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Solutions to exam in 88-201 moed A july '17

Problem 1. The proof of the theorema egregium can be found in the choveret of the
course at http://u.math.biu.ac.il/~katzmik/egreglong.pdf in sections 10.5 - 10.7 on
pages 116-120 (the section and page numbers may change in the future as the
choveret is edited).

Problem 2.

(a) To determine the conic one can either complete the square, or diagonalize the
matrix of coefficients using eigenvalues and eigenvectors. One then applies Theorem
2.6.1 an its corollaries on page 28 of the choveret, or Theorem 3.1.1 on page 31 of the
choveret (the theorem number and page number may change in the future as the
choveret is edited).

(b) Once the quadratic form is diagonalized, we recognize the standard equation of a
paraboloid as described in Definition 3.6.2 on page 35 (the numbers may change as
the choveret is edited in the future). To find the Gaussian curvature we first prove
that the point is a critical point, and then apply Theorem 3.10.3 on page 41 to compute
the curvature via the Hessian.

Problem 3. Find the maximum of the curvature of a curve as in choveret sections 4.8-
4.12 on pages 49-53 (page numbers may change in the future as the choveret is
edited).

Problem 4.

(a) The formula relating the Laplacian to the mean curvature in isothermal coordinates
is proved in choveret Section 10.3 on pages 113-114 (the numbers may change in the
future as the choveret is edited).

(b) The minimality of the catenoid is proved in choveret Theorem 10.4.4 on page 115
(the numbers may change as the choveret is edited in the future).

(c) The minimality of the Scherk surface is proved in choveret Theorem 10.2.3 in
Section 10.2 on pages 111-113 (the page numbers may change as the choveret is
edited in the future).

Problem 5. Numerous examples of simplification of formulas in Einstein index
notation were treated both in class and the exams from previous years. Make sure also
to classify the indices as being either free indices or summation indices.

Problem 6. Parametrizing the curve by a(f) we note that at the point closest to the
origin one has <a(t),a(t)>’ =0 by calculus. Applying Leibniz rule we obtain

(a’(t), a(t)> =0. Therefore the tangent vector «'(¢) is orthogonal to the position

vector a(t).



