June 22, 2020

DETAILED SOLUTIONS FOR EXAM IN 88-201
MOED A JULY ’17

Solution to Problem 1: Prove the theorema egregium of Gauss.
Consider the third partial derivative z;;;, = %. Let us calcu-
late its tangential component relative to the basis (1,79, n) for R3.

Recall that ny = L, z, and x;, = F?kl’g + Lj;n. Thus, we have

(2ij)k = (Tfjzm + Lyjn),

m m
= Fij;kxm + Fijxmk + Lijnk + Lij;kn

=T + T (10 2 + Lyan) + Lij (LF 3,) + Lijen.

v

Grouping together the tangential terms, we obtain
(@ij)k = Ui + T3 (Th@p) + Lij (L) + (- )n
= (T + T+ Ly L) 2+ ()
- (ng;k +TITY + Liquk) v+ (. )n,

since the symbols 'l are symmetric in the two subscripts. The sym-
metry in j, k (equality of mixed partials) implies the identity ;5 = 0.
and therefore Fg[j;k} + F%FZW + LZ.[quM = 0 for each ¢ = 1,2. We now
choose the valus i = j = 1 and k = ¢ = 2 for the indices, to obtain
F%[lﬂ] + F%Fg]m = —L1[1L22} = gliL’[1L22} = gnLl[lLQz} since the term
L%, L?, = 0 vanishes. This yields the desired formula for K = det(1V},)
and completes the proof of the theorema egregium.

Solution to Problem 2: Consider the quadratic form Q(z,y) =
—32% + 4ay — 612

(a) To characterize the plane curve Q(x,y) = —1, we write down
the explicit equation —3z% + 4xy — 6y?> = —1. Changing the sign,
we obtain 322 — 2 - 2zy + 6y?> = 1. Thus we have the coefficients
a=3,b=—2¢c=6. Note two points:
(1) ac — b* = 18 — 4 = 14 > 0 (the expression ac — b? is positive);
(2) This conic section is not degenerate since it contains at least
two points (z = %,y =0).
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Therefore by the classification theorem proved in class, this conic sec-
tion is an ellipse.

(b) To characterize the surface z = Q(z,y) we write down the explicit
equation of the quadric surface: z = —32%+4zy —6y?%, or —32% +4ay —
63> — z = 0 or equivalently 322 —4zy + 6y*+ 2 = 0. The corresponding

3 -2 0
matrix S is the matrix S = | =2 6 0 ]. Note the following:
0 0 0
(1) The matrix S has rank 2 and can be diagonalized in coordinates

(‘KLJ, y/’ Z);
(2) the coefficent of the linear term z is nonzero.
By the classification theorem proved in class, the surface is a parabo-

loid. Recall that paraboloids are of two types: elliptic paraboloid and
hyperbolic paraboloid. Note that det (_32 _62) > 0 and therefore
the eigenvalues have the same sign. By the classification theorem, the
quadric surface is an elliptic paraboloid.

Finally, the origin is a critical point of the function Q(x,y). By the
theorem proved in class, at such a point the Gaussian curvature K of

the surface given by the graph of the function equals the determinant
of the Hessian Hg of Q. Differentiating, we obtain Hg = (_46 —%2) ,
and therefore K = det(Hg) = 56.

Solution to Problem 3: We look for the point of maximal curvature
of curves. We use the formula k& = ‘?@}?‘ to compute the curvature.
Here Dp(F) = FmFy2 —2F,, F,F, + F,,F?.

(a) Curve x + y?> = 1. We define F(z,y) = z +y?> — 1. We have
F,=1F =2y, F,;, =0, F,, =0, F,, = 2. Therefore Dg(F) =
F, F?=2.1=2. Meanwhile [VF| = \/1+ 4y2 Thus k = —27

a7
The curvature is maximal when the expression 1+ 4y? is minimal, i.e.,
when y = 0. At this point = 1 from the equation of the curve. Thus
the point (z,y) = (1,0) (the apex of the parabola) is the unique point
where the curvature is maximal.

(b) Curve zy +1 =0,z > 0. We set F(z,y) = xy + 1. Then F, =y,
F ==, Fy =0, F,y =1, F,, = 0. Therefore Dy(F) = —2F,,F,F, =

—2zy. From the equation of the curve we have ry = —1 and therefore
Dp(F) =2. Thus k = —5—2537. It remains to mimimize the expression
(z2+y?)%/

22 + y? along the curve. We have > 0 by definition of the curve. We



DETAILED SOLUTIONS FOR EXAM IN 88-201 MOED A JULY 17 3

exploit the defining relation 2y = —1 of the curve to obtain z? + y? =
(z—y?+2zy = @—-y?-2=(z+ %)2 — 1. To minimize this
expression, it suffices to minimize the quantity = + % We will show
that the sum x + % is minimal when x = 1. Namely, to show that
T+ % > 2, rewrite the inequality as 22 +1 > 2z or 22 +1 — 22 > 0
or equivalently (z — 1) > 0 which is a true inequality. Hence the
maximum of the curvature is when x = 1 and so y = —% = —1. Thus
the maximum of curvature is attained at the point (x,y) = (1, —1).

(c) Curve x +Iny = 0. We set F(z,y) = x + Iny. We have F, = 1,
F, = i, F,,=0,F,=0,F,= _LyQ Hence Dp(F) = _%12 = —y 2
y? _ 1 _ y® _ y
ity 2P PO T R T PR
To maximize k¢ it is sufficient to maximize k% = ﬁ
an auxiliary variable z = y? to simplify calculations. We are therefore

interested in maximizing the expression g(z) = SR Differentiating

we obtain ¢f(z) = FRARERE = 252 = 2 = 0. We obtain

an extremum when 1 — 2z =0, i.e., z = % Checking that the second
derivative is negative at the point, we conclude that this is a point of
maximum. Thus the maximum of the curvature of the curve is attained
when y? =1 ie., y =272 Hence z = In(27"/%) = -1 In2.

The curvature is & =

. We will use

Solution to Problem 4: Let M be a surface with a parametrisation
z(u,v).

(a) To prove the formula Az = —2f2Hn in isothermal coordinates
(u,v), we calculate as follows. We use the formula z;; = I'};z), + Lijn
to write Az = w11 +T9y = ['hyx1 + 1% 9+ Lyyn+ Tz + 13m0 + Logn =
(T}, +T3y) 1 + (T%, + T3) 22 + (L11 + Laz) n. By a theorem proved
in the lectures, with respect to isothermal coordinates we necessarily
have the identities '}y + '3, = 0 and T, + '3, = 0. Recall that with
respect to isothermal coordinates, we have L; = —f2L". Therefore
Az = (L + Log)n = —(LY + L%) f?>n = —2H f?n as required.

(b) To prove that the catenoid is a minimal surface, recall that the
catenoid is the surface obtained by rotating the graph of x = cosh z
around the z-axis. Thus the catenoid parametrized by means of the
formula z(0, ¢) = (cosh ¢ cosf, cosh psinf, ¢). The generating curve
is the curve r(¢) = cosh¢ and z(¢) = ¢ (the catenary). Then ac-
cording to the general formula, gy = r? = cosh’¢. Also, gon =

(%)2 + (3_2)2 = (Sinh¢)2+ = coshng = ¢11, and g1 = 0. We con-

clude that the coordinates (6, ¢) are isothermal. Finally, 17 4+ x9y =
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(—a cosh ¢ cos 0, —a cosh ¢ sin 6,0)" + (a cosh ¢ cos 0, a cosh ¢ sinh,0)t =
(0,0,0). By the result of (a), we have H = 0 and therefore the catenoid
is a minimal surface.

(c) Let us prove that the Scherk surface is a minimal surface. First
we note the following Fact. If f(x) = Incosz and h(x) = f'(x), then

we have IJJZ,},LZSD) = —1 identically in z. Indeed, if f(z) = Incosz then
hz) = f'(x) = —tanz and f"(z) = ———. Therefore 1;:,}}7(250) =—(1+
tan® z) cos®> x = —1 as required.

The Scherk surface by definition is parametrized by the map z(z,y) =
(x,y, f(y)—f(x)). Clearly, we have x15 = 0. Therefore L1y = (x12,n) =
0. Thus the matrix (L;;) is diagonal. The mean curvature H satisfies
2H = trace W, = L1;g" + Lapg?* and therefore the condition H = 0 is
equivalent to Li1g" + Lagg®* = 0. Let g = det(g;;) (note that gy # 0).
Then ¢!t = 22 and g*? = 2%, Thus the condition becomes becomes

Lugeatloou — () where g # 0. Therefore the minimality condition is

g
Lu 4 Ln — 0 Now let h(z) = f/(z). We have z; = (1,0, —h(z))* and

gi1 922
zy = (0,1,h(y))". Hence g1 = 1+ h%*(z) and gos = 1+ h*(y). The nor-
mal vector is the normalisation of the cross product (—h(zx), h(y),1)"

Let C' = \/1+ h?(z) 4+ h2(y), so that n = %(h(z),—h(y),1)". Since

11 = (0,0, —f"(x))!, we have L1; = (n,z,,) = —@ and similarly

Ly = % Thus we have H =0 < 1-{2(2920) = 1_{2(23’(2), and the Fact

above proves minimality.

Solution to Problem 5: Calculations with index notation.

(a) Consider the expression (z;, z,,)¢’F. Here j and p are summation
indices, and ¢ is a free index. We have (z;, xpg) = (25, I}y + Lpgn) =
(w5, T,w0) + (2, +Lpgn) = Ty (x5, 5) + Lpg{zj,n). Since tangent vec-
tors are orthogonal to n, the second summand vanishes and we are left
with I} (z;,z;) = Iy, = T} g;; by symmetry of the metric coefficients.
Therefore (x;, 2,q) 97 = Tt g;;9’7 = T, 67 since (¢*) is the inverse ma-

trix of (ga). Finally I' 67 = I’ by definition of Kronecker delta. The

pqg-
final expression can also be written as I't, 4+ '3, if the indices run from
1 to 2.

The remaining formulas are treated similarly.



