infinity, given
in homogeneous coordinates by [0 : w : 0]. This point is a singularity.
A way of desingularizing it using an explicit change of coordinates at
infinity is presented in [Mi95, p. 60-61]. The resulting smooth surface
is unique [DaS98, Theorem, p. 100].

Remark 20.2.1. To explain what happens “geometrically”, note
that there are two points on our affine surface “above infinity”. This
means that for a large circle |z| = r, there are two circles above it satis-
fying equation (20.2.1) where f has even degree 2p+2 (for a Weierstrass
point we would only have one circle). To see this, consider z = reia. As
the argument a varies from 0 to 2π, the argument of f(z) will change
by (2p + 2)2π. Thus, if (reia, w(a)) represents a continuous curve on
our surface, then the argument of w changes by (2p+2)π, and hence we
end up where we started, and not at −w (as would be the case were the
polynomial of odd degree). Thus there are two circles on the surface
over the circle |z| = r. We conclude that to obtain a smooth compact
surface, we will need to add two points at infinity, cf. discussion around
[FK92, formula (7.4.1), p. 102].

Thus, the affine part of M , defined by equation (20.2.1), is a Rie-
mann surface with a pair of punctures p1 and p2. A neighborhood of
each pi is conformally equivalent to a punctured disk. By replacing
each punctured disk by a full one, we obtain the desired compact Rie-
mann surface M . The point at infinity [0 : w : 0] ∈ CP2 is the image
of both pi under the map (20.2.2).

20.3. Ovalless surfaces

Denote by M ι the fixed point set of an involution ι of a Riemann
surface M . Let M be a hyperelliptic surface of even genus p. Let J :
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M → M be the hyperelliptic involution, cf. Definition 20.1.1. Let τ :
M →M be a fixed point free, antiholomorphic involution.

Lemma 20.3.1. The involution τ commutes with J and descends
to S2. The induced involution τ0 : S

2 → S2 is an inversion in a circle
C0 = Q(M τ◦J). The set of ramification points is invariant under the
action of τ0 on S2.

Proof. By the uniqueness of J , cf. Remark 20.1.3, we have the
commutation relation

τ ◦ J = J ◦τ, (20.3.1)

cf. relation (20.1.3). Therefore τ descends to an involution τ0 on the
sphere. There are two possibilities, namely, τ is conjugate, in the group
of fractional linear transformations, either to the map z 7→ z̄, or to the
map z 7→ −1

z̄
. In the latter case, τ is conjugate to the antipodal map

of S2.
In the case of even genus, there is an odd number of Weierstrass

points in a hemisphere. Hence the inverse image of a great circle is a
connected loop. Thus we get an action of Z2 × Z2 on a loop, resulting
in a contradiction.

In more detail, the set of the 2p + 2 ramification points on S2 is
centrally symmetric. Since there is an odd number, p + 1, of ramifi-
cation points in a hemisphere, a generic great circle A ⊆ S2 has the
property that its inverse image Q−1(A) ⊆ M is connected. Thus both
involutions τ and J , as well as τ ◦ J , act fixed point freely on the
loop Q−1(A) ⊆M , which is impossible. Therefore τ0 must fix a point.
It follows that τ0 is an inversion in a circle. �

Suppose a hyperelliptic Riemann surfaceM admits an antiholomor-
phic involution τ . In the literature, the components of the fixed point
setM τ of τ are sometimes referred to as “ovals”. When τ is fixed point
free, we introduce the following terminology.

Definition 20.3.2. A hyperelliptic surface (M,J) of even positive
genus p > 0 is called ovalless real if one of the following equivalent
conditions is satisfied:

(1) M admits an imaginary reflection, i.e. a fixed point free, an-
tiholomorphic involution τ ;

(2) the affine part of M is the locus in C2 of the equation

w2 = −P (z), (20.3.2)

where P is a monic polynomial, of degree 2p + 2, with real
coefficients, no real roots, and with distinct roots.
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Lemma 20.3.3. The two ovalless reality conditions of Definition 20.3.2
are equivalent.

Proof. A related result appears in [GroH81, p. 170, Proposi-
tion 6.1(2)]. To prove the implication (2) =⇒ (1), note that complex
conjugation leaves the equation invariant, and therefore it also leaves
invariant the locus of (20.3.2). A fixed point must be real, but P is pos-
itive hence (20.3.2) has no real solutions. There is no real solution at
infinity, either, as there are two points at infinity which are not Weier-
strass points, since P is of even degree, as discussed in Remark 20.2.1.
The desired imaginary reflection τ switches the two points at infinity,
and, on the affine part of the Riemann surface, coincides with complex
conjugation (z, w) 7→ (z̄, w̄) in C2.

To prove the implication (1) =⇒ (2), note that by Lemma 20.3.1,
the induced involution τ0 on S

2 =M/ J may be thought of as complex
conjugation, by choosing the fixed circle of τ0 to be the circle

R ∪ {∞} ⊆ C ∪ {∞} = S2. (20.3.3)

Since the surface is hyperelliptic, it is the smooth completion of the
locus in C2 of some equation of the form (20.3.2), cf. (20.2.1). Here P
is of degree 2p+2 with distinct roots, but otherwise to be determined.
The set of roots of P is the set of (the z-coordinates of) the Weierstrass
points. Hence the set of roots must be invariant under τ0. Thus the
roots of the polynomial either come in conjugate pairs, or else are real.
Therefore P has real coefficients. Furthermore, the leading cofficient
of P may be absorbed into the w-coordinate by extracting a square
root. Here we may have to rotate w by i, but at any rate the coefficients
of P remain real, and thus P can be assumed monic.

If P had a real root, there would be a ramification point fixed by τ0.
But then the corresponding Weierstrass point must be fixed by τ , as
well! This contradicts the fixed point freeness of τ . Thus all roots of P
must come in conjugate pairs. �

20.4. Katok’s entropy inequality

Let (M, g) be a closed surface with a Riemannian metric. De-
note by (M̃, g̃) the universal Riemannian cover of (M, g). Choose a
point x̃0 ∈ M̃ .

Definition 20.4.1. The volume entropy (or asymptotic volume) h(M, g)
of a surface (M, g) is defined by setting

h(M, g) = lim
R→+∞

log (volg̃ B(x̃0, R))

R
, (20.4.1)
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where volg̃ B(x̃0, R) is the volume (area) of the ball of radius R centered

at x̃0 ∈ M̃ .

Since M is compact, the limit in (20.4.1) exists, and does not de-
pend on the point x̃0 ∈ M̃ [Ma79]. This asymptotic invariant describes
the exponential growth rate of the volume in the universal cover.

Definition 20.4.2. The minimal volume entropy, MinEnt, of M is
the infimum of the volume entropy of metrics of unit volume on M , or
equivalently

MinEnt(M) = inf
g
h(M, g) vol(M, g)

1
2 (20.4.2)

where g runs over the space of all metrics on M . For an n-dimensional
manifold in place of M , one defines MinEnt similarly, by replacing the
exponent of vol by 1

n
.

The classical result of A. Katok [Kato83] states that every metric g
on a closed surfaceM with negative Euler characteristic χ(M) satisfies
the optimal inequality

h(g)2 ≥ 2π|χ(M)|
area(g)

. (20.4.3)

Inequality (20.4.3) also holds for hom ent(g) [Kato83], as well as the
topological entropy, since the volume entropy bounds from below the
topological entropy (see [Ma79]). We recall the following well-known
fact, cf. [KatH95, Proposition 9.6.6, p. 374].

Lemma 20.4.3. Let (M, g) be a closed Riemannian manifold. Then,

h(M, g) = lim
T→+∞

log(P ′(T ))

T
(20.4.4)

where P ′(T ) is the number of homotopy classes of loops based at some
fixed point x0 which can be represented by loops of length at most T .

Proof. Let x0 ∈M and choose a lift x̃0 ∈ M̃ . The group

Γ := π1(M,x0)

acts on M̃ by isometries. The orbit of x̃0 under Γ is denoted Γ.x̃0.
Consider a fundamental domain ∆ for the action of Γ, containing x̃0.
Denote by D the diameter of ∆. The cardinal of Γ.x̃0 ∩ B(x̃0, R) is
bounded from above by the number of translated fundamental do-
mains γ.∆, where γ ∈ Γ, contained in B(x̃0, R+D). It is also bounded
from below by the number of translated fundamental domains γ.∆
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contained in B(x̃0, R). Therefore, we have

vol(B(x̃0, R))

vol(M, g)
≤ card (Γ.x̃0 ∩ B(x̃0, R)) ≤

vol(B(x̃0, R +D))

vol(M, g)
.

(20.4.5)
Take the log of these terms and divide by R. The lower bound becomes

1

R
log

(
vol(B(R))

vol(g)

)
=

=
1

R
log (vol(B(R)))− 1

R
log (vol(g)) ,

(20.4.6)

and the upper bound becomes

1

R
log

(
vol(B(R +D))

vol(g)

)
=

=
R +D

R

1

R +D
log(vol(B(R +D)))− 1

R
log(vol(g)).

(20.4.7)

Hence both bounds tend to h(g) when R goes to infinity. Therefore,

h(g) = lim
R→+∞

1

R
log (card(Γ.x̃0 ∩ B(x̃0, R))) . (20.4.8)

This yields the result since P ′(R) = card(Γ.x̃0 ∩ B(x̃0, R)). �
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Klein. Arch. Math. (Basel) 87 (2006), no. 1, 72–74.
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