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DETAILED SOLUTIONS FOR EXAM IN 88-201
MOED A JULY ’17

Solution to Problem 1: Prove the theorema egregium of Gauss.
Consider the third partial derivative xijk = ∂3x

∂ui∂uj∂uk . Let us calcu-
late its tangential component relative to the basis (x1, x2, n) for R

3.
Recall that nk = L

p
kxp and xjk = Γℓ

jkxℓ + Ljkn. Thus, we have

(xij)k =
(

Γm
ijxm + Lijn

)

k

= Γm
ij;kxm + Γm

ijxmk + Lijnk + Lij;kn

= Γm
ij;kxm + Γm

ij

(

Γp
mkxp + Lmkn

)

+ Lij (L
p
kxp) + Lij;kn.

Grouping together the tangential terms, we obtain

(xij)k = Γm
ij;kxm + Γm

ij

(

Γp
mkxp

)

+ Lij (L
p
kxp) + (. . .)n

=
(

Γq
ij;k + Γm

ijΓ
q
mk + LijL

q
k

)

xq + (. . .)n

=
(

Γq
ij;k + Γm

ijΓ
q
km + LijL

q
k

)

xq + (. . .)n,

since the symbols Γq
km are symmetric in the two subscripts. The sym-

metry in j, k (equality of mixed partials) implies the identity xi[jk] = 0.

Hence 0 = xi[jk] = (xi[j)k] =
(

Γq
i[j;k] + Γm

i[jΓ
q
k]m + Li[jL

q
k]

)

xq + (. . .)n

and therefore Γq
i[j;k] +Γm

i[jΓ
q
k]m + Li[jL

q
k] = 0 for each q = 1, 2. We now

choose the valus i = j = 1 and k = q = 2 for the indices, to obtain
Γ2
1[1;2] + Γm

1[1Γ
2
2]m = −L1[1L

2
2] = g1iL

i
[1L

2
2] = g11L

1
[1L

2
2] since the term

L2
[1L

2
2] = 0 vanishes. This yields the desired formula for K = det(Wp)

and completes the proof of the theorema egregium.

Solution to Problem 2: Consider the quadratic form Q(x, y) =
−3x2 + 4xy − 6y2.

(a) To characterize the plane curve Q(x, y) = −1, we write down
the explicit equation −3x2 + 4xy − 6y2 = −1. Changing the sign,
we obtain 3x2 − 2 · 2xy + 6y2 = 1. Thus we have the coefficients
a = 3, b = −2, c = 6. Note two points:

(1) ac− b2 = 18− 4 = 14 > 0 (the expression ac− b2 is positive);
(2) This conic section is not degenerate since it contains at least

two points (x = ±1√
3
, y = 0).
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Therefore by the classification theorem proved in class, this conic sec-
tion is an ellipse.

(b) To characterize the surface z = Q(x, y) we write down the explicit
equation of the quadric surface: z = −3x2+4xy−6y2, or −3x2+4xy−
6y2−z = 0 or equivalently 3x2−4xy+6y2+z = 0. The corresponding

matrix S is the matrix S =





3 −2 0
−2 6 0
0 0 0



. Note the following:

(1) The matrix S has rank 2 and can be diagonalized in coordinates
(x′, y′, z);

(2) the coefficent of the linear term z is nonzero.

By the classification theorem proved in class, the surface is a parabo-
loid. Recall that paraboloids are of two types: elliptic paraboloid and

hyperbolic paraboloid. Note that det

(

3 −2
−2 6

)

> 0 and therefore

the eigenvalues have the same sign. By the classification theorem, the
quadric surface is an elliptic paraboloid.
Finally, the origin is a critical point of the function Q(x, y). By the

theorem proved in class, at such a point the Gaussian curvature K of
the surface given by the graph of the function equals the determinant

of the Hessian HQ of Q. Differentiating, we obtain HQ =

(

−6 4
4 −12

)

,

and therefore K = det(HQ) = 56.

Solution to Problem 3: We look for the point of maximal curvature

of curves. We use the formula k = |DB(F )|
|∇F |3 to compute the curvature.

Here DB(F ) = FxxF
2
y − 2FxyFxFy + FyyF

2
x .

(a) Curve x + y2 = 1. We define F (x, y) = x + y2 − 1. We have
Fx = 1, Fy = 2y, Fxx = 0, Fxy = 0, Fyy = 2. Therefore DB(F ) =

FyyF
2
x = 2 · 1 = 2. Meanwhile |∇F | =

√

1 + 4y2. Thus k = 2
(1+4y2)3/2

.

The curvature is maximal when the expression 1+ 4y2 is minimal, i.e.,
when y = 0. At this point x = 1 from the equation of the curve. Thus
the point (x, y) = (1, 0) (the apex of the parabola) is the unique point
where the curvature is maximal.

(b) Curve xy + 1 = 0, x > 0. We set F (x, y) = xy + 1. Then Fx = y,
Fy = x, Fxx = 0, Fxy = 1, Fyy = 0. Therefore DB(F ) = −2FxyFxFy =
−2xy. From the equation of the curve we have xy = −1 and therefore
DB(F ) = 2. Thus k = 2

(x2+y2)3/2
. It remains to mimimize the expression

x2 + y2 along the curve. We have x > 0 by definition of the curve. We
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exploit the defining relation xy = −1 of the curve to obtain x2 + y2 =

(x − y)2 + 2xy = (x − y)2 − 2 =
(

x+ 1
x

)2 − 1. To minimize this

expression, it suffices to minimize the quantity x + 1
x
. We will show

that the sum x + 1
x
is minimal when x = 1. Namely, to show that

x + 1
x
≥ 2, rewrite the inequality as x2 + 1 ≥ 2x or x2 + 1 − 2x ≥ 0

or equivalently (x − 1)2 ≥ 0 which is a true inequality. Hence the
maximum of the curvature is when x = 1 and so y = − 1

x
= −1. Thus

the maximum of curvature is attained at the point (x, y) = (1,−1).

(c) Curve x + ln y = 0. We set F (x, y) = x + ln y. We have Fx = 1,
Fy = 1

y
, Fxx = 0, Fxy = 0, Fyy = 1

−y2
. Hence DB(F ) = 1

−y2
= −y−2.

The curvature is k = y−2

(
√

1+y−2)3
= 1

y2(1+y−2)3/2
= y3

y2(y2+1)3/2
= y

(y2+1)3/2
.

To maximize kC it is sufficient to maximize k2 = y2

(y2+1)3
. We will use

an auxiliary variable z = y2 to simplify calculations. We are therefore
interested in maximizing the expression g(z) = z

(z+1)3
. Differentiating

we obtain g′(z) = (z+1)3·1−z·3(z+1)2

(z+1)6
= z+1−3z

(z+1)4
= 1−2z

(z+1)4
= 0. We obtain

an extremum when 1 − 2z = 0, i.e., z = 1
2
. Checking that the second

derivative is negative at the point, we conclude that this is a point of
maximum. Thus the maximum of the curvature of the curve is attained
when y2 = 1

2
, i.e., y = 2−1/2. Hence x = ln(2−1/2) = −1

2
ln 2.

Solution to Problem 4: Let M be a surface with a parametrisation
x(u, v).

(a) To prove the formula ∆x = −2f 2Hn in isothermal coordinates
(u, v), we calculate as follows. We use the formula xij = Γk

ijxk + Lijn

to write ∆ x = x11+x22 = Γ1
11x1+Γ2

11x2+L11n+Γ1
22x1+Γ2

22x2+L22n =
(Γ1

11 + Γ1
22) x1 + (Γ2

11 + Γ2
22)x2 + (L11 + L22)n. By a theorem proved

in the lectures, with respect to isothermal coordinates we necessarily
have the identities Γ1

11 + Γ1
22 = 0 and Γ2

11 + Γ2
22 = 0. Recall that with

respect to isothermal coordinates, we have Lii = −f 2L
i
i. Therefore

∆ x = (L11 + L22)n = −(L1
1 + L2

2)f
2n = −2Hf 2n as required.

(b) To prove that the catenoid is a minimal surface, recall that the
catenoid is the surface obtained by rotating the graph of x = cosh z
around the z-axis. Thus the catenoid parametrized by means of the
formula x(θ, φ) = (coshφ cos θ, coshφ sin θ, φ). The generating curve
is the curve r(φ) = cosh φ and z(φ) = φ (the catenary). Then ac-
cording to the general formula, g11 = r2 = cosh2 φ. Also, g22 =
( dr
dφ
)2 + ( dz

dφ
)2 = (sinh φ)2+ = cosh2 φ = g11, and g12 = 0. We con-

clude that the coordinates (θ, φ) are isothermal. Finally, x11 + x22 =
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(−a coshφ cos θ,−a coshφ sin θ, 0)t + (a coshφ cos θ, a coshφ sin θ, 0)t =
(0, 0, 0). By the result of (a), we have H = 0 and therefore the catenoid
is a minimal surface.

(c) Let us prove that the Scherk surface is a minimal surface. First
we note the following Fact. If f(x) = ln cosx and h(x) = f ′(x), then

we have 1+h2(x)
f ′′(x)

= −1 identically in x. Indeed, if f(x) = ln cosx then

h(x) = f ′(x) = − tan x and f ′′(x) = −1
cos2 x

. Therefore 1+h2(x)
f ′′(x)

= −(1 +

tan2 x) cos2 x = −1 as required.
The Scherk surface by definition is parametrized by the map x(x, y) =

(x, y, f(y)−f(x)). Clearly, we have x12 = 0. Therefore L12 = 〈x12, n〉 =
0. Thus the matrix (Lij) is diagonal. The mean curvature H satisfies
2H = traceWp = L11g

11 +L22g
22 and therefore the condition H = 0 is

equivalent to L11g
11+L22g

22 = 0. Let g = det(gij) (note that g12 6= 0).
Then g11 = g22

g
and g22 = g11

g
. Thus the condition becomes becomes

L11g22+L22g11
g

= 0 where g 6= 0. Therefore the minimality condition is
L11

g11
+ L22

g22
= 0. Now let h(x) = f ′(x). We have x1 = (1, 0,−h(x))t and

x2 = (0, 1, h(y))t. Hence g11 = 1+ h2(x) and g22 = 1+ h2(y). The nor-
mal vector is the normalisation of the cross product (−h(x), h(y), 1)t.

Let C =
√

1 + h2(x) + h2(y), so that n = 1
C
(h(x),−h(y), 1)t. Since

x11 = (0, 0,−f ′′(x))t, we have L11 = 〈n, x11〉 = −f ′′(x)
C

and similarly

L22 =
f ′′(y)
C

. Thus we have H = 0 ⇐⇒ f ′′(x)
1+h2(x)

= f ′′(y)
1+h2(y)

, and the Fact

above proves minimality.

Solution to Problem 5: Calculations with index notation.

(a) Consider the expression 〈xj , xpq〉gjp. Here j and p are summation
indices, and q is a free index. We have 〈xj, xpq〉 = 〈xj ,Γ

i
pqxi + Lpqn〉 =

〈xj,Γ
i
pqxi〉 + 〈xj ,+Lpqn〉 = Γi

pq〈xj , xi〉 + Lpq〈xj , n〉. Since tangent vec-
tors are orthogonal to n, the second summand vanishes and we are left
with Γi

pq〈xj , xi〉 = Γi
pq = Γi

pqgij by symmetry of the metric coefficients.

Therefore 〈xj, xpq〉gjp = Γi
pqgijg

jp = Γi
pqδ

p
i since (gab) is the inverse ma-

trix of (gab). Finally Γi
pqδ

p
i = Γp

pq by definition of Kronecker delta. The

final expression can also be written as Γ1
1q +Γ2

2q if the indices run from
1 to 2.
The remaining formulas are treated similarly.


