The Deadlock Problem

- A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.
- Example
 - semaphores A and B, initialized to 1

 \[
 \begin{align*}
 &P_0 & P_1 \\
 &\text{wait (A)} & \text{wait (B)} \\
 &\text{wait (B)} & \text{wait (A)}
 \end{align*}
 \]
- Example
 - System has 2 tape drives.
 - P_1 and P_2 each hold one tape drive and each needs another one.

Bridge Crossing Example

- Traffic only in one direction.
- Each section of a bridge can be viewed as a resource.
- If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback).
- Several cars may have to be backed up if a deadlock occurs.
- Starvation is possible.

Deadlock with more than 2 resources

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

- **Mutual exclusion**: only one process at a time can use a resource.
- **Hold and wait**: a process holding at least one resource is waiting to acquire additional resources held by other processes.
- **No preemption**: a resource can be released only voluntarily by the process holding it, after that process has completed its task.
- **Circular wait**: there exists a set $\{P_0, P_1, \ldots, P_n\}$ of waiting processes such that P_0 is waiting for a resource that is held by P_1, P_i is waiting for a resource that is held by P_{i+1}, and P_n is waiting for a resource that is held by P_0.