Adversarial Modeling in the Robotic Coverage Problem: Proofs and Algorithm Details
Technical Report SMART 2015/01

Roi Yehoshua and Noa Agmon
Computer Science Department
Bar Ilan University, Israel
{yehoshr1,agmon}@cs.biu.ac.il

In the paper "Adversarial Modeling in the Robotic Coverage Problem", published in the proceedings of AAMAS 2015 conference, appear a few theorems and lemmas without proofs or with only a proof sketch. This document contains the full proofs of these theorems, and also a detailed pseudo-code of the procedures Create_Articulation_Points_Tree and Update_Vertex mentioned in the paper.

Theorem 1. The ZKACP problem is \(NP\)-Hard.

Proof. To prove the \(NP\)-hardness of the problem, we will use a reduction from the Hamiltonian path problem, which is known to be \(NP\)-complete [1].

Given an instance of the Hamiltonian path problem on a graph \(G = (V,E)\), we construct an instance of the zero-knowledge adversarial coverage problem on the same graph \(G\) with \(k = 1\). We will prove that there exists a Hamiltonian path in \(G\), if and only if the optimal strategy for the adversary is to place its single guard at a random vertex of \(G\).

First direction - if there exists a Hamiltonian path in \(G\), then there is a coverage path of \(G\) that visits each vertex exactly once, which is also the optimal coverage path. In this case, the best the adversary can do is just place its single threat randomly in one of the vertices.

Second direction - if \(G\) is non-Hamiltonian, then the optimal coverage path of \(G\) must visit one of its vertices more than once. In this case, the optimal strategy for the adversary is to place its single guard at one of the vertices that must be visited the greatest number of times. The set of vertices that must be visited the greatest number of times \(S\) is a proper subset of \(V\). This can be easily verified by noticing that there are always some vertices in the graph that are visited only once by the optimal coverage path. For example, the last vertex of the coverage path must be visited only once, otherwise, we could have removed its last occurrence from the coverage path and obtain a shorter coverage path than the optimal one. Additionally, all the leaf vertices in \(G\) (those with degree 1) must be visited only once by the optimal coverage path. Thus, the optimal strategy for the adversary in this case is to place its single guard at one of the vertices in \(S\), which is different from choosing a random vertex of \(V\).

Therefore, we can find if there exists a Hamiltonian path in a given graph \(G\), by checking if the optimal strategy for a zero-knowledge adversary is to place
a single guard randomly in one of the vertices of G. Thus, the zero-knowledge adversarial coverage problem is \mathcal{NP}-hard.

Theorem 2. Any coverage path that returns to its starting vertex must visit every k-connected articulation point at least k times. In addition, if the starting vertex of the coverage path, s, is a k-connected articulation point then it must be visited at least $k + 1$ times.

Proof. Consider a k-connected articulation point v. Removing v from the graph breaks it into k connected components C_1, \ldots, C_k. The robot must visit each of these connected components along its coverage path, and in order to move between these connected components it must go through v. Assume without loss of generality that the order of visit of these components is C_1, \ldots, C_k (the same component may appear more than once in the sequence). Consider two cases:

Case 1. $v \neq s$. In this case $s \in C_1$. Thus, the coverage path has the following structure: $p = C_1 \leadsto v \leadsto C_2 \leadsto v \leadsto \ldots \leadsto C_k \leadsto v \leadsto C_1$. Hence, the coverage path must go through v at least k times.

Case 2. $v = s$. In this case s does not belong to any of the connected components C_i. Thus, the coverage path has the following structure: $p = s \leadsto C_1 \leadsto s \leadsto \ldots \leadsto C_k \leadsto s$. Hence, the coverage path must visit s at least $k + 1$ times.

Theorem 3. (correctness) Algorithm 2 computes correctly the connectivity of each articulation point.

Proof. If the root has more than one child then it is an articulation point, and the number of connected components its removal splits the graph into is equal to the number of its child nodes (line 15 in the algorithm). Any other vertex v is as an articulation point if and only if v has some child w such that $\text{Low}(w) \geq \text{DfsNum}(v)$, i.e., there is a child w of v that cannot reach a vertex visited before v (line 18). The first time this condition is true for v, it is added to the articulation points list and its connectivity is set to 2 (line 22), since removing v from the graph would split it into at least two connected components: one that contains the vertices visited before v and another that contains w and its descendants in the DFS tree. In each subsequent time this condition becomes true for v, it means that we have found another child w' of v, such that v separates w' from the vertices visited before v, thus removing v from the graph would create another connected component in the graph (the subtree rooted in w'). Hence, the connectivity of v is increased by 1 (line 24).

Lemma 1. Denote the degree of a vertex v by $\deg(v)$. An optimal coverage path of a graph $G = (V, E)$ that returns to its starting vertex visits every vertex $v \in V$ at most $\deg(v)$ times, except for the starting vertex s that is visited at most $\deg(s) + 1$ times.

Proof. We prove by contradiction. Let P_{opt} be an optimal coverage path of G that returns to its starting vertex. Assume that there is a vertex $v \neq s$ in the graph that is visited by P_{opt} more than $\deg(v)$ times. We will show that it is possible to build a coverage path P' that is shorter than P_{opt}.
The vertex v is visited at least $m = \text{deg}(v) + 1$ times along P_{opt}. Thus, P_{opt} has the following structure: $P_{opt} = s \rightsquigarrow p_1 v \rightsquigarrow p_2 v \ldots v \rightsquigarrow p_m v \rightsquigarrow p_{m+1} s$.

Let us denote the last edge on the subpath p_1 by $e = (u, v)$. Since v is connected to only $m-1$ different edges in G, at least one of the subpaths p_2, \ldots, p_m must start with the edge $e = (u, v)$. Let us denote the first of such subpaths by p_i $(2 \leq i \leq m)$. Now, p_1 can terminate at vertex u instead of v, followed by subpath p_i that can start at vertex u instead of v, i.e., we can build the following coverage path: $P' = s \rightsquigarrow p_1 u \rightsquigarrow p_i v \rightsquigarrow p_2 v \ldots v \rightsquigarrow p_m v \rightsquigarrow p_{m+1} v \ldots v \rightsquigarrow p_{m+1} s$. The path P' visits all vertices in the graph, but $|P'| < |P_{opt}|$, since it visits v two times less than P_{opt}. This contradicts the optimality of P_{opt}.

Now, assume that s is visited by P_{opt} more than $\text{deg}(s) + 1$ times, i.e., it is visited at least $m = \text{deg}(s) + 2$ times. Thus, P_{opt} has the following structure: $P_{opt} = s \rightsquigarrow p_1 s \rightsquigarrow p_2 s \ldots s \rightsquigarrow p_{m-1} s$. Let us denote the last edge on the subpath p_1 by $e = (u, s)$. Since s is connected to only $m-2$ different edges in G, at least one of the subpaths p_2, \ldots, p_{m-1} must start with the edge $e = (u, s)$. Let us denote the first of such subpaths by p_i $(2 \leq i \leq m-1)$. Thus, we can build the following coverage path: $P' = s \rightsquigarrow p_1 u \rightsquigarrow p_i v \rightsquigarrow p_2 v \ldots v \rightsquigarrow p_{m-1} v \rightsquigarrow p_{m+1} s \ldots s \rightsquigarrow p_{m-1} s$. The path P' visits all vertices in the graph, but $|P'| < |P_{opt}|$, since it visits s two times less than P_{opt}. This contradicts the optimality of P_{opt}.

Theorem 4. Let the maximum degree in a graph G be d. If the number of articulation points in G whose connectivity is d is equal or greater than the number of guards k, then the adversarial strategy described in algorithm 3 is optimal.

Proof. By lemma 1, an optimal coverage path that returns to its starting vertex visits every vertex $v \in V$ at most d times, or $d+1$ times if v is the starting vertex. By theorem 2, any such coverage path must visit every d-connected articulation point at least d times, or $d+1$ times if it is the starting vertex. Thus, the optimal coverage path visits every d-connected articulation point precisely d times if it is not the starting vertex, or $d+1$ times if it is the starting vertex. Hence, d-connected articulation points are the most frequently visited vertices along the optimal coverage path. As a consequence, placing all the given k guards at these articulation points is guaranteed to maximize the probability to stop a robot that follows this path.

Theorem 5. The strategy for placing k guards as given by algorithm 3 is not affected by changing the starting vertex of the coverage, except for maybe a placement of one guard.

Proof. The block decomposition of a graph is unique. Thus, the number of articulation points in the graph and their connectivity are not affected by the selection of the starting vertex of the coverage. According to algorithm 3, if the starting vertex is an articulation point, then it gets precedence over the other articulation points with the same connectivity, since it must be visited once more. Therefore, changing the starting vertex of the coverage may affect the placement of only the guard at the starting vertex.
Theorem 6. Any coverage path must visit every k-connected articulation point at least k times, except for maybe articulation points on the terminating subpath of the coverage path, which must be visited at least $k - 1$ times. In addition, if the starting vertex of the coverage path is a k-connected articulation point, then it must be visited at least $k + 1$ times, unless it is part of the terminating subpath of the coverage, in which case it is visited at least k times.

Proof. Consider a k-connected articulation point v. Removing v from the graph breaks it into k connected components $C_1, ..., C_k$. The robot must visit each of these connected components along its coverage path, and in order to move between these connected components it must go through v. Assume without loss of generality that the order of their visit is $C_1, ..., C_k$ (the same component may appear more than once in the sequence). Denote the starting vertex of the coverage path by s. Now, consider two cases:

Case 1. $v \neq s$. In this case $s \in C_1$. Thus, the coverage path must have the following structure: $p = C_1 \leadsto v \leadsto C_2 \leadsto v \leadsto ... \leadsto C_k$. Hence, the coverage path must go through v at least $k - 1$ times.

Case 2. $v = s$. In this case s does not belong to any of the connected components C_i. Thus, the coverage path must have the following structure: $p = s \leadsto C_1 \leadsto s \leadsto ... \leadsto C_k$. Hence, the coverage path must visit s at least k times.

A k-connected articulation point is visited only $k - 1$ times (or k times if it is the starting vertex), only if each of its connected components C_i is visited only once. We now prove that all these articulation points reside on a simple path ending at the terminating vertex of the coverage path t. Let us denote these articulation points by $v_1, ..., v_m$, arranged according to the order of their last visit on the coverage path. v_i must belong to the last visited component of all its previous articulation points $v_j, j < i$, otherwise v_j would have to appear again on the coverage path after v_i, violating the ordering $v_1, ..., v_m$.

Now, examine the block tree of G rooted at the starting vertex of the coverage path s. We show that $v_1, ..., v_m$ must belong to the same branch of the block tree, where each vertex v_i is an ancestor of all its successors in the sequence $v_{i+1}, ..., v_m$.

We first prove that all the vertices v_i belong to the same branch by contradiction. Assume that two vertices v_i, v_j belong to different branches of the block tree. Denote their lowest common ancestor by v. In order to reach v_j from v_i, the coverage path must go through v. Thus, the last visited component C_k of v_i contains v. There is a path from v to the root of the block tree s that does not go through v_i, thus v belongs to the same connected component as s, C_1. Thus, C_1 is visited twice, which contradicts the fact that v_i is visited only $k - 1$ times.

We now prove that v_i is an ancestor of v_j for every $j > i$ by contradiction. Assume that v_j is an ancestor of v_i. v_j belongs to the last visited component of v_i. There is a path connecting v_j to s which does not go through v_i, thus v_j belongs to the same connected component as s, C_1. Thus, C_1 is visited twice, which contradicts the fact that v_i is visited only $k - 1$ times.
Since \(v_1, \ldots, v_m \) belong to the same branch of the block tree, there is a simple path in the graph connecting them. Denote this simple path by \(p \). In addition, the terminating vertex of the coverage path \(t \) belongs to the last visited component of \(v_m, C_k \), thus \(v_m \) is an ancestor of \(t \) in the block tree. \(C_k \) does not contain any of the vertices \(v_1, \ldots, v_m \), thus there is a simple path \(p' \) from \(v_m \) to \(t \) that does not go through \(v_1, \ldots, v_m \). Connecting \(p' \) to \(p \) generates a simple path going through \(v_1, \ldots, v_m \) and ending at \(t \). Therefore, all the \(k \)-connected articulation points that are visited only \(k - 1 \) times belong to the terminating subpath of the coverage.

Lemma 2. The runtime complexity of algorithm 4 on a graph \(G = (V, E) \) is \(O(|V|^2) \).

Proof. In the worst case scenario, the graph \(G \) consists of a linear chain of nodes, since in this case all the vertices in the graph, except for two, are articulation points and the articulation points tree \(T \) contains only one branch. Thus, the procedure **Place_Guards** is invoked once for each articulation point, each time placing only one guard. This procedure scans \(T \) until reaching a vertex whose all descendants contain guards, thus the number of vertices it visits in each scan decreases by one. Hence, the total number of visits to vertices in \(T \) is \(n + (n - 1) + \ldots + 1 = O(n^2) \), where \(n \) is the number of vertices in \(T \). Since \(n = O(V) \), the total running time of the algorithm is \(O(|V|^2) \).

Theorem 7. Let \(U \) be a \(k \)-connected vertex cut. Then any coverage path that returns to its starting vertex must visit vertices in \(U \) at least \(k \) times. In addition, if the starting vertex of the coverage path belongs to \(U \), then the vertices in \(U \) must be visited at least \(k + 1 \) times.

Proof. Consider a \(k \)-connected vertex cut \(U \). Removing \(U \) from the graph breaks it into \(k \) connected components \(C_1, \ldots, C_k \). The robot must visit each of these connected components along its coverage path, and in order to move between these connected components it must go through one of the vertices in \(U \). Assume without loss of generality that the order of visit of these components is \(C_1, \ldots, C_k \) (the same component may appear more than once in the sequence). Denote the starting vertex of the coverage path by \(s \). Now, consider two cases:

Case 1. \(s \notin U \). In this case \(s \in C_1 \). Thus, the coverage path must have the following structure: \(p = C_1 \leadsto U \leadsto C_2 \leadsto U \leadsto \ldots \leadsto C_k \leadsto U \leadsto C_1 \). Hence, the coverage path must go through vertices in \(U \) at least \(k \) times.

Case 2. \(s \in U \). In this case \(s \) does not belong to any of the connected components \(C_i \). Thus, the coverage path must have the following structure: \(p = s \leadsto C_1 \leadsto U \leadsto C_2 \leadsto U \leadsto \ldots \leadsto C_k \leadsto s \). Hence, the coverage path must go through vertices in \(U \) at least \(k + 1 \) times (two of these visits belong to the starting vertex).

Theorem 8. Let \(U \) be a \(k \)-connected vertex cut. Then any coverage path must visit vertices in \(U \) at least \(k - 1 \) times. In addition, if the starting vertex of the coverage path belongs to \(U \), then the vertices in \(U \) must be visited at least \(k \) times.
Proof. Consider a k-connected vertex cut U. Removing U from the graph breaks it into k connected components C_1, \ldots, C_k. The robot must visit each of these connected components along its coverage path, and in order to move between these connected components it must go through one of the vertices in U. Assume without loss of generality that the order of visit of these components is C_1, \ldots, C_k (the same component may appear more than once in the sequence). Denote the starting vertex of the coverage path by s. Now, consider two cases:

Case 1. $s \notin U$. In this case $s \in C_1$. Thus, the coverage path must have the following structure: $p = C_1 \leadsto U \leadsto C_2 \leadsto U \leadsto \ldots \leadsto C_k$. Hence, the coverage path must go through vertices in U at least $k-1$ times.

Case 2. $s \in U$. In this case s does not belong to any of the connected components C_i. Thus, the coverage path must have the following structure: $p = s \leadsto C_1 \leadsto U \leadsto C_2 \leadsto U \leadsto \ldots \leadsto C_k$. Hence, the coverage path must go through vertices in U at least k times.

Theorem 9. Any vertex cut that does not contain a proper subset of vertices, which is also a vertex cut, belongs entirely to one biconnected component.

Proof. Consider a vertex cut C. Assume by contradiction that is does not belong entirely to one biconnected component, i.e., its vertices belong to two or more blocks in the graph. Denote these blocks by B_1, \ldots, B_n and the subsets of vertices in C that belong to these blocks by V_1, \ldots, V_n. From the block decomposition of the graph we know that there is a path that connects all the blocks in the graph and goes through the articulation points. Since all the vertices in C are not articulation points, removing C from the graph does not affect the path that connects B_1, \ldots, B_n. Thus, removing C must break at least one of the blocks, B_i. Since the only vertices in C that affect the connectivity of B_i are the vertices in V_i, the subset V_i must also be a vertex cut. This contradicts the fact that C does not contain a proper subset which is also a vertex cut.

Lemma 3. The runtime complexity of Find_Vertex_Cuts is $O\left(\binom{|V|}{k} \cdot (|V| + |E|)\right)$, where k is the given vertex cut size.

Proof. In the worst case scenario, G is biconnected and there is no node in G that contains guards (for example, when G does not contain articulation points, then the first time the procedure is called there will be no guards placed in G). In this case, $G_B = G$ and F contains all the nodes in G. Thus, the number of subsets of k nodes in F is $\binom{|V|}{k}$. For each subset, we find the connected components in G without the subset by running DFS, whose running time is $O(|V| + |E|)$. Hence, in the worst case the total running time of the procedure is $O\left(\binom{|V|}{k} \cdot (|V| + |E|)\right)$.

Theorem 10. The runtime complexity of algorithm 5 is $O\left(2^{|V|} \cdot (|V| + |E|)\right)$.

Proof. In the worst case scenario, the graph G is biconnected and all the vertex cuts of the graph have to be computed. In this case, the algorithm needs to examine all the subsets of vertices in V (whose size is greater than 1). The number of these subsets is $O(2^{|V|})$. For each subset, the algorithms runs DFS
in order to find the connected components in G without the subset. Since the running time of DFS is $O(|V| + |E|)$, in the worst case the total running time of the algorithm is $O(2^{|V|} \cdot (|V| + |E|))$.

We now provide the detailed pseudo-code of the procedures `Create_Articulation_Points_Tree` and `Update_Vertex` described in section 4.1 of the paper.

```
1: procedure Create_Articulation_Points_Tree(v)
   input: v - the articulation point at the root node
2:   for each block $B$ in v.blocks do
3:     for each articulation point $p$ in $B$ do
4:       if $p \neq v$ then
5:         Add $p$ to v.childNodes
6:         $p.parent \leftarrow v$
7:         Create_Articulation_Points_Tree($p$)
```

```
1: procedure Update_Vertex(v; c)
   input: v - the given vertex, c - connectivity level
2:   $v.allDescendantsContainGuards \leftarrow true$
3:   for each $w$ in v.childNodes do
4:     if $w.connectivity = c$ and not $w.containsGuard$ or not $w.allDescendantsContainGuards$ then
5:       $v.allDescendantsContainGuards \leftarrow false$
6:   return
7:   if $v.parent \neq null$ then
8:     Update_Vertex($v.parent$, c)
```

References