DIFFERENTIAL GEOMETRY 88-826 HOMEWORK SET 4

Due Date: 7 june '23

1. Let r > 0 and let D be the unbounded region

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > r^2\}$$

endowed with the standard orientation $dx \wedge dy$. Determine the induced orientation on ∂D and compare it to $d\theta$.

- 2. Let M be a 6-dimensional manifold with $b_2(M) = 1$, with an integer de Rham class $\omega \in L^2_{\mathrm{dR}}(M)$ such that $\omega^{\cup 3}$ is the fundamental cohomology class of M. Find the supremum over all Riemannian metrics g on M of the ratio $\frac{\mathrm{stsys}_2(g)}{\sqrt[3]{\mathrm{vol}(g)}}$, with proof.
- 3. Let $M = \mathbb{CP}^1 \times \mathbb{CP}^2 \times \mathbb{CP}^3$. Prove that all metrics g of volume 1 on M satisfy $\operatorname{stsys}_2(g) \leq C_n$ for a suitable constant C_n independent of the metric.
- 4. Determine which of the following 8-dimensional manifolds satisfy a stable systolic inequality for stsys₂ with a constant independent of the metric:
 - (1) $S^2 \times S^8$;
 - (2) $S^2 \times \mathbb{CP}^3$;

 - (3) $S^2 \times S^2 \times S^4$; (4) $S^2 \times S^2 \times \mathbb{CP}^2$;
 - (5) $\mathbb{CP}^2 \times S^4$; (6) $\mathbb{CP}^3 \times T^2$.