88-826 Differential Geometry, moed A

Bar Ilan University, Prof. Katz

Date: 25 july '23

Each of 4 problems is worth 25 points; the bonus problem is 8 points All answers must be justified by providing complete explanations and proofs

- 1. Let M be an 8-dimensional manifold with $b_2(M) = 1$, with an integer de Rham class $\omega \in L^2_{dR}(M)$ such that $\omega^{\cup 4}$ is the fundamental cohomology class of M. Find an upper bound for the ratio $\frac{(\text{stsys}_2(g))^4}{\text{vol}(g)}$ valid for all Riemannian metrics g on M, with proof.
- 2. Let $M = \mathbb{CP}^2 \times \mathbb{CP}^3$. Prove that all metrics g of volume 1 on M satisfy stsys₂ $(g) \leq C$ for a suitable constant C independent of the metric.
- 3. Determine which of the following 12-dimensional manifolds satisfy a stable systolic inequality for stsys₂ with a constant independent of the metric:
 - (1) $S^2 \times S^{10}$;

 - (2) $S^6 \times \mathbb{CP}^3$; (3) $S^2 \times S^4 \times S^6$.
- 4. Determine which of the following manifolds satisfy a stable systolic inequality for stsys, with a constant independent of the metric:
 - (1) $S^2 \times S^2 \times \mathbb{CP}^n$;
 - (2) $\mathbb{CP}^2 \times S^n$;
 - (3) $\mathbb{CP}^n \times T^2$.
- 5. (Bonus) Let d(x,y) be the distance on \mathbb{CP}^2 defined by d(x,y) = $\arccos |H(\tilde{x}, \tilde{y})|$ where \tilde{x}, \tilde{y} are unit vectors in \mathbb{C}^3 representing x and y. Let g be the associated metric on \mathbb{CP}^2 . Define $\alpha \in \Omega^2(\mathbb{CP}^2)$ by setting $\alpha(X,Y) = g(JX,Y)$. Evaluate $\int_{\mathbb{CP}^2} \alpha \wedge \alpha$.

Good Luck!