Compact-like properties, normality and C^*-embeddedness of the hyperspace of compact sets

Yasser Fermán Ortiz Castillo
Center of Mathematical Ciencias
Universidad Nacional Autónoma de México Campus Morelia

Working with Juan Angoa, Nobuyuki Kemoto, Reynaldo Rojas and Angel Tamariz.
CONTENIDO

1 Introduction
2 Normality
3 Compact-like properties
4 Pseudocompactness
5 C^*-embeddedness
6 Strong 0-dimensionality
7 Bibliography.
\(\mathcal{CL}(X) \) denote the hyperspace of non-empty closed sets of \(X \) with the Vietoris topology. \(\mathcal{K}(X) \) is the subspace of compact sets.

The Vietoris topology has the sets of the form

\[
V^+ = \{ A \in \mathcal{CL}(X) : A \subseteq V \} \quad \text{and} \quad V^- = \{ A \in \mathcal{CL}(X) : A \cap V \neq \emptyset \}
\]

like a subbase, when \(V \) is an open set of \(X \).

Given open sets of \(X \), \(U_1, \ldots, U_n \), define

\[
< U_1, \ldots U_n > = \{ T \in \mathcal{CL}(X) : T \in \bigcup_{1 \leq k \leq n} U_k^+, \ T \in U_k^- \}.
\]
Yasser Fermán Ortiz Castillo

Compact-like properties, normality and C^*-embeddedness of $\mathcal{K}(X)$
Theorem

\((M.) \mathcal{C} \mathcal{L}(X) \) is:

1. \(T_2 \) iff \(X\) is \(T_3\),
2. \(T_3 \) iff \(\mathcal{C} \mathcal{L}(X)\) is Tychonoff iff \(X\) is \(T_4\),
3. \(T_4 \) iff \(\mathcal{C} \mathcal{L}(X)\) is compact iff \(X\) is compact.

Theorem

\((M.) \mathcal{K}(X) \) is:

1. \(T_2 \) iff \(X\) is \(T_2\),
2. \(T_3 \) iff \(X\) is \(T_3\),
3. Tychonoff iff \(X\) is Tychonoff.
Theorem

(M.) $C\mathcal{L}(X)$ is:

1. T_2 iff X is T_3,
2. T_3 iff $C\mathcal{L}(X)$ is Tychonoff iff X is T_4,
3. T_4 iff $C\mathcal{L}(X)$ is compact iff X is compact.

Theorem

(M.) $\mathcal{K}(X)$ is:

1. T_2 iff X is T_2,
2. T_3 iff X is T_3,
3. Tychonoff iff X is Tychonoff.
About the normality of $\mathcal{K}(X)$

Theorem

(M.) $\mathcal{K}(X)$ is metrizable iff X is it.

Note that $\mathcal{CL}(X)$ is metrizable iff X is compact metrizable.

Theorem

(Moresco and Artico) If L is the Sorgenfrey line then $\mathcal{K}(L)$ is not normal.
About the normality of $\mathcal{K}(X)$

Theorem

(M.) $\mathcal{K}(X)$ is metrizable iff X is it.

Note that $\mathcal{CL}(X)$ is metrizable iff X is compact metrizable.

Theorem

(Moresco and Artico) If L is the Sorgenfrey line then $\mathcal{K}(L)$ is not normal.
About the normality of $\mathcal{K}(X)$

Theorem

(M.) $\mathcal{K}(X)$ is metrizable iff X is it.

Note that $\mathcal{C}\mathcal{L}(X)$ is metrizable iff X is compact metrizable.

Theorem

(Moresco and Artico) If L is the Sorgenfrey line then $\mathcal{K}(L)$ is not normal.
Theorem

Let γ an ordinal number.

1. if $\text{cof}(\gamma) = \omega$ then $K([0, \gamma))$ is normal.

2. (K.) if $\text{cof}(\gamma) > \omega$ then $K([0, \gamma))$ is normal iff γ is regular.

3. (K. Hirata) if $\text{cof}(\gamma) > \omega$ then $K([0, \gamma))$ is orthocompact iff γ is regular.

Questions:

1. For which other class of spaces the hyperspace K is normal?.

2. Are there conditions C such that: $K(X)$ is normal iff X has C?
Theorem

Let γ an ordinal number.

1. If $\text{cof}(\gamma) = \omega$ then $\mathcal{K}([0, \gamma))$ is normal.

2. (K.) If $\text{cof}(\gamma) > \omega$ then $\mathcal{K}([0, \gamma))$ is normal iff γ is regular.

3. (K. Hirata) If $\text{cof}(\gamma) > \omega$ then $\mathcal{K}([0, \gamma))$ is orthocompact iff γ is regular.

Questions:

1. For which other class of spaces the hyperspace \mathcal{K} is normal?.

2. Are there conditions \mathcal{C} such that: $\mathcal{K}(X)$ is normal iff X has \mathcal{C}?.
Compact-like properties, normality and C^*-embeddedness of $\mathcal{K}(X)$
Theorem

(G.) $\mathcal{CL}(X)$ is:

1. ω-bounded (ultrapseudocompact) iff X is it,
2. p-compact (p-pseudocompact) iff X is it,
3. α-bounded iff X is it.

Questions: Are there conditions \mathcal{C} such that: $\mathcal{CL}(X)$ is countable compact (pseudocompact) iff X has \mathcal{C}?
Theorem

\((G.) C\mathcal{L}(X)\) is:

1. \(\omega\)-bounded (ultrapseudocompact) iff \(X\) is it,
2. \(p\)-compact (\(p\)-pseudocompact) iff \(X\) is it,
3. \(\alpha\)-bounded iff \(X\) is it.

Questions: Are there conditions \(\mathcal{C}\) such that: \(C\mathcal{L}(X)\) is countable compact (pseudocompact) iff \(X\) has \(\mathcal{C}\)?
In $\mathcal{K}(X)$.

Theorem

(A.O.T.) TFSE:

1. X is α-hyperbounded,
2. $\mathcal{K}(X)$ is initially α-compact.
3. $\mathcal{K}(X)$ is α-bounded, and
4. $\mathcal{K}(X)$ is α-hyperbounded.

Milovančević made this prove for $\alpha = \omega$
Theorem

(A.O.T.) Let X be a space. Then the next statements are equivalent:

1. X is pseudo-ω-bounded,
2. $\mathcal{K}(X)$ is pseudo-ω-bounded,
3. $\mathcal{K}(X)$ pseudo-\mathcal{D}-bounded for some $\mathcal{D} \subseteq \mathbb{N}^*$,
4. $\mathcal{K}(X)$ is strongly-p-pseudocompact for some $p \subseteq \mathbb{N}^*$,
5. $\mathcal{K}(X)$ is p-pseudocompact for some $p \subseteq \mathbb{N}^*$ and
6. $\mathcal{K}(X)$ is pseudocompact.
CONTENIDO

1. Introduction
2. Normality
3. Compact-like properties
4. Pseudocompactness
5. C*-embeddedness
6. Strong 0-dimensionality
Pseudocompactness has a different approach. Let \(I : \mathcal{CL}(X) \rightarrow \mathcal{CL}(\beta X) : I(A) = Cl_{\beta X}A. \)

When \(\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X) \)? or when is \(\mathcal{CL}(X) \) is natural (I) \(C^* \)-embedded in \(\mathcal{CL}(\beta X) \)?

Theorem

Let \(X \) be normal.

1. (K.G.) If \(\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X) \) then \(\mathcal{CL}(X) \) (and so \(\mathcal{CL}(X) \times \mathcal{CL}(X) \)) is pseudocompact.

2. (G.) If \(\mathcal{CL}(X) \times \mathcal{CL}(X) \) is pseudocompact then \(\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X) \).

Natsheh proved the converse but we think it is wrong.
Pseudocompactness has a different approach. Let \(I : CL(X) \longrightarrow CL(\beta X) : I(A) = Cl_{\beta X}A \).

When \(\beta(CL(X)) = CL(\beta X) \)? or when is \(CL(X) \) is natural (I) \(C^* \)-embedded in \(CL(\beta X) \)?

Theorem

Let \(X \) be normal.

1. *(K.G.) If \(\beta(CL(X)) = CL(\beta X) \) then \(CL(X) \) (and so \(CL(X) \times CL(X) \)) is pseudocompact.
2. *(G.) If \(CL(X) \times CL(X) \) is pseudocompact then \(\beta(CL(X)) = CL(\beta X) \).*

Natsheh proved the converse but we think it is wrong.
Pseudocompactness has a different approach. Let
\[I : \mathcal{CL}(X) \longrightarrow \mathcal{CL}(\beta X) : I(A) = Cl_{\beta X} A. \]
When \(\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X) \)? or when is \(\mathcal{CL}(X) \) is natural
(1) \(C^* \)-embedded in \(\mathcal{CL}(\beta X) \)?

Theorem

Let \(X \) be normal.

1. *(K.G.)* If \(\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X) \) then \(\mathcal{CL}(X) \) (and so \(\mathcal{CL}(X) \times \mathcal{CL}(X) \)) is pseudocompact.

2. *(G.)* If \(\mathcal{CL}(X) \times \mathcal{CL}(X) \) is pseudocompact then \(\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X) \).

Natsheh proved the converse but we think it is wrong.
CONTENIDO

1 Introduction
2 Normality
3 Compact-like properties
4 Pseudocompactness
5 C^*-embeddedness
6 Strong 0-dimensionality
7 Bibliography
Question: When is $\mathcal{K}(X)$ C^*-embedded in $\mathcal{CL}(X)$? Is there some relation between this problem and the problem: When is $\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X)$?

Theorem

(H.) If $\mathcal{K}(X)$ is normal and C^*-embedded in $\mathcal{CL}(X)$ then $\mathcal{K}(X)$ is ω-bounded (and so $\mathcal{K}(X)$ is C-embedded in $\mathcal{CL}(X)$).

So if $\mathcal{K}(X)$ is normal and C^*-embedded in $\mathcal{CL}(X)$ then $\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X)$ and the converse is not true. We don’t know what happens if $\mathcal{K}(X)$ is not normal.
Question: When is $\mathcal{K}(X)$ C^*-embedded in $\mathcal{CL}(X)$? Is there some relation between this problem and the problem: When is $\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X)$?

Theorem

(H.) If $\mathcal{K}(X)$ is normal and C^*-embedded in $\mathcal{CL}(X)$ then $\mathcal{K}(X)$ is ω-bounded (and so $\mathcal{K}(X)$ is C-embedded in $\mathcal{CL}(X)$).

So if $\mathcal{K}(X)$ is normal and C^*-embedded in $\mathcal{CL}(X)$ then $\beta(\mathcal{CL}(X)) = \mathcal{CL}(\beta X)$ and the converse is not true. We don’t know what happens if $\mathcal{K}(X)$ is not normal.
Corollary

Let X be a metrizable space. Then $\mathcal{K}(X)$ is C^*-embedded in $\mathcal{CL}(X)$ iff X is a compact space.

Theorem

(A. O. T.) Suppose $\mathcal{K}(X)$ is normal and C^*-embedded in $\mathcal{CL}(X)$. TFAE:

1. X is τ-bounded,
2. X is τ-hyperbounded,
3. $\mathcal{K}(X)$ is τ-pseudocompact,
4. $\mathcal{K}(X)$ is initially τ-compact,
5. $\mathcal{K}(X)$ is τ-bounded, and
6. $\mathcal{K}(X)$ is τ-hyperbounded.
Corollary

Let X be a metrizable space. Then $\mathcal{K}(X)$ is C^\ast-embedded in $\mathcal{CL}(X)$ iff X is a compact space.

Theorem

(A. O. T.) Suppose $\mathcal{K}(X)$ is normal and C^\ast-embedded in $\mathcal{CL}(X)$. TFAE:

1. X is τ-bounded,
2. X is τ-hyperbounded,
3. $\mathcal{K}(X)$ is τ-pseudocompact,
4. $\mathcal{K}(X)$ is initially τ-compact,
5. $\mathcal{K}(X)$ is τ-bounded, and
6. $\mathcal{K}(X)$ is τ-hyperbounded.
Theorem

(A. O. T.) Suppose $\mathcal{K}(X)$ is C^*-embedded in $\mathcal{CL}(X)$.

TFAE:

1. X is compact,
2. X is σ-compact,
3. $\mathcal{K}(X)$ is compact,
4. $\mathcal{K}(X)$ is σ-compact,
5. $\mathcal{K}(X)$ is Lindelöf,
6. $\mathcal{K}(X)$ is paracompact,
7. $\mathcal{K}(X)$ is normal and metacompact,
8. $\mathcal{CL}(X)$ is compact, and
9. $\mathcal{CL}(X)$ is σ-compact.
Our main result:

Theorem

(K. O. R.) Let γ be an ordinal number. TFAE:

1. $\mathcal{K}([0, \gamma))$ is C-embedded in $\mathcal{CL}([0, \gamma))$.
2. $\mathcal{K}([0, \gamma))$ is C^*-embedded in $\mathcal{CL}([0, \gamma))$.
3. $\text{cof}(\gamma) \neq \omega$
Our main result:

Theorem

(K. O. R.) Let γ be an ordinal number. TFAE:

1. $\mathcal{K}([0, \gamma))$ is C-embedded in $\mathcal{CL}([0, \gamma))$.
2. $\mathcal{K}([0, \gamma))$ is C^\ast-embedded in $\mathcal{CL}([0, \gamma))$.
3. $\text{cof}(\gamma) \neq \omega$
Theorem

(K. O.) Let γ be an infinite ordinal number. TFAE:

1. $\text{cof}(\gamma) \neq \omega$,
2. $[0, \gamma)$ is pseudocompact,
3. $\beta(\mathcal{CL}([0, \gamma))) = \mathcal{CL}(\beta([0, \gamma)))$,
4. $\beta(\mathcal{K}([0, \gamma))) = \mathcal{K}(\beta([0, \gamma)))$,
5. $\beta(\mathcal{CL}([0, \gamma))) = \mathcal{CL}([0, \gamma])$, and
6. $\beta(\mathcal{K}([0, \gamma))) = \mathcal{K}([0, \gamma])$.

Yasser Fermán Ortiz Castillo
CCM UNAM Campus Morelia

Compact-like properties, normality and C^*-embeddedness of $\mathcal{K}(X)$
Theorem

(K. O.) Let γ be an infinite ordinal number. TFAE:

1. $\text{cof}(\gamma) \neq \omega$,
2. $[0, \gamma)$ is pseudocompact,
3. $\beta(\mathcal{CL}([0, \gamma))) = \mathcal{CL}(\beta([0, \gamma)))$,
4. $\beta(\mathcal{K}([0, \gamma))) = \mathcal{K}(\beta([0, \gamma)))$,
5. $\beta(\mathcal{CL}([0, \gamma))) = \mathcal{CL}([0, \gamma])$, and
6. $\beta(\mathcal{K}([0, \gamma))) = \mathcal{K}([0, \gamma])$.

Yasser Fermán Ortiz Castillo

CCM UNAM Campus Morelia
INTRODUCCIÓN

1. Introducción
2. Normalidad
3. Propiedades compactas
4. Pseudocompactness
5. C^*-embeddedness
6. Dimensionalidad 0 fuerte
7. Bibliografía
Theorem

1. (M.) $\mathcal{K}(X)$ is 0-dimensional iff X is it.
2. (K. T.) $\mathcal{C}\mathcal{L}(\omega)$ is strong 0-dimensional.
3. (K. T.) $\mathcal{K}([0, \gamma))$ is strong 0-dimensional for every γ.

Theorem

1. (O. O.) If $\text{cof}(\gamma) \neq \omega$ then $\mathcal{C}\mathcal{L}(\omega)$ is strong 0-dimensional.
2. (O.) If $\text{cof}(\gamma) \neq \omega$ then $\mathcal{K}([0, \gamma))$ is strongly 0-dimensional.
Theorem

1. (M.) $\mathcal{K}(X)$ is 0-dimensional iff X is it.
2. (K. T.) $\mathcal{CL}(\omega)$ is strong 0-dimensional.
3. (K. T.) $\mathcal{K}([0, \gamma))$ is strong 0-dimensional for every γ.

Theorem

1. (O. O.) If $\text{cof}(\gamma) \neq \omega$ then $\mathcal{CL}(\omega)$ is strong 0-dimensional.
2. (O.) If $\text{cof}(\gamma) \neq \omega$ then $\mathcal{K}([0, \gamma))$ is strongly 0-dimensional.
CONTENIDO

1. Introduction
2. Normality
3. Compact-like properties
4. Pseudocompactness
5. C^*-embeddedness
6. Strong 0-dimensionality

Yasser Fernán Ortiz Castillo

Compact-like properties, normality and C^*-embeddedness of $\mathcal{K}(X)$
J. Angoa, Y. F. Ortiz-Castillo, A. Tamariz-Mascarua
Compact like properties on hyperspaces, to appear.

Gracias gracias gracias!!!

Thank you thank you thank you!!!

Grazie grazie grazie!!!
Gracias gracias gracias!!!

Thank you thank you thank you!!!

Grazie grazie grazie!!!

Compact-like properties, normality and C^*-embeddedness of $\mathcal{K}(X)$
Gracias gracias gracias!!!

Thank you thank you thank you!!!

Grazie grazie grazie!!!