
Parallel Lempel Ziv Coding

(Extended Abstract)

Shmuel Tomi Klein1 and Yair Wiseman2

1 Dept. of Math. & CS, Bar Ilan University
Ramat-Gan 52900, Israel

tomi@cs.biu.ac.il
2 Dept. of Math. & CS, Bar Ilan University

Jerusalem College of Technology
wiseman@cs.biu.ac.il

Abstract. We explore the possibility of using multiple processors to
improve the encoding and decoding tasks of Lempel Ziv schemes. A new
layout of the processors is suggested and it is shown how LZSS and
LZW can be adapted to take advantage of such parallel architectures.
Experimental results show an improvement in compression and time over
standard methods.

1 Introduction

Compression methods are often partitioned into static and dynamic methods.
The static methods assume that the file to be compressed has been generated
according to a certain model which is fixed in advance and known to both com-
pressor and decompressor. The model could be based on the probability distri-
bution of the different characters or more generally of certain variable length
substrings that appear in the file, combined with a procedure to parse the file
into a well determined sequence of such elements. The encoded file can then
be obtained by applying some statistical encoding function, such as Huffman or
arithmetic coding. Information about the model is either assumed to be known
(such as the distribution of characters in English text), or may be gathered in a
first pass over the file, so that the compression process may only be performed
in a second pass.

Many popular compression methods, however, are adaptive in nature. The
underlying model is not assumed to be known, but discovered during the se-
quential processing of the file. The encoding and decoding of the i-th element
is based on the distribution of the i − 1 preceding ones, so that compressor
and decompressor can work in synchronization without requiring the transmit-
tal of the model itself. Examples of adaptive methods are the Lempel-Ziv (LZ)
methods and their variants, but there are also adaptive versions of Huffman and
arithmetic coding.

We wish to explore the possibility of using multiple processors to improve the
encoding and decoding tasks. In [7] this has been done for static Huffman coding,

A. Amir and G.M. Landau (Eds.): CPM 2001, LNCS 2089, pp. 18–30, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Parallel Lempel Ziv Coding 19

focusing in particular on the decoding process. The current work investigates how
parallel processing could be made profitable for Lempel Ziv coding.

Previous work on parallelizing compression includes [1,2,3], which deal with
LZ compression, [5], relating to Huffman and arithmetic coding, and [4]. A par-
allel method for the construction of Huffman trees can be found in [8]. Our work
concentrates on LZ methods, in particular a variant of LZ77 [13] known as LZSS,
and a variant of LZ78 [14] known as LZW. In LZSS [9], the encoded file consists
of a sequence of items each of which is either a single character, or a pointer of
the form (off, len) which replaces a string of length len that appeared off char-
acters earlier in the file. Decoding of such a file is thus a very simple procedure,
but for the encoding there is a need to locate longest reoccurring strings, for
which sophisticated data structures like hash tables or binary trees have been
suggested. In LZW [10], the encoded file consists of a sequence of pointers to a
dictionary , each pointer replacing a string of the input file that appeared ear-
lier and has been put into the dictionary. Encoder and decoder must therefore
construct identical copies of the dictionary.

The basic idea of parallel coding is partitioning the input file of size N into n
blocks of size N/n and assigning each block to one of the n available processors.
For static methods the encoding is then straightforward, but for the decoding,
it is the compressed file that is partitioned into equi-sized blocks, so there might
be a problem of synchronization at the block boundaries. This problem may be
overcome by inserting dummy bits to align the block boundaries with codeword
boundaries, which causes a negligible overhead if the block size is large enough.
Alternatively, in the case of static Huffman codes, one may exploit their tendency
to resynchronize quickly after an error, to devise a parallel decoding procedure
in which each processor decodes one block, but is allowed to overflow into one
or more following blocks until synchronization is reached [7].

For dynamic methods one is faced with the additional problem that the
encoding and decoding of elements in the i-th block may depend on elements
of some previous blocks. Even if one assumes a CREW architecture, in which
all the processors share some common memory space which can be accessed in
parallel, this would still be essentially equivalent to a sequential model. This is
so because elements dealt with by processor i at the beginning of block i may
rely upon elements at the end of block i− 1 which have not been processed yet
by processor i−1; thus processor i can in fact start its work only after processor
i− 1 has terminated its own.

The easiest way to implement parallelization in spite of the above problem
is to let each processor work independently of the others. The file is thus par-
titioned into n blocks which are encoded and decoded without any transfer of
data between the processors. If the block size is large enough, this solution may
even be recommendable: most LZ methods put a bound on the size of the history
taken into account for the current item, and empirical tests show that the addi-
tional compression, obtained by increasing this history beyond some reasonable
size, rapidly tends to zero. The cost of parallelization would therefore be a small
deterioration in compression performance at the block boundaries, since each



20 Shmuel Tomi Klein and Yair Wiseman

processor has to “learn” the main features of the file on its own, but this loss
will often be tolerated as it may allow to cut the processing time by a factor
of n. In [6] the authors suggest letting each processor keep the last characters
of the previous block and thereby improve the encoding speed, but each block
must then be larger than the size of the history window. On the other hand,
putting a lower bound on the size N/n of each block effectively puts an upper
bound on the number of processors n which can be used for a given file of size
N , so we might not fully take advantage of all the available computing power.

We therefore turn to the question how to use n processors, even when the
size of each block is not very large. In the next section we propose a new parallel
coding algorithm, based on a time versus compression efficiency tradeoff which is
related to the degree of parallelization. On the one extreme, for full paralleliza-
tion, each of the n processors works independently, which may sharply reduce
the compression gain if the size of the blocks is small. On the other extreme,
all the processors may communicate, forcing delays that make this variant as
time consuming as a sequential algorithm. The suggested tradeoff is based on a
hierarchical structure of the connections between the processors, each of which
depending at most on log n others. The task can be performed in parallel by n
processors in logn sequential stages. There will be a deterioration in the com-
pression ratio, but the loss will be inferior to that incurred when all n processors
are independent.

In contrast to Huffman coding, for which parallel decoding could be applied
regardless of whether the possibility having multiple processors at decoding time
was known at the time of encoding, there is a closer connection between encoding
and decoding for LZ schemes. We therefore need to deal also with the parallel
encoding scheme, and we assume that the same number of processors is available
for both tasks.

Note, however, that one cannot assume simultaneously equi-sized blocks for
both encoding and decoding. If encoding is done with blocks of fixed size, the
resulting compressed blocks are of variable lengths. So one either has to store
a vector of indices to the starting point of each processor in the compressed
file, which adds an unnecessary storage overhead, or one performs a priori the
compression on blocks of varying size, such that the resulting compressed blocks
are all of roughly the same size. To get blocks of exactly the same size and to
achieve byte alignment, one then needs to pad each block with a small number
of bits, but in this case the loss of compression due to this padding is generally
negligible. Moreover, the second alternative is also the preferred choice for many
specific applications. For instance, in an Information Retrieval system built on
a large static database, compression is done only once, so the speedup of par-
allelization may not have any impact, whereas decompression of selected parts
is required for each query to be processed, raising the importance of parallel
decoding.



Parallel Lempel Ziv Coding 21

2 A Tree-Structured Hierarchy of Processors

The suggested form of the hierarchy is that of a full binary tree, similarly to a
binary heap. This basic form has already been mentioned in [6], but the way
to use it as presented here is new. The input file is partitioned into n blocks
B1, . . . , Bn, each of which is assigned to one of the available processors. Denote
the n processors by P1, . . . , Pn, and assume, for the ease of description, that
n + 1 is a power of 2, that is n = 2k − 1 for some k. Processor P1 is at the
root of the tree and deals with the first block. As there is no need to “point into
the future”, communication lines between the processors may be unidirectional,
permitting a processor with higher index to access processors with lower index,
but not vice versa. Restricting this to a tree layout yields a structure in which
P2i and P2i+1 can access the memory of Pi, for 1 ≤ i ≤ (n − 1)/2. Figure 1
shows this layout for n = 15, the arrows indicating the dependencies between
the processors. The numbers indicate both the indices of the blocks and of the
corresponding processors.

5

10

4

98

2

11 12

6

13 14 15

7

3

1

Figure 1: Simple tree layout.

5

10

4

98

2

11 12

6

13 14 15

7

3

1
1

1

1

1 2 3 4

2

2

3 4

5 6 7 8

Figure 2: Layer-by-layer layout.

The compression procedure for LZSS works as follows: P1 starts at the be-
ginning of block B1 , which is stored in its memory. Once this is done, P2 and P3

start simultaneously their work on B2 and B3 respectively, both searching for
reoccurring strings first within the block they have been assigned to, and then
extending the search back into block B1. In general, after Pi has finished the
processing of block Bi, processors P2i and P2i+1 start scanning simultaneously
their corresponding blocks. The compression of the file is thus not necessarily
done layer by layer, e.g., P12 and P13 may start compressing blocks B12 and B13,
even if P5 is not yet done with B5.

Note that while the blocks B2 and B1 are contiguous, this is not the case for
B3 and B1, so that the (off, len) pairs do not necessarily point to close previous
occurrences of a given string. This might affect compression efficiency, as one of
the reasons for the good performance of LZ methods is the tendency of many
files to repeat certain strings within the close vicinity of their initial occurrences.
For processors and blocks with higher indices, the problem is even aggravated.
The experimental section below brings empirical estimates of the resulting loss.

The layout suggested in Figure 1 is obviously wasteful, as processors of the
higher layers stay idle after having compressed their assigned block. The number



22 Shmuel Tomi Klein and Yair Wiseman

of necessary processors can be reduced by half, or, which is equivalent, the block
size for a given number of processors may be doubled, if one allows a processor to
deal with multiple blocks. The easiest way to achieve this is displayed in Figure 2,
where the numbers in the nodes are the indices of the blocks, and the boldface
numbers near the nodes refer to the processors. Processors 1, . . . , 2m are assigned
sequentially, from left to right, to the blocks of layer m, m = 0, 1, . . . , k−1. This
simple way of enumerating the blocks has, however, two major drawbacks: refer,
e.g., to block B9 which should be compressed by processor P2. First, it might
be that P1 finishes the compression of blocks B2 and B4, before P2 is done
with B3. This causes an unnecessary delay, B9 having to wait until P2 processes
both B3 and B5, which could be avoided if another processor would have been
assigned to B9, for example one of those that has not been used in the upper
layers. Moreover, the problem is not only one of wasted time: P2 stores in its
memory information about the blocks it has processed, namely B3 and B5. But
the compression of B9 does not depend on these blocks, but only on B4 , B2

and B1. The problem thus is that the hierarchical structure of the tree is not
inherited by the dependencies between the processors.

To correct this deficiency of the assignment scheme, each processor will con-
tinue working on one of the offsprings of its current block. For example, one
could consistently assign a processor to the left child block of the current block,
whereas the right child block is assigned to the next available newly used pro-
cessor. More formally, let Si

j be the index of the processor assigned to block j of
layer i, where i = 0, . . . , k− 1 and j = 1, . . . , 2i, then S0

1 = 1 and for i > 0,

Si
2j−1 = Si−1

j and Si
2j = 2i−1 + j.

The first layers are thus processed, from left to right, by processors with indices:
(1), (1,2), (1, 3, 2, 4), (1, 5, 3, 6, 2, 7, 4, 8), etc. Figure 3(a) depicts the new
layout of the blocks, the rectangles indicating the sets of blocks processed by
the same processor. This structure induces a corresponding tree of processors,
depicted in Figure 3(b).

3

3

2

4

8
15

7

1413
7

6

12

1

5

10 11
6

9
5

8

4

2

1

(a) Tree of blocks.

3

5

4

7

6

8
1 2

(b) Tree of processors.

Figure 3: New hierarchical structure.



Parallel Lempel Ziv Coding 23

As a results of this method, processor Pi will start its work with block B2i−1,
and then continue with B4i−2, B8i−4, etc. In each layer, the evenly indexed blocks
inherit their processors from their parent block, and each of the oddly indexed
blocks starts a new sequence of blocks with processors that have not been used
before.

The memory requirements of the processors have also increased by this new
scheme, and space for the data of up to log2 n blocks have to be stored. However,
most of the processors deal only with a few blocks, and the average number of
blocks to be memorized, when amortized over the n processors is

1
n

log2 n∑
i=1

i
n

2i
= 2− log2 n + 2

n
< 2.

For the encoding and decoding procedures, we need a fast way to convert the
index of a block into the index of the corresponding processor, i.e., a function f ,
such that f(i) = j if block Bi is coded by processor Pj . Define r(i) as the largest
power of 2 that divides the integer i, that is, r(i) is the length of the longest
suffix consisting only of zeros of the binary representation of i.

Claim: f(i) =
1
2

(
i

2r(i)
+ 1

)
.

Proof: By induction on i. For i = 1, we get f(1) = 1, which is correct. Assume
the claim is true up to i− 1. If i is odd, r(i) = 0 and the formula gives f(i) =
(i+1)/2. As has been mentioned above, any oddly indexed block is the starting
point of a new processor and indeed processor P(i+1)/2 starts at block Bi. If i is
even, block Bi is coded by the same processor as its parent block Bi/2, for which
the inductive assumption applies, and we get

f(i) = f(i/2) =
1
2

(
i/2

2r(i/2)
+ 1

)
=

1
2

(
i

2 2r(i)−1
+ 1

)
=

1
2

(
i

2r(i)
+ 1

)
,

so that the formula holds also for i.

2.1 Parallel Coding for LZSS

We now turn to the implementation details of the encoding and decoding proce-
dures for LZSS. Since the coding is done by stages, the parallel co-routines will
invoke themselves the depending offsprings. For the encoding, the procedure
PLZSS-encode(i, j) given in Figure 4 will process block Bi with processor Pj,
where j = f(i). The whole process is initialized by a call to PLZSS-encode(1,1)
from the main program.

Each routine starts by copying the text of the current block into the memory
of the processor, possibly adding to texts of previous blocks that have been
stored there. As in the original LZSS, the longest substring in the history is
sought that matches the suffix of the block starting at the current position. The
search for this substring can be accelerated by several techniques, and one of the
fastest is by use of a hash table [12]. The longest substring is then replaced by



24 Shmuel Tomi Klein and Yair Wiseman

PLZSS-encode(i, j)
{

append text of Bi to memory of Pj

cur ←− 1
while cur < |Bi|
{

S ←− suffix of Bi starting at cur
ind ←− i
while ind > 0
{

access memory of Pf(ind) and
record occurrences in Bind matching a prefix of S
ind ←− bind/2c}

if longest occurrence not long enough
{ encode single character cur ←− cur + 1 }
else
{ encode as (off, len) cur ←− cur + len }}

perform in
parallel

{
if 2i ≤ n PLZSS-encode (2i, j)
if 2i + 1 ≤ n PLZSS-encode (2i + 1, i + 1)}

Figure 4: Parallel LZSS encoding for block Bi by processor Pj .

a pair (offset, length), unless length is too small (2 or 3 in implementations of
[12], such as the patent [11], which is the basis of Microsoft’s DoubleSpace), in
which case a single character is sent to output and the window is shifted by one.

In our case, the search is not limited to the current block, but extends back-
wards to the parent blocks in the hierarchy, up to the root. For example, referring
to Figure 3, the encoding of block B13 will search also through B6, B3 and B1,
and thus access the memory of the processors P7, P2, P2 and P1, respectively.
Note that the size of the history window is usually limited by some constant W .
We do not impose any such limit, but in fact, the encoding of any element is
based on a history of size at most log2 n × the block size.

For the decoding, recall that we assume that the encoded blocks are of equal
size Blocksize. The decoding routine can thus address earlier locations as if the
blocks, that are ancestors of the current block in the tree layout, were stored
contiguously. Any element of the form (off, len) in block Bi can point back into
a block Bj , with j = bi/2bc for b = 0, 1, . . . , blog2 ic, and the index of this block
can be calculated by

b ←− d(off− cur + 1)/Blocksizee,

where cur is the index of the current position in block Bi. The formal decoding
procedure is given in Figure 5.



Parallel Lempel Ziv Coding 25

PLZSS-decode(i, j)
{

cur ←− 1
while there are more items to decode
{

if next item is a character
{ store the character cur ←− cur + 1 }
else // the item is (off, len)
{

if off < cur // pointer within block Bi

copy len characters, starting at position cur−off
else // pointer to earlier block
{

b ←− d(off− cur + 1)/Blocksizee
t ←− (off− cur) mod Blocksize
copy len characters, starting at position t

in block Bbi/2bc which is stored in Pf(bi/2bc)}
cur ←− cur + len}

}
perform in

parallel

{
if 2i ≤ n PLZSS-decode (2i, j)
if 2i + 1 ≤ n PLZSS-decode (2i + 1, i + 1)}

Figure 5: Parallel LZSS decoding for block Bi on processor Pj .

The input of the decoding routine is supposed to be a file consisting of a
sequence of items, each being either a single character or a pointer of the form
(off, len); cur is the current index in the reconstructed text file.

2.2 Parallel Coding for LZW

Encoding and decoding for LZW is similar to that of LZSS, with a few differences.
While for LZSS, the “dictionary” of previously encountered strings is in fact the
text itself, LZW builds a continuously growing table Table, which need not be
transmitted, as it is synchronously reconstructed by the decoder. The table is
initialized to include the set of single characters composing the text, which is
often assumed to be ASCII. If, as above, we denote by S the suffix of the text in
block Bi starting at the current position, then the next encoded element will be
the index of the longest prefix R of S for which R ∈Table, and the next element
to be adjoined to Table will be the shortest prefix R′ of S for which R′ /∈Table;
R is a prefix of R′ and R′ extends R by one additional character.

During the encoding process of Bi, one therefore needs to access the tables
in Bi itself and in the blocks which are ancestors of Bi in the tree layout, but
the order of access has to be top down rather than bottom up as for LZSS. For
each i, we therefore need a list listi of the indices of the blocks accessed on the
way from the root to block Bi, that is, listi[ind] is the number whose binary



26 Shmuel Tomi Klein and Yair Wiseman

representation is given by the ind leftmost bits of the binary representation of
i. For example, list13 = [1, 3, 6, 13].

To encode a new element P , it is first searched for in Table of B1, and if
not found there, then in Table of Blisti [2], which is stored in the memory of
processor Pf(listi[2]), etc. However, storing only the elements in the tables may
lead to errors. To illustrate this, consider the following example, referring again
to Figure 3.

Suppose that the longest prefix of the string abcde appearing in the Table
of B1 is abc. Suppose we later encounter abcd in the text of block B2. The
string abcd will thus be adjoined to the same Table, since both B1 and B2 are
processed by the same processor P1. Assume now that the texts of both blocks
B5 and B3 start with abcde. While for B5 it is correct to store abcde as the first
element in its Table, the first element to be stored in the Table of B3 should be
abcd, since the abcd in the memory of P1 was generated by block B2, whereas
B3 only depends on B1.

PLZW-encode(i, j)
{

ω ←− Bi[1]
cur ←− 2
while cur ≤ |Bi|
{

ind ←− 1
while listi[ind] ≤ i
{

while cur < |Bi| and
(ωBi[cur], ind) ∈ Table stored in Pf(listi[ind])

{
ω ←− ωBi[cur]
cur ←− cur + 1
last ←− ind}

ind ←− ind + 1
}
indx ←− index(ω) in Table of Pf(listi[last])

store (indx, last) in memory of Pj

store (ωBi[cur], ind) in Table in memory of Pj

ω ←− Bi[cur]
cur ←− cur + 1

}
perform in

parallel

{
if 2i ≤ n PLZW-encode (2i, j)
if 2i + 1 ≤ n PLZW-encode (2i + 1, i + 1)}

Figure 6: Parallel LZW encoding for block Bi on processor Pj.



Parallel Lempel Ziv Coding 27

To avoid such errors, we need a kind of a “time stamp”, indicating at what
stage an element has been added to a Table. If the elements are stored sequen-
tially in these tables, one only needs to record the indices of the last element for
each block. But implementations of LZW generally use hashing to maintain the
tables, so one cannot rely on deducing information from its physical location,
and each element has to be marked individually. The easiest way is to store with
each string P also the index i of the block which caused the addition of P . This
would require log2 n bits for each entry. One can however take advantage of the
fact that the elements stored by different blocks Bi in the memory of a given
processor correspond to different indices ind in the corresponding lists listi. It
thus suffices to store with each element the index in listi rather than i itself, so
that only log2log2 n bits are needed for each entry. The formal encoding and
decoding procedures are given in Figures 6 and 7, respectively.

The parallel LZW encoding refers to the characters in the input block as
belonging to a vector Bi[cur], with cur giving the current index. If x and y are
strings, then xy denotes their concatenation. As explained above, since the Table
corresponding to block Bi is stored in the memory of a processor which is also
accessed by other blocks, each element stored in the Table needs an identifier
indicating the block from which is has been generated. The elements in the Table
are therefore of the form (string, identifier).

The output of LZW encoding is a sequence of pointers, which are the in-
dices of the encoded elements in the Table. In our case, these pointers are of
the form (index, identifier). There is, however, no deterioration in the compres-
sion efficiency, as the additional bits needed for the identifier are saved in the
representation of the index, which addresses a smaller range.

For simplicity, we do not go into details of handling the incremental encoding
of the indices, and overflow conditions when the Table gets full. It can be done
as for the serial LZW.

The parallel LZW decode routine assumes that its input is a sequence of
elements of the form (index, identifier). The empty string is denoted by Λ.

The algorithm in Figure 7 is a simplified version of the decoding, which does
not work in case the current element to be decoded was the last one to be added
to the Table. This is also a problem in the original LZW decoding and can be
solved here in the same way. The details have been omitted to keep the emphasis
on the parallelization.

3 Experimental Results

We now report on some experiments on files in different languages: the Bible
(King James Version) in English, the Bible in Hebrew and the Dictionnaire
philosophique of Voltaire in French. Table 1 first brings the sizes of the files in MB
and to what size they can be reduced by LZSS and LZW, expressed in percent
of the sizes of the original files. We consider three algorithms: the serial one,
using a single processor and yielding the compressed sizes in Table 1, but being
slow; a parallel algorithm we refer to as standard , where each block is treated



28 Shmuel Tomi Klein and Yair Wiseman

PLZW-decode(i, j)
{

cur ←− 1
old ←− Λ
while cur ≤ number of items in block Bi

{
(indx, ind) ←− Bi[cur]
access Table in Pf(listi[ind]) at index indx

and send string str found there to output
if old 6= Λ

store (old first [str ], dlog2(i + 1)e) in Table of Pj

old ←− str
cur ←− cur + 1

}
perform in

parallel

{
if 2i ≤ n PLZW-decode (2i, j)
if 2i + 1 ≤ n PLZW-decode (2i + 1, i + 1)}

Figure 7: Parallel LZW decoding for block Bi on processor Pj.

independently of the others; and the new parallel algorithm presented herein,
which exploits the hierarchical layout. The columns headed Time in Table 1
compare the new algorithm with the serial one. The time measurements were
taken on a Sun 450 with four UltraSPARC–II 248 MHz processors, which allowed
a layout with 7 blocks. The values are in seconds and correspond to LZW, which
turned out to give better compression performance than LZSS in our case. The
improvement is obviously not expected to be 4-fold, due to the overhead of the
parallelization, but on the examples the time is generally cut to less than half.

Table 1: Size and time measurements on test files.

Size Time
Full compressed by compression decompression

LZSS LZW Serial New Serial New

English Bible 3.860 41.6 36.6 5.508 2.296 3.653 1.504
Hebrew Bible 1.471 51.7 44.7 2.134 0.853 1.488 0.566
Voltaire 0.529 49.0 40.6 0.770 0.380 0.456 0.310

For the compression performance, we compare the two parallel versions. Both
are equivalent to the serial algorithm if the block size is chosen large enough,
as in [6]. The graphs in Figure 8 show the sizes of the compressed files in MB
as functions of the block size (in bytes), for both LZSS and LZW. We see that
for large enough blocks (about 64K for LZSS and 128K for LZW) the loss rel-
ative to a serial algorithm with a single processor is negligible (about 1%) for
both the standard and the new methods. However, when the blocks become



Parallel Lempel Ziv Coding 29

shorter, the compression gain in the independent model almost vanishes, whereas
with the new processor layout the decrease in compression performance is much
slower. For blocks as small as 128 bytes, running a standard parallel compression
achieves only about 1–4% compression for LZSS and about 12–15% for LZW,
while with the new layout this might be reduced by some additional 30–40%.

0

0.5

1

1.5

2

2.5

3

3.5

4

64 256 1K 4K 16K 64K 256K 1M 4M

C
om

pr
es

se
d 

si
ze

 (
M

B
)

Block size (bytes)

LZSS

English Bible   standard
English Bible   new

Hebrew Bible   standard
Hebrew Bible   new
Voltaire     standard

Voltaire     new

0

0.5

1

1.5

2

2.5

3

3.5

4

64 256 1K 4K 16K 64K 256K 1M 4M

C
om

pr
es

se
d 

si
ze

 (
M

B
)

Block size (bytes)

LZW

English Bible    standard
English Bible    new

Hebrew Bible    standard
Hebrew Bible    new

Voltaire    standard
Voltaire    new

Figure 8: Size of compressed file as function of block size.

We conclude that the simple hierarchical layout might allow us to consider-
ably reduce the size of the blocks that are processed in parallel without paying
too high a price in compression performance. As a consequence, if a large number
of processors is available, it enables a better utilization of their full combined
computing power.

References

1. De Agostino S., Storer J.A., Near Optimal Compression with Respect to a
Static Dictionary on a Practical Massively Parallel Architecture, IEEE Computer
Society Press (1995) 172–181.

2. De Agostino S., Storer J.A., Parallel Algorithms for Optimal Compression
using Dictionaries with the Prefix Property, IEEE Computer Society Press (1992)
52–61.

3. Gonzalez Smith M.E., Storer J.A., Parallel Algorithms for Data Compres-
sion, Journal of the ACM 32(2) (1985) 344–373.

4. Hirschberg D.S., Stauffer L.M., Parsing Algorithms for Dictionary Com-
pression on the PRAM, IEEE Computer Society Press (1994) 136–145.

5. Howard P.G., Vitter J.S., Parallel lossless image compression using Huffman
and arithmetic coding, Proc. Data Compression Conference DCC–92, Snowbird,
Utah (1992) 299–308.

6. Iwata K., Morii M., Uyematsu T., Okamoto E., A simple parallel algorithm
for the Ziv-Lempel encoding, IEICE Trans. Fundamentals E81–A (1998) 709–
712.

7. Klein S.T., Wiseman Y., Parallel Huffman decoding, Proc. Data Compression
Conference DCC–2000, Snowbird, Utah (2000) 383–392.



30 Shmuel Tomi Klein and Yair Wiseman

8. Lawrencece L.L., Przytycka T.M., Constructing Huffman Trees in Parallel,
SIAM Journal of Computing 24(6) (1995) 1163–1169.

9. Storer J.A., Szymanski, T.G., Data compression via textual substitution, J.
ACM 29 (1982) 928–951.

10. Welch T.A., A technique for high-performance data compression, IEEE Com-
puter 17 (June 1984) 8–19.

11. Whiting D.L., George G.A., Ivey G.E., Data Compression Apparatus and
Method, U.S. Patent 5,126,739 (1992).

12. Williams R.N., An extremely fast Ziv-Lempel data compression algorithm, Proc.
Data Compression Conference DCC–91, Snowbird, Utah (1991) 362–371.

13. Ziv J., Lempel A., A universal algorithm for sequential data compression, IEEE
Trans. on Inf. Th. IT–23 (1977) 337–343.

14. Ziv J., Lempel A., Compression of individual sequences via variable-rate coding,
IEEE Trans. on Inf. Th. IT–24 (1978) 530–536.


	Introduction
	A Tree-Structured Hierarchy of Processors
	Parallel Coding for LZSS
	Parallel Coding for LZW

	Experimental Results

