88826 Differential geometry, moed A, 1 aug '16

Duration of the exam: 3 hours. Each problem is worth 22 points.

All answers must be justified by providing complete proofs.

1. This problem deals with flows on manifolds.

- (a) Define the notion of a flow $\theta(t, p)$ on a manifold M.
- (b) Define the notion of an infinitesimal generator X of the flow θ .
- (c) Prove that a vector field on a manifold is invariant under its flow θ_t .
- 2. Let $f: D_f \to \mathbb{R}$ be a real function with domain D_f , and f^* its natural extension.
 - (a) Formulate the definition of microcontinuity of a function at a point.
 - (b) express the property of continuity of f on its domain D_f assuming $D_f = \mathbb{R}$, in terms of microcontinuity.
 - (c) Express the property of uniform continuity of f on its domain D_f , assuming $D_f = \mathbb{R}$, in terms of microcontinuity, and analyze the behavior of $f(x) = x^2$ in terms of microcontinuity and uniform continuity.
 - (d) Given a continuous real function f on $[0,1] \subseteq \mathbb{R}$, define a hyperfinite partition and use it to prove the extreme value theorem for f.

3. Let \mathbb{C} be the field of complex numbers. Let $A \subset \mathbb{C}$ be the subfield consisting of all points of the form a + ib where $a, b \in \mathbb{Q}$.

- (a) Give a detailed definition of \mathbb{Q}^* (hyperrational numbers) in terms of a nonprincipal ultrafilter $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$.
- (b) Determine whether \mathbb{Q}^* contains nonzero infinitesimals, and if so provide an example.
- (c) Let $A^* = \{a + ib : a, b \in \mathbb{Q}^*\}$. Let $I = \{a + ib \in A^* : \operatorname{st}(a) = 0, \operatorname{st}(b) = 0\}$. Let $B = \{a + ib \in A^* : a \text{ is finite}, b \text{ is finite}\}$. Determine whether the quotient B/I is isomorphic to either of the structures $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, A$ or their natural extensions $\mathbb{N}^*, \mathbb{Z}^*, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*, A^*$, with proof.

4. Let \mathcal{F} be a nonprincipal ultrafilter on \mathbb{N} , and \mathbb{R}^* the corresponding hyperreal line.

- (a) Consider a sequence $A = \langle A_n \subset \mathbb{R} : n \in \mathbb{N} \rangle$ of subsets of \mathbb{R} . Give a detailed definition of the internal subset $\mathcal{A} = [A] \subset \mathbb{R}^*$.
- (b) Specify when a hyperreal $u = [u_n] \in \mathbb{R}^*$ is said to belong to \mathcal{A} .
- (c) Consider the sequence (1, 2, 3, ...) and let H be the corresponding hyperreal. Determine whether the set $\{x \in \mathbb{R}^* : 0 \le x \le H\}$ is internal, and if so describe it by a sequence of sets as in part (a).
- (d) Determine whether the set {x ∈ ℝ* : 0 ≤ x ≤ √2} is internal, and if so describe it by a sequence of sets as in part (a).

5. This problem deals with small oscillations of a pendulum.

- (a) Give the equation of a pendulum of length ℓ under gravitational acceleration g.
- (b) Present the problem as a first order system.
- (c) Show that by an appropriate choice of infinitesimal λ , oscillations with amplitude on the order of λ are all periodic with period independent of the amplitude, and specify the period.

GOOD LUCK!