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1. Ceva, Menelaus

The material in this section is from the book by H. Perfect [9].
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Definition 1.1. Points ABC are collinear if they lie on a common
line.

Definition 1.2. Lines a, b, c are concurrent if they meet in a common
point.

Suppose a point X lies on a line AB. We wish to refine the notion
of length of intervals on a line so as to assign a sign to ratios of such
lengths.

Definition 1.3 (signed length). Signed length is defined in such a way
that

(1) If X is between A and B then AX
XB

> 0.

(2) If A is between X and B then AX
XB

< 0.

(3) If B is between A and X then AX
XB

< 0.

Both Ceva’s theorem and Menelaus’ theorem are formulated with
signed length in mind.

Theorem 1.4 (Ceva’s Theorem). Straight lines AD, BE, CF passing
through the vertices of triangle ABC and meeting the opposite sides in
D,E, F respectively, are concurrent if and only if

BD

DC

CE

EA

AF

FB
= 1.

Theorem 1.5 (Menelaus’ Theorem). Points D,E, F on the sides BC,
CA, AB of triangle ABC are collinear if and only if

BD

DC

CE

EA

AF

FB
= −1.

Corollary 1.6. Concurrency of altitudes, angle bisectors, and medians
in a triangle.

2. Desargues, Pappus

Theorem 2.1 (Desargues’ Theorem). If two triangles ABC and A′B′C ′

lying in a plane are such that lines AA′, BB′, CC ′ meet in a point O,
and if the pairs of corresponding sides BC and B′C ′, CA and C ′A′, AB
and A′B′ meet respectively in points L,N,M , then the points L,N,M
are collinear.

There are two points of view on Desargues’ theorem: the slick state-
ment: “triangles in pespective from a point, are in perspective from
a line”, and a detailed statement in terms of specific intersections as
above. One must insist on the explicit version, for otherwise students
come away without a true understanding of Desargues’ theorem.
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Theorem 2.2 (Pappus’ Theorem). If A,B,C and A′, B′, C ′ are two
collinear triads of opints, and if BC ′andB′C meet in L, whereas CA′

and C ′A meet in M , while AB′ and AAB meet in N , then the points
L,N,M are collinear.

3. Pascal’s theorem and harmonic 4-tuples

Theorem 3.1 (Pascal’s Theorem). If A,B,C and A′, B′, C ′ are two
triads of points lying on a circle C , and if BC ′ and B′C meet in L,
whereas CA′ and C ′A meet in M , while AAB′ and A′B meet in N ,
then the points L,M,N are collinear.

Corollary 3.2. If a hexagon is inscribed in a circle, then the pairs of
opposite sides meet in collinear points.

Later we will deal with Brianchon’s theorem, which can be viewed
as the polar of Pascal’s theorem.
Note that the usual statement of Brianchon’s theorem in terms of

the sides and diagonals of a hexagon, at least on the surface of it, is
less general than the polar dual of Pascal.
State this duality precisely in terms of labeled points. The connection

between the dual theorems needs to be explained in detail, otherwise
the students don’t learn to translate theorems to their duals/polars.

Definition 3.3. Internal and external bisectors of angles in a triangle.

Theorem 3.4. If L and L′ are points on the side BC of the triangle
ABC dividing the segment BC internally and externally in the same
ratio, and if M,M ′ on CA and N,N ′ on AB are similarly defined, then
AL,BM,CN are concurrent if and only if L′,M ′, N ′ are collinear.

Definition 3.5. A collinear 4-tuple B,C, L, L′ is called a harmonic
4-tuple if L divides the interval BC internally in the same ratio as L′

divides BC externally, so that BL
BC

= −BL′

L′C
.

4. Axioms of affine planes and projective planes

The material is in Hartshorne [5].

4.1. Axioms of affine plane. Axiomatisation of affine planes: 3 ax-
ioms.
A1. Given two distinct points P and Q, there is one and only one

line containing both P and Q.
A2. Given a line ℓ and a point P , not on ℓ, there is one and only one

line m which is parallel to ℓ and which passes through P .
A3. There exist three non-collinear points.
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Proofs of basic results derived from the axioms.
Note that a line by definition is parallel to itself (in previous years

students protested, citing Margolis).

4.2. Axiom of projective plane. The 4 axioms of a projective plane
S.
P1. Two distinct points P , Q of S lie on one and only one line.
P2. Any two lines meet in at least one point.
P3. There exist three non-collinear points.
P4. Every line contains at least three points.

4.3. Adding points at infinity. The model obtained by completing
the affine line by adding points at infinity defined by pencils of parallel
lines. This treatment follows Hartshorne [5].
Proof that this model satisfies the four axioms.

5. Isomorphic models

5.1. Homogeneous coordinates. Consider the example of projective
plane, denoted S, defined as set of lines through the origin in R

3.
Recall that a (projective) line of S is the set of 1-dimensional sub-

spaces lying in a given 2-dimensional subspace of R3.
A point P ∈ S is a line through O = (0, 0, 0) (the origin). We will

represent P by choosing any point (x1, x2, x3) on the line, provided the
point is different from the origin.

Definition 5.1. The numbers x1, x2, x3 are the homogeneous coordi-
nates of P .

Any other point on the line has the coordinates (λx1, λx2, λx3),
where λ ∈ R, λ 6= 0.
Thus S is the collection of equivalence classes of triples (x1, x2, x3) of

real numbers, not all zero, where two triples (x1, x2, x3) and (x′

1, x
′

2, x
′

3)
represent the same point if and only if there exists λ ∈ R such that

x′

i = λxi for each i = 1, 2, 3.

Remark 5.2. If x3 = 0 then the point P = (x1, x2, 0) spans a line in
the (x1, x2) plane of slope m = x2

x1

. The slope is infinite, m = ∞, if and
only if x1 = 0.

Remark 5.3. Since the euqation of a plane in R
3 passing through O

is of the form

a1x1 + a2x2 + a3x3 = 0, where not all ai are zero, (5.1)

we see that equation (5.1) is also the equation of a line of S in terms
of the homogeneous coordinates.
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5.2. Isomorphism of two models. We will prove that the comple-
tion at infinity and homogeneous coordinates give isomorphic models
of the real projective plane.

Definition 5.4. Two projective planes S and S ′ are isomorphic if there
exists a one-to-one correspondence T : S → S ′ which takes collinear
points to collinear points.

Proposition 5.5. The projective plane S defined by homogeneous coor-
dinates which are real numbers, is isomorphic to the projective plane E
obtained by completing the ordinary affine plane of Euclidean geometry.

To prove the proposition, we will use the notation (x1, x2, x3) for the
homogeneous coordinates in S. We will use (x, y) for the coordinates
in the Euclidean plane E, whose completion by points at infinity is
denoted E. Recall that E = E ∪ ω. Thus our second model is E. The
points of E are

• points (x, y) of E, and
• ideal points at infinity of the form ℓ∞ on the horizon ω, one
ideal point for each pencil of parallel lines.

Lemma 5.6. An ideal point ℓ∞ is uniquely determined by its slope m ∈
R ∪ {∞}.
Proof. Indeed, a pencil of parallel lines [ℓ] is uniquely determined by
its slope m. Here m may be either a real number or ∞ (when the lines
of the pencil are vertical). �

To prove Proposition 5.5, we will define a mapping T : S → E which
will exhibit an isomorphism between S and E. Let P = (x1, x2, x3) be
a point of S.

Remark 5.7. The idea is to cut all the lines by the plane x3 = 1 in R
3.

Then non-horizontal lines will correspond to finite points of E whereas
horizontal lines will correspond to ideal points at infinity of E.

Thus, we consider the following two cases:

(1) If x3 6= 0, we define T (P ) to be the point of E ⊆ E with coor-
dinates x = x1

x3

, y = x2

x3

. Note that this is uniquely determined,

since if we replace (x1, x2, x3) by (λx1, λx2, λx3), then x and y
do not change. Every point of (x, y) ∈ E can be obtained this
way by using the triple (x, y, 1).

(2) If x3 = 0, then we define T (P ) to be the ideal point of E
with slope m = x2

x1

. This makes sense since x1 and x2 can-

not be both zero, replacing (x1, x2, 0) by (λx1, λx2, 0) does not
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change m, and each value of m occurs. Namely, if m 6= 0 then T
sends (1,m, 0) to the ideal point with slope m, and if m = ∞
then T sends (0, 1, 0) to the ideal point with that slope.

The map T : S → E thus defined is therefore one-to-one and onto.
Therefore Proposition 5.5 results from the following theorem.

Theorem 5.8. The map T defined above sends collinear points to
collinear points.

Recall that a line ℓ ⊆ S is given by equation (5.1), namely a1x1 +
a2x2 + a3x3 = 0. We now consider two cases.

Case 1. Suppose a1 and a2 are not both zero. Then the theorem
follows from the following lemma.

Lemma 5.9. Consider the images under T of the points of ℓ. Then

(1) points with nonzero x3 remain collinear in E, and form a line
of slope −a1

a2
;

(2) the point with x3 = 0 is sent under T to the ideal point with
slope m = −a1

a2
.

Proof. If x3 6= 0 we can choose a representative with homogeneous
coordinates (x1, x2, 1). Thus we have a1x1 + a2x2 + a1 = 0. Hence the
line ℓ gets mapped to the line a1x+ a2y = −a3 in E. Equivalently,

y = −a1
a2

x− a3
a2

,

which is a line of the required slope m = −a1
a2
.

When x3 = 0, the points satisfying (5.1) are given by x1 = λa2
and x2 = −λa1. The map T by definition sends this point to the ideal
point with slope m = −a1

a2
. �

Case 2. The remaining case is a1 = a2 = 0. In this case, the line ℓ
in S is defined by the equation x3 = 0. Any point of S with x3 = 0
goes to an ideal point of E, and these points form precisely the horizon
line ω ⊆ E.

5.3. Affine neighborhoods.

Definition 5.10. The real projective plane RP 2 is the model of the
axioms P1 through P4 obtained either via homogeneous coordinates
or via completion.

From now on when we mention the real projective plane we will refer
to its isomorphism type, regardless of the construction chosen.
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Definition 5.11. An affine neighborhood in the real projective plane RP 2

is obtained by deleting a projective line.

Theorem 5.12. Each affine plane of RP 2 is isomorphic to the Eu-
clidean plane.

Proof. Deleting the projective line ω ⊆ E produces the Euclidean
plane E. The claim follows from the fact that any two planes in R

3 dif-
fer by a linear transformation that preserves 1-dimensional subspaces
and 2-dimensional subspaces. �

6. Cross-ratio

The material on cross-ratios is in Adler [1].

Definition 6.1. Cross-ratio1 of four collinear points A,B,C,D is

R(A,B,C,D) =
AC/CB

AD/DB
.

Definition 6.2. Perspectivity from a point.

Prove invariance under perspectivity, using areas.

Definition 6.3. Cross ratio of a pencil of lines.

The 6 cross-ratios: λ, 1− λ, 1

λ
, etc.

Role of the symmetric group on 4 letters and of the Klein 4-group.
Exceptional case: the 3 cross-ratios.

Remark 6.4. Over the complex numbers: an additional exceptional
case of only 2 distinct values, when

λ = e±iπ/3.

The cross-ratio of 4 points on a circle.
Relation to polarity (which has not been treated formally yet): work

with tangent lines to a circle instead of points on a circle.
Then a variable tangent line t meets a 4-tuple of fixed tangents in a

4-tuple of points whose cross-ratio is independent of t.

7. Geometric constr, projective transf, transitivity on

triples

Exceptional values 0, 1,∞ of the cross-ratio when some of the points
collide.

Theorem 7.1. R(∞, 0, 1, λ) = λ.

1yachas hakaful.
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Constructions in projective geometry.
An explicit geometric construction of the 4th harmonic point, using

Ceva and Menelaus.
Recall the notion of a perspectivity.

Definition 7.2. A projectivity is a transformation preserving the cross-
ratio.

The notation: a wedge under the equality sign.

Theorem 7.3. Thansitivity of projective transformations on triples of
collinear points.

Proof by composition of suitable perspectivities.

Corollary 7.4. On every line in projective plane, given a triple of
points, a fourth point is uniquely determined by the cross-ratio.

More axiomatics: prove from the 4 axioms the following:

Theorem 7.5. There is a 1-1 correspondence between points on a line ℓ
and lines through a point A not on ℓ.

8. Projective plane over an arbitrary field

Construction of the projective plane over an arbitrary field.
Formulas for numbers of points in finite planes.

9. Duality, self-dual axiom systems

Duality.
The four axioms of projective geometry give rise to a self-dual system,

i.e. the dual of each axiom can be proved from the original list of four.
Discussion the construction in homogeneous coordinates over any

field, using a generalisation of the vector product.
Counting points in a projective plane, discuss in a bit more detail

the notion of an affine neighborhood (to break the idea that the affine
plane is ”special”).
Detailed discussion of the case over the field F2, writing out the

homogeneous coordinates of all the points, and explicit equations of
some of the lines.

10. Cross-ratio in homogeneous coordinates

The definition of cross-ratio in homogeneous coordinates follows the
book by Kaplansky [8].
Here if A,B,C,D ∈ RP

1 we view A,B,C,D as 1-dimensional sub-
spaces in R

2. We choose representative nonzero vectors α ∈ A, β ∈
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B, γ ∈ C, and δ ∈ D. We show that the vectors can be picked in such
a way as to satisfy the relations

γ = α + β

and
δ = kα + β, (10.1)

where k ∈ R is suitably chosen. Then the coefficent k in (10.1) is the
cross-ratio of A,B,C,D:

Theorem 10.1. The coefficient k is independent of choices made and
satisfies R(A,B,C,D) = k.

11. Conic sections

Conic sections: intersection of cone in R
3 and plane.

Ellipse, parabola, hyperbola and number of points at infinity: 0, 1,
2.

Theorem 11.1. Every nondegenerate nonempty real conic section is
projectively equivalent to the circle.

Example 11.2. To transform a circle into a parabola by a projective
transformation, consider the equation of the circle

+x2

1 + x2

2 − x2

3 = 0. (11.1)

Here in the affine neighborhood x3 6= 0 we obtain the usual circle
equation

x2 + y2 = 1 (11.2)

where x = x1

x3

and y = x2

x3

. We would like to tranform this into a
parabola

X2X3 = X2

1 . (11.3)

Here in the affine neighborhoodX3 6= 0 this becomes the usual equation
of a parabola Y = X2, where X = X1

X3

and Y = X2

X3

. We rewrite (11.3)
as

(X2 +X3)
2 − (X2 −X3)

2 = (2X1)
2,

or
+(2X1)

2 + (X2 −X3)
2 − (X2 +X3)

2 = 0. (11.4)

Note that the signs +,+,− in equations (11.1) and (11.4) are compat-
ible. Therefore we exploit the transformation

x1 = 2X1, x2 = X2 −X3, x3 = X2 +X3.

This is a linear transformation in homogeneous coordinates and there-
fore defines a projective transformation on the projective planes.
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Next, this can be expressed in an affine neighborhood by noting that

x1

x3

=
2X1

X2 +X3

=
2X1

X3

X2

X3

+ 1

and
x2

x3

=
X2 −X3

X2 +X3

=
X2

X3

− 1
X2

X3

+ 1
.

In affine coordinates, we obtain

x =
X

Y + 1
, y =

Y − 1

Y + 1
. (11.5)

Substituting (11.5) into the circle equation (11.2) we obtain the equa-
tion of parabola Y = X2.

Example 11.3. Transform parabola into hyperbola.

Example 11.4. Transform ellipse x2 + xy+ y2 = 1 into parabola Y =
X2.

12. Polarity, reciprocity

Definition of polar line.
Metric characterisation of polar lines.
Axioms of Fano, Desargues, and Pappus.
Discussion of relation between algebraic properties and geometric

axioms:

Theorem 12.1. Suppose a projective plane π satisfies the axioms P1,
. . . P4 as well as Desargues’ axiom. Then there exists a division ring D
such that π = DP 2.

Theorem 12.2. Suppose in addition to the hypotheses above, π satis-
fies Fano’s axiom (the diagonal points of a complete quadrilateral are
not collinear). Then char D 6= 2.

Theorem 12.3. Suppose in addition to the hypotheses above, π satis-
fies Pappus’ axiom. Then π = DP 2 where D is a field.

This point of view may be found in the book by Kadison and Kro-
mann [7, chapter 8]. It originates with Hilbert’s book [6], see chapter
5 there, particularly paragraph 24: “Introduction of an algebra of seg-
ments based upon Desargues’s theorem and independence of the axioms
of congruence”, starting on page 79. Hilbert mentions that this was
also discussed by Moore.
1. proof of the reciprocity theorem: if Q is on p, then P is on q.
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2. proof of the fact that polarity is a projective transformation, in
two stages. First one proves it for 4 points lying on a tangent to the
conic. Then one proves it for an arbitrary collinear 4-tuple.
3. A nice application is the theorem that every conic defines a pro-

jective transformation from points on a tangent, to points on another
tangent. Namely, a point B on a tangent t is sent to a point B’ on
tangent t’ if and only if the line BB’ is tangent to the conic.
4. Present another example of a construction in projective geometry.

So far the only construction we had is the construction of the fourth
harmonic point, using Menelaus theorem.
5. Using the result that polarity is a projective transformation, con-

struct a conic from 5 pieces of data. The 5 pieces are points L and L’,
the corresponding tangent lines l and l’ through them, and an addi-
tional tangent line a”. One constructs the map as in item 3 above, as
the composition of two perspectivities.
Geometric constructions using projective theorems is an important

topic in projective geometry that we have barely touched upon.

13. Constructing generic point on conic through 5 points

Construction of a generic point on a conic passing through 5 given
points, using Pascal’s theorem.
Translating it to a polar statement, so as to construct the polar

pencil of parallel lines to the conic.
Finding a projective map between a pair of pencils of lines through

a pair of points on a conic.

14. Mobius transformations

Every projective map from P 1 to itself is of the form

x → ax+ b

cx+ d
.

I already mentioned the fact that projective transformations corre-
spond to linear maps when you write them in homogeneous coordinates.
The fractional-linear presentation is a consequence of this.
More material on axioms of Fano, Desargues, Pappus, related mate-

rial on the polar line, perhaps a proof of Desargues assuming existence
of imbedding in projective 3-space.
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15. Is it a conic?

Given collinear points A, B, C, a variable line through C meets a
conic at P and Q. Why does AP ∩ BQ trace another conic?
Sometimes one obtains a straight line segment rather than a conic

(in a special case). Assume the conic is the standard unit circle. We
can place the line ABC at infinity, and assume that C is the horizontal
direction, whereas A and B are the directions of eπi/3 and e2πi/3. The
intersection points P and Q are symmetric with respect to the y-axis,
and therefore the intersection point AP ∩ BQ will always lie on the
y-axis. This is of course a degenerate case.
In general, one can argue as follows.

(1) Use a projective transformation to send the line ABC to the
line at infinity.

(2) Use an affine transformation to send the ellipse to the unit circle.
(3) By a rotation we can assume that C corresponds to the pencil

of horizontal lines (including the x-axis in the plane).

Then the points A and B correspond to pencils of parallel lines of
slopes m1,m2 6= 0.
A horizontal line cuts the unit circle in (at most) two points (s,

√
1− s2)

and (−s,
√
1− s2). We need to show that the intersection point (x, y)

of a pair of lines of slopes m1 and m2 passing through such a pair of
points satisfies a quadratic equation. Then by definition it will be a
conic section (at least in the nondegenerate case).
The equations of the two lines are

y =
√
1− s2 +m1(x+ s)

passing through the point (−s,
√
1− s2), and

y =
√
1− s2 +m2(x− s),

passing through the point (s,
√
1− s2).

It follows that x = m1+m2

m2−m1

s or s = mx where m = m2−m1

m1+m2

. From the
equation of the first line we obtain

(

y −m1(x+mx)
)2

= 1− (mx)2.

This is a quadratic equation in x and y, as required.
This argument works in the case when the conic and the line ABC

have no common points (either finite or infinite).
If the conic K and the line ABC have a single intersection point,

one can apply a similar argument.

(1) We move the line ABC to the line at infinity.
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(2) We move C to the pencil of horizontal lines and the point ABC∩
K to the pencil of vertical lines.

(3) Apply a translation to make sure that the axis of symmetry of
the parabola K is the y-axis and the apex of the parabola is at
the origin.

(4) Afterwards apply a scaling to make sure the parabola is the
standard parabola y = x2.

A horizontal line cuts the parabola at (±s, s2). The equations of the
two lines of slopes m1 and m2 are then y = s2 + m1(x + s) and y =
s2 +m2(x− s). We obtain a similar relation s = mx (for the same m
as above). In this case also we obtain a quadratic relation between x
and y, of the form y = (mx)2 +m(x+mx), as required.

16. Hyperbolic geometry

We introduce the Poincaré disk model following Greenberg [3].
Here a point is represented by the interior of a Euclidean circle γ.
A line is represented by one of the following:

(1) an open diameter of the disk bounded by γ, or
(2) an arc of circle δ contained in the disk and perpendicular to γ.

The notion of hyperbolic distance is defined via the cross-ratio.
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