2 The ALU

- ALU includes *combinational* logic.

 Combinational logic → a change in inputs directly causes a change in output, after a characteristic delay.

 Different from *sequential logic* (later section) which only changes on the *clock*.

- Two major components of combinational logic are multiplexors & decoders.

- 2-input multiplexor (or selector) is implemented with gates below

![Symbol](image1.png)
![Gate Implementation](image2.png)
Multiplexors (MUXs)

Multiplexors can have any number of inputs (in theory)

Multiplexors can apply to buses → multiplied for many lines.

Example: 1 x 2 multiplexor on 32 bit bus.
Decoders

- Each combination of the inputs enables exactly one output.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2 I1 I0</td>
<td>O7 O6 O5 O4 O3 O2 O1 O0</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 0 0 1 0 0 0 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 0 1 0 0 0 0 0</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
The ALU

- The ALU provides the basic logical and arithmetic functions: AND, OR plus addition.
- Subtraction in 2's complement \(\rightarrow\) invert +1.
- Shift, multiplication and division are usually outside the basic ALU.

Logical operations

1 bit logical unit for AND/OR operations
1 bit FULL adder (3,2)

\[
\text{sum} = (a \cdot b \cdot C_{\text{in}}) + (\overline{a} \cdot b \cdot \overline{C_{\text{in}}}) + (a \cdot \overline{b} \cdot \overline{C_{\text{in}}}) + (a \cdot b \cdot C_{\text{in}}) = a \oplus b \oplus C_{\text{in}}
\]

\[
C_{\text{out}} = (b \cdot C_{\text{in}}) + (a \cdot C_{\text{in}}) + (a \cdot b) = ((a \oplus b) \cdot C_{\text{in}}) + (a \cdot b)
\]

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Full Adder from Half Adders

Half adder

- a
- b
- sum
- Cout

Full adder from 2 half adders + or gate

- a
- b
- Cin
- sum
- Cout
1 Bit Simple ALU

1 bit simple ALU for logical / arithmetic operations

![Diagram of a 1-bit ALU](image)
1 Bit Enhanced ALU

Enhanced for subtraction

```plaintext
2's complement: use Cin = 1
subtraction: a + \(\overline{b} + 1\) = a + (\(\overline{b} + 1\)) = a + (-b) = a - b
```
Ripple Carry Type Adder

32 bit ADDER with ripple carry:

- To produce a 32 bit result, we connect 32 single bit units together.

- This type of ALU adder is called a *ripple* adder

 Carry bits are generated in sequence.

 Bit 31 result and Cout is not correct until it receives Cin from previous unit, which is not correct until it receives Cin from its previous unit, etc.

 Total operation time is proportional to word size (here 32).
Carry Lookahead

- Ripple arithmetic operations are too slow for high performance.
- We can calculate all carries in 2-level logic, avoiding the ripple. We know that any logical function can be represented in canonical form (sum of products) but it requires more gates ⇒ too expensive.
 Carry bit i has two possibilities: either $a \cdot b$ and no carry in, or $a \oplus b$ and carry in. But carry in itself is the same combination of the bits previous to those that created it. Hence two level logic has 2^n terms for n bits.
- Practical adders use carry lookahead. factors out two basic functions which give us the carries

Generate - does bit i create a carry by itself?
Propagate - does bit i send a carry ahead to the next position?

$$g_i = (a_i \cdot b_i)$$
$$p_i = (a_i \oplus b_i)$$
$$c_{i+1} = g_i + p_i \cdot c_i$$
Illustration of Carry Lookahead for 4 Bit Adder

\[
c_1 = g_0 + (p_0 \cdot c_0)
\]
\[
c_2 = g_1 + (p_1 \cdot g_0) + (p_1 \cdot p_0 \cdot c_0)
\]
\[
c_3 = g_2 + (p_2 \cdot g_1) + (p_2 \cdot p_1 \cdot g_0) + (p_2 \cdot p_1 \cdot p_0 \cdot c_0)
\]
\[
c_4 = g_3 + (p_3 \cdot g_2) + (p_3 \cdot p_2 \cdot g_1) + (p_3 \cdot p_2 \cdot p_1 \cdot g_0) + (p_3 \cdot p_2 \cdot p_1 \cdot p_0 \cdot c_0)
\]
Carry Lookahead Concept Generalized to Higher Levels

\[P_i = p_{i0} \cdot p_{i1} \cdot p_{i2} \cdot p_{i3} \]
\[G_i = g_{i3} + g_{i2} \cdot p_{i3} + g_{i1} \cdot p_{i2} \cdot p_{i3} + g_{i0} \cdot p_{i1} \cdot p_{i2} \cdot p_{i3} \]
\[C_{i+1} = G_i + P_i \cdot C_i \]

Carry Lookahead on 4-bit units
(provides logarithmic complexity)