88-826 Differential Geometry, moed B Bar Ilan University, Prof. Katz Date: 27 aug '18 Duration of the exam: 3 hours Each of 5 problems is worth 20 points; bonus problem is worth 10 points All answers must be justified by providing complete proofs

1. Does there exist a constant $C \in \mathbb{R}$ such that the following relation holds for all infinitesimal ε , and if so for which C exactly does the relation hold?

- (a) $\tan \varepsilon \sqcap C\varepsilon^2$;
- (b) $1 e^{\varepsilon} \sqcap C\varepsilon;$
- (c) $\ln(\cos\varepsilon) \sqcap C\varepsilon$.

2. Consider the real projective space \mathbb{RP}^n .

- (a) Specify a collection of coordinate charts covering \mathbb{RP}^n .
- (b) Prove that \mathbb{RP}^n is a manifold.
- (c) Verify the metrizability condition for \mathbb{RP}^n .

3. This problem deals with flows on manifolds.

- (a) Define the notion of a flow $\theta(t, p)$ on a manifold M and the notion of an infinitesimal generator X of the flow θ .
- (b) Prove that a differentiable vector field on a manifold is invariant under its flow θ_t .

4. Let Φ and G be D^1 prevector fields on \mathbb{R}^n generated respectively by displacements δ_{Φ} and δ_G .

- (a) Prove that $a \mapsto a + \delta_{\Phi} + \delta_G$ is also a D^1 prevector field.
- (b) Prove that $\Phi \circ G$ and $G \circ \Phi$ are equivalent prevector fields.

5. This problem deals with oscillations of a pendulum.

- (a) Give the equation of motion of a pendulum of length ℓ subject to acceleration g under gravity.
- (b) Present the problem as a first order system.
- (c) Define an associated hyperreal walk.
- (d) Prove that for an appropriate choice of infinitesimal λ and prevector field, the hyperreal walk associated with oscillations with amplitude $\prec \lambda$ is periodic with period independent of the amplitude, and specify the period.

Bonus question. Let f be a (possibly discontinuous) function on $I = [a, b] \subseteq \mathbb{R}$ satisfying $|f(x) - f(y)| \leq (x - y)^2$ for all $x, y \in I$, and let $H \in \mathbb{N} \setminus \mathbb{N}$. Use the partition of I defined by H to prove that f is constant.

GOOD LUCK!