March 9, 2014 Differential geometry 88-826 Homework 1

- 1. Consider the curve $\alpha(t) = (2\cos t, 2\sin t)$ in the (u, v)-plane. Consider the derivation X on the space \mathbb{D}_p of smooth functions $f \in \mathbb{D}_p$ near the point $p=(\sqrt{2},\sqrt{2})$ given by $X(f)=\frac{d}{dt}(f(\alpha(t))|_{t=\pi/4})$. Express X as a linear combination of the partial derivatives $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial v}$ at the point p.
- 2. The volume of an open region $D \subset \mathbb{R}^3$ is calculated with respect to cylindrical coordinates (r, θ, z) using the volume element

$$dV = r dr d\theta dz$$
.

Namely, an integral is of the form $\int_D dV = \iiint r \, dr \, d\theta \, dz$.

- (a) Find the volume of a right circular cone with height h and base a circle of radius b.
- (b) evaluate the integral $\iiint_E \sqrt{x^2 + y^2} z dV$ where E is the cylin $der x^2 + y^2 \le 1, \ 0 \le z \le 2.$
- (c) Find the volume of the object filling the region above the paraboloid $z = x^2 + y^2$ and below the plane z = 1.
- 3. Spherical coordinates (ρ, θ, ϕ) range between the bounds $0 \leq \rho$, $0 \le \theta \le 2\pi$, and $0 \le \phi \le \pi$ (note the different upper bounds for θ and ϕ). The area of a spherical region D is calculated using a volume element of the form $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$, so that the volume of a region D is $\int_D dV = \iiint_D \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$.
 - (1) Find the volume of the region above the cone $\phi = \beta$ and inside
 - the sphere of radius $\rho = c$. (2) Find the integral $\iiint_E x^2 + y^2 + z^2 dV$, where E is the solid region
 - bounded by the sphere $x^2 + y^2 + z^2 = b^2$. (3) Find the integral $\iiint_E \frac{1}{x^2 + y^2 + z^2} dV$, where E is the region between two spheres: $a \leq \rho \leq b$.
- 4. Let δ^i_i be the Kronecker delta function on \mathbb{R}^n , where $i, j = 1, \ldots, n$, viewed as a linear transformation $\mathbb{R}^n \to \mathbb{R}^n$. Evaluate the expression

$$\delta^{i}_{j}\delta^{j}_{k}\delta^{k}_{i}$$
.