88-826 Differential Geometry, moed B Bar Ilan University, Prof. Katz

Date: 8 august '19 Duration of the exam: 3 hours. Each of 5 problems is worth 20 points; bonus problem is 10 points

All answers must be justified by providing complete proofs

- 1. Let \mathbb{T}^n be the *n*-dimensional torus and let S^n be the *n*-dimensional sphere.
 - (a) Specify an atlas for \mathbb{T}^1 and prove that \mathbb{T}^1 is a smooth manifold.
 - (b) Specify an atlas for S^2 and prove that S^2 is a smooth manifold.

2. This problem concerns the exterior differential complex on a manifold M.

- (a) Give detailed definitions of the differentials d_1 and d_2 in the following segment of the exterior differential complex: $\Omega^1(M) \xrightarrow{d_1} \Omega^2(M) \xrightarrow{d_2} \Omega^3(M)$.
- (b) Prove that the segment is exact, i.e., $d_2 \circ d_1(\xi) = 0$ for all 1-forms $\xi \in$ $\Omega^1(M).$
- 3. For each of the following lattices L, find L^* and compute $\lambda_1(L^*)$:

 - (a) The lattice $L_G \subseteq \mathbb{C}$ spanned over \mathbb{Z} by the roots of $z^4 = 81$. (b) Let a, b, c > 0 such that $a \leq b \leq c$. The lattice $L_{a,b,c} \subseteq \mathbb{R}^3$ is spanned by ae_1 , be_2 , and ce_3 .
 - (c) The lattice $L_E \subseteq \mathbb{C}$ spanned by the roots of $z^6 = 64$.

4. Let \mathbb{T}^n be the *n*-dimensional torus.

- (a) Compute the de Rham cohomology group $H^0_{dR}(\mathbb{T}^n)$.
- (b) Compute the de Rham cohomology group $H^{1}_{dR}(\mathbb{T}^{1})$.

5. Let M be a closed connected orientable 6-dim. manifold. Assume that $b_2(M) = 1$ and that for an $\omega \in H^2_{dR}(M)$ one has $\omega^{\cup 3} \neq 0$.

- (a) Given a metric g on M, provide a detailed definition of the comass norms $\| \|$ in $\Lambda^2(T_p^*M)$ and $\| \|_{\infty}$ in $\Omega^2 M$.
- (b) Let $\eta \in \omega$ be a representative differential form, where ω is a 2-dimensional generator for de Rham cohomology. Estimate the integral $\int_M\eta\wedge\eta\wedge\eta$ in terms of the comass as well as the total volume vol(M) of M.

(c) Find the best upper bound for the ratio $\frac{\text{stsys}_2(g)^3}{\text{vol}(g)}$.

6. (bonus) Let \mathbb{R}/\mathbb{Z} denote the circle of length 1. Consider the cylinder $C_H =$ $\mathbb{R}/\mathbb{Z} \times [0, H]$ of height H > 0, with coordinates $x \in \mathbb{R}/\mathbb{Z}$ and $y \in [0, H]$. Suppose a surface M contains an annulus conformally equivalent to C_H . Find the best upper bound for the ratio $\frac{\text{sys}_1^2(M)}{\text{area}(M)}$

Good luck!