DIFFERENTIAL GEOMETRY 88-826-01 HOMEWORK SET 2

- 1. Let $x(u^1, u^2)$ be a parametrized surface in \mathbb{R}^3 . Consider indices i, j, k, ℓ . Set $x_{ij} = \frac{\partial^2 x}{\partial u^i \partial u^j}$. Find an expression for the scalar product $\langle x_{ij}, x_{k\ell} \rangle$ in terms of a combination of the following data: the Γ_{ij}^k symbols, the coefficients of the first fundamental form, and the coefficients of the second fundamental form.
- 2. This problem concerns the calculation of Gaussian curvature K, and relies on the material of the course 88-201, as well.
 - (a) Describe four possible ways of calculating K.
 - (b) Which of the approaches in (a) are applicable if the data one is given is that the metric is defined in coordinates (u^1, u^2) by the metric coefficients $g_{ij}(u^1, u^2) = \frac{1}{(u^2)^2} \delta_{ij}$ but one is *not* given any explicit imbedding in Euclidean space?
 - (c) Calculate K for the metric in (b).
- 3. Let $x(u^1, u^2)$ be a parametrized surface in 3-space, and $n = n(u^1, u^2)$ its unit normal vector. Express the following quantities in terms of the coefficients g_{ij} of the first fundamental form; the inverse matrix $g^{k\ell}$; the symbols Γ_{ij}^k ; the coefficients L_j^i of the Weingarten map; and the coefficients L_{ij} of the second fundamental form, simplifying the expression as much as possible. Here the Einstein summation convention implies summation over every index occurring both in a lower position and in an upper position.

Expand the scalar product and simplify as much as possible:

- (a) $\langle x_{\ell i}, x_k \rangle \left(\delta^k_{m} \right) g^{m\ell}$
- (b) $\langle n_j, x_{pq} \rangle (\delta^j_r)$.
- (c) $\langle x_{stu}, n \rangle$. (d) $g_{pq} (\delta^q_s) g^{su} \delta^p_u$.