t-symmetrizable quasi-uniformities

by Hans-Peter A. Künzi and Salvador Romaguera

Department of Mathematics and
Applied Mathematics,
University of Cape Town,
Rondebosch 7701, South Africa,
email: hans-peter.kunzi@uct.ac.za

Instituto Universitario de
Matemática Pura y Aplicada,
Universidad Politécnica de Valencia,
46022 Valencia, Spain,
email: sromague@mat.upv.es
Definition 1 Let X be a set and let $d : X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of the nonnegative reals. Then d is called a quasi-pseudometric on X if

(a) $d(x, x) = 0$ whenever $x \in X$,

(b) $d(x, z) \leq d(x, y) + d(y, z)$ whenever $x, y, z \in X$.

We shall say that d is a T_0-quasi-(pseudo)metric provided that d also satisfies the following condition: For each $x, y \in X$,

$d(x, y) = 0 = d(y, x)$ implies that $x = y$.
For each positive ϵ we shall set $U_{d,\epsilon} := \{(x, y) \in X \times X : d(x, y) < \epsilon\}$.

The quasi-pseudometric quasi-uniformity induced by d on X will be denoted by U_d.

As usual, we say that a topological space (X, τ) has a compatible quasi-uniformity if there is a quasi-uniformity \mathcal{U} on X such that $\tau = \tau\mathcal{U}$, where by $\tau\mathcal{U}$ we denote the topology induced by \mathcal{U}, and we say that (X, τ) has a compatible quasi-pseudometric if there is a quasi-pseudometric d on X such that $\tau = \tau U_d$.
Remark 1 Let d be a quasi-pseudometric on a set X, then $d^{-1} : X \times X \to [0, \infty)$ defined by $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$ is also a quasi-pseudometric, called the conjugate quasi-pseudometric of d.

As usual, a quasi-pseudometric d on X such that $d = d^{-1}$ is called a pseudometric.

Note that for any (T_0-)quasi-pseudometric d, $d^s = \sup \{d, d^{-1}\} = d \vee d^{-1}$ is a pseudometric (metric).
According to Matthews a quasi-pseudometric q on a set X is called *weightable* provided that there is a function $|\cdot| : X \to [0, \infty)$ such that

$$q(x, y) + |x| = q(y, x) + |y|$$

whenever $x, y \in X$.

The function $|\cdot|$ will be called a *weight* for q.
More generally we shall call a quasi-uniformity \mathcal{U} on a set X weightable if $\mathcal{U} = \bigvee_{d \in \mathcal{E}} \mathcal{U}_d$ where \mathcal{E} is a family of weightable quasi-pseudometrics on X.

We shall call a quasi-uniform space (X, \mathcal{U}) weightable if \mathcal{U} is a weightable quasi-uniformity on X.
For later use, we recall that a quasi-uniformity \mathcal{U} is called *precompact* provided that for each $U \in \mathcal{U}$ there is a finite $F \subseteq X$ such that $U(F') = X$.

Furthermore a quasi-uniformity \mathcal{U} is called *totally bounded* provided that the uniformity $\mathcal{U}^s = \mathcal{U} \lor \mathcal{U}^{-1}$ is precompact.

A quasi-uniform space (X, \mathcal{U}) is said to be *hereditarily precompact* provided that each subspace of (X, \mathcal{U}) is precompact.

For any quasi-uniformity \mathcal{U}, by \mathcal{U}_ω we shall denote the finest totally bounded quasi-uniformity coarser than \mathcal{U}.
A quasi-uniformity is called *transitive* provided that it has a base consisting of transitive entourages.

Throughout \mathcal{D} will denote the discrete uniformity on a set X.

Moreover for two real numbers a, b we shall set $a \cdot b = \max\{a - b, 0\}$.

Example 1 Equip the set $[0, \infty)$ with the quasi-pseudometric $u(x, y) = y \cdot x$ whenever $x, y \in [0, \infty)$, and set $|x| = x$ whenever $x \in [0, \infty)$. Then u is a T_0-quasi-pseudometric on $[0, \infty)$ that is weighted by the usual norm $| \cdot |$ on \mathbb{R} restricted to $[0, \infty)$.

Furthermore the quasi-uniformity $\mathcal{U}_{u^{-1}}$ is not weightable.
Example 2 The fine quasi-uniformity \mathcal{F} of the topological space of the rationals \mathbb{Q} (equipped with its usual topology) is not weightable.

Proposition 1 A topological space has a compatible weightable quasi-pseudometric if and only if it has a compatible weightable quasi-uniformity with a countable base.

Proposition 2 Let (X,\mathcal{U}) be a T_0-quasi-uniform space. Then its bi-completion $(\tilde{X},\tilde{\mathcal{U}})$ is a weightable T_0-quasi-uniform space, too.
In the following we discuss some analogues of uniform hyperspaces which yield some important examples of weightable quasi-uniformities.

Let \((X, d)\) be a quasi-pseudometric space and let \(\mathcal{P}_0(X)\) be the set of nonempty subsets of \(X\). Moreover let \(A, B \in \mathcal{P}_0(X)\). We set

\[
H^+_d(A, B) = \sup_{b \in B} d(A, b)
\]

and

\[
H^-_d(A, B) = \sup_{a \in A} d(a, B).
\]

(As usual, here for instance \(d(A, b) = \inf\{d(a, b) : a \in A\}\).

Furthermore

\[
H_d(A, B) = H^+_d(A, B) \lor H^-_d(A, B).
\]
Then H_d^+ is the extended upper Hausdorff quasi-pseudometric, H_d^- is the extended lower Hausdorff quasi-pseudometric and H_d is the extended Hausdorff quasi-pseudometric on $\mathcal{P}_0(X)$.

Similarly for each $x \in X$, set

$$(W_d^+)x(A, B) = d(A, x) - d(B, x)$$

and

$$(W_d^-)x(A, B) = d(x, B) - d(x, A).$$

Moreover for each $x \in X$, let

$$(W_d)x(A, B) = (W_d^+)x(A, B) \lor (W_d^-)x(A, B).$$
Then for each $x \in X$, $(W^+_d)_x$ is the upper Wijsman quasi-pseudometric at x, $(W^-_d)_x$ is the lower Wijsman quasi-pseudometric at x, and $(W_d)_x$ is the Wijsman quasi-pseudometric at x.
For each \(x \in X \), \((W_d^-)_x\) is a weightable quasi-pseudometric with weight \((w_d^-)_x(A) = d(x, A)\) whenever \(A \in \mathcal{P}_0(X) \).

Let \(A, B \in \mathcal{P}_0(X) \). It is known that

\[
H^+_d(A, B) = \sup_{x \in X} (W^+_d)_x(A, B) = \sup_{x \in X} (d(A, x) - d(B, x)).
\]

Similarly we have

\[
H^-_d(A, B) = \sup_{x \in X} (W^-_d)_x(A, B) = \sup_{x \in X} (d(x, B) - d(x, A)).
\]

Hence also \(H_d(A, B) = \sup_{x \in X} (W_d)_x(A, B) \).
Proposition 3 Each totally bounded quasi-uniformity \mathcal{U} on a set X is weightable.

Given any quasi-pseudometric space (X, d), we can define quasi-uniformities

$$\mathcal{U}_{W_d^+} = \bigvee_{x \in X} \mathcal{U}_{(W_d^+)x}$$

and similarly

$$\mathcal{U}_{W_d^-} = \bigvee_{x \in X} \mathcal{U}_{(W_d^-)x}$$

and

$$\mathcal{U}_{W_d} = \bigvee_{x \in X} \mathcal{U}_{(W_d)x}$$
on $\mathcal{P}_0(X)$.
Corollary 1 Let \((X, d)\) be a quasi-pseudometric space. When restricting the Wijsman quasi-uniformities to \(X\) (where we identify the points with singletons), we have

\[U_{W^+} \subseteq U_d \]

and

\[U_{W^-} \subseteq U_d. \]

consequently

\[U_{W_d} \subseteq U_d. \]

Equality holds in the three inclusions provided that \(U_d\) is totally bounded.
Remark 2 There are obvious connections between the upper resp. lower constructions considered above and the operation of conjugation.

For instance, for any quasi-pseudometric d on a set X we have that for any $x \in X$,

$$((W^+_{d^{-1}}x)^{-1} = (W^-_{d})x,$$

and thus

$$(U_{W^+_{d^{-1}}})^{-1} = U_{W^-_{d}}$$

on $\mathcal{P}_0(X)$.
Proposition 4 Let d be a totally bounded quasi-pseudometric on a set X. Then

$$U_{W_d}^+ = U_{H_d}^+,$$
$$U_{W_d}^- = U_{H_d}^-$$

and

$$U_{W_d} = U_{H_d}$$

on $\mathcal{P}_0(X)$.
Given a quasi-pseudometric space \((X, d)\), for each \(x \in X\) set

\[r_x(a) = d(a, x) \]

and

\[l_x(a) = d(x, a) \]

whenever \(a \in X\).

Similarly let us define for each \(x \in X\),

\[R_x(A) = d(A, x) \]

and

\[L_x(A) = d(x, A) \]

whenever \(A \in \mathcal{P}_0(X)\).
The following definition is well known.

A quasi-pseudometric \(d \) on a set \(X \) is called \textit{bounded} provided that there is a constant \(M > 0 \) such that \(d(x, y) \leq M \) whenever \(x, y \in X \).

Let us observe that for any \(x \in X \), \(r_x \) is bounded on \(X \) if and only if \(R_x \) is bounded on \(\mathcal{P}_0(X) \).

Analogously for any \(x \in X \), \(l_x \) is bounded on \(X \) if and only if \(L_x \) is bounded on \(\mathcal{P}_0(X) \).
Lemma 1 A quasi-pseudometric d on a set X is bounded if and only if there is an $x \in X$ such that both r_x and l_x are bounded.

Boundedness conditions imply hereditary precompactness properties of Wijsman type quasi-uniformities:

Remark 3 The quasi-uniformity $U_{u^{-1}}$ is hereditarily precompact on $[0, \infty)$. Hence given any set X, for any function $f : X \to [0, \infty)$, the initial quasi-uniformity $(f \times f)^{-1}U_{u^{-1}}$ is hereditarily precompact.
Suppose now that d is a quasi-pseudometric on X. Observe that on $\mathcal{P}_0(X)$ we have
\[\mathcal{U}_{(W^+_d)x} = (R_x \times R_x)^{-1} \mathcal{U}_{u^{-1}} \]
and
\[\mathcal{U}_{(W^-_d)x} = (L_x \times L_x)^{-1} \mathcal{U}_u \]
whenever $x \in X$. Therefore for any quasi-pseudometric space (X, d) and $x \in X$, $\mathcal{U}_{(W^+_d)x}$ is hereditarily precompact on $\mathcal{P}_0(X)$ and $(\mathcal{U}_{(W^-_d)x})^{-1}$ is hereditarily precompact on $\mathcal{P}_0(X)$.

Consequently $\mathcal{U}_{W^+_d}$ and $(\mathcal{U}_{W^-_d})^{-1}$ are hereditarily precompact on $\mathcal{P}_0(X)$, since hereditary precompactness is preserved under arbitrary suprema of quasi-uniformities.
Given $x \in X$, r_x is bounded on X if and only if $\mathcal{U}(W_d^+)_x$ is totally bounded on $\mathcal{P}_0(X)$.

Similarly, given $x \in X$, l_x is bounded on X if and only if $\mathcal{U}(W_d^-)_x$ is totally bounded on $\mathcal{P}_0(X)$.

Given $x \in X$, $\mathcal{U}(W_d)_x$ is totally bounded on $\mathcal{P}_0(X)$ if and only if d is bounded on X.
Corollary 2 Let \((X, d)\) be a quasi-pseudometric space.

Then \(U_{W^+} \) is totally bounded on \(P_0(X)\) if and only if for each \(x \in X\), \(r_x\) is bounded on \(X\).

Similarly \(U_{W^-}\) is totally bounded on \(P_0(X)\) if and only if for each \(x \in X\), \(l_x\) is bounded on \(X\).

Finally \(U_{W^d}\) is totally bounded on \(P_0(X)\) if and only if \(d\) is bounded on \(X\).
Proposition 5 Let \(q \) be a weightable quasi-pseudometric with weight function \(f \) on a set \(X \). Then

\[
[(f \times f)^{-1} \mathcal{U}_u] \subseteq \mathcal{U}_q
\]

and

\[
\mathcal{U}_q \subseteq [(f \times f)^{-1} \mathcal{U}_u] \lor \mathcal{U}_{q^{-1}}.
\]

In the following we replace the quasi-metric theory of weightability by a quasi-uniform approach to weightability.
Let \mathcal{U} be a quasi-uniformity on a set X. Then \mathcal{U} contains a finest symmetric quasi-uniformity coarser than \mathcal{U}, namely $\mathcal{U} \wedge \mathcal{U}^{-1}$, and \mathcal{U} is contained in a coarsest symmetric quasi-uniformity finer than \mathcal{U}, namely \mathcal{U}^s.

A quasi-uniformity \mathcal{A} on X will be called a *symmetrizer* of \mathcal{U} provided that

$$\mathcal{U} \vee \mathcal{A}$$

is symmetric, that is, $\mathcal{U} \vee \mathcal{A}$ is a uniformity.
A symmetrizer \mathcal{A} of \mathcal{U} will be called *adequate* provided that $\mathcal{A} \subseteq \mathcal{U}^{-1}$.

Example 3 Let \mathcal{U} and \mathcal{Z} be quasi-uniformities on a set X. Then \mathcal{Z} satisfies both $\mathcal{Z} \subseteq \mathcal{U}^{-1}$ and $\mathcal{U}^{-1} \subseteq \mathcal{U} \lor \mathcal{Z}$ if and only if \mathcal{Z} on X is an adequate symmetrizer of \mathcal{U}.
Remark 4 Let d be a weightable quasi-pseudometric with weight function f on a set X. We set $A = (f \times f)^{-1}(U_{u^{-1}})$.

We have $A \subseteq U_{d^{-1}}$ and $U_{d^{-1}} \subseteq U_d \lor A$.

Hence A is an adequate symmetrizer for U_d. It follows that

$$U_d^s = U_d \lor A.$$

For any weight f, A is hereditarily precompact, since f is bounded below by 0.

For any weight f, A^s is preLindelöf.

For a bounded weight f, A is totally bounded.
If A is a(n adequate) symmetrizer for a quasi-uniformity U, then A^{-1} is a(n adequate) symmetrizer for U^{-1}.

For each quasi-uniformity U, the conjugate quasi-uniformity U^{-1} is an adequate symmetrizer of U.

Consider a quasi-uniformity U_T generated by a partial order T on a set X (that is, U_T has the base $\{T\}$) and let L by a linear extension of T on X.

Then in general the quasi-uniformity $U_{L^{-1}}$ generated by L^{-1} is strictly coarser than the quasi-uniformity $U_{T^{-1}}$ generated by T^{-1} on X, but obviously both are adequate symmetrizers of U_T.
For each uniformity \mathcal{U}, any quasi-uniformity coarser than \mathcal{U} is an adequate symmetrizer of \mathcal{U}.

Trivially, each totally bounded quasi-uniformity \mathcal{U} on a set X can be made transitive by taking the supremum with the finest possible (transitive) totally bounded quasi-uniformity \mathcal{D}_ω on X.

On the other hand there are quasi-uniformities that cannot be made transitive by taking the supremum with any totally bounded quasi-uniformity.
Similarly there are quasi-uniformities that cannot be made symmetric by taking the supremum with any totally bounded quasi-uniformity.

Obviously each quasi-uniformity on a set X can be made symmetric by taking the supremum with the discrete uniformity \mathcal{D} on X.
Lemma 2 Suppose that \mathcal{U} is a quasi-uniformity on a set X. Let $\{A_i : i = 1, \ldots, n\}$ be a finite cover of X and let $V \in \mathcal{U}$.

Then

$$\bigcup_{i=1}^{n} (V^{-1}(A_i) \times V(A_i))$$

belongs to \mathcal{U}_ω.

Theorem 1 Let \mathcal{U} and \mathcal{V} be quasi-uniformities on a set X such that there is a totally bounded quasi-uniformity \mathcal{Z} on X with

$$\mathcal{U} \subseteq \mathcal{V} \vee \mathcal{Z}.$$

Then

$$\mathcal{U} \subseteq \mathcal{V} \vee (\mathcal{U} \vee \mathcal{V}^{-1})_\omega.$$
Let us call a quasi-uniformity \mathcal{U} on a set X \textit{t-symmetrizable} provided that there is a totally bounded quasi-uniformity \mathcal{Z} on X such that $\mathcal{U} \lor \mathcal{Z}$ is a uniformity, that is, \mathcal{U} possesses a totally bounded symmetrizer \mathcal{Z}.
Remark 5 (a) The supremum of any family of t-symmetrizable quasi-uniformities on a set X is t-symmetrizable.

(b) The conjugate of a t-symmetrizable quasi-uniformity is t-symmetrizable.

(c) Each totally bounded quasi-uniformity is t-symmetrizable.

(d) The restriction to a subspace of a t-symmetrizable quasi-uniformity is t-symmetrizable.

(e) The product quasi-uniformity of any family of t-symmetrizable quasi-uniformities is t-symmetrizable.
Corollary 3 (a) Let \((q_i)_{i \in I}\) be a family of quasi-pseudometrics on a set \(X\) where \(q_i\) is weightable by a bounded weight \(f_i\) \((i \in I)\). Then \(\bigvee_{i \in I} U_{q_i}\) is \(t\)-symmetrizable.

(b) Each weightable quasi-uniformity inducing a countably compact topology is \(t\)-symmetrizable.

Proposition 6 Let \(U\) be a \(t\)-symmetrizable quasi-uniformity on a set \(X\). Then \(U\) can be adequately symmetrized by \((U^{-1})_\omega\) to \(U^s\).
Corollary 4 The following statements for a quasi-uniformity \(U \) on a set \(X \) are equivalent:

(a) \(U \) is \(t \)-symmetrizable.
(b) \(U \) has a totally bounded adequate symmetrizer.

Remark 6 Let \(U \) be a quasi-uniformity on a set \(X \). Note that the existence of a quasi-uniformity \(Z \) on \(X \) such that \(U = U^{-1} \lor Z \) implies that \(U^s = U^{-1} \lor Z = U \), hence that \(U \) is a uniformity.
Let \mathcal{U} be a t-symmetrizable quasi-uniformity.

Then according to the preceding results \mathcal{U}^s is clearly the smallest uniformity that we can obtain by t-symmetrization of \mathcal{U}.

$$\mathcal{U}^s \lor \mathcal{D}_\omega =$$
$$\mathcal{U} \lor (\mathcal{U}^{-1})_\omega \lor \mathcal{D}_\omega = \mathcal{U} \lor \mathcal{D}_\omega$$

is obviously the finest uniformity that we can reach by t-symmetrization of \mathcal{U}.
Indeed each uniformity in between these two extreme cases can be obtained by t-symmetrization of U:

Proposition 7 Let U be a t-symmetrizable quasi-uniformity on a set X. Then any uniformity V on X such that $U^s \subseteq V \subseteq U^s \lor D_\omega$ satisfies $V = U \lor V_\omega$.

Remark 7 Suppose that U is a quasi-uniformity on a set X that has a countable base and is t-symmetrizable. Then U can be symmetrized by some totally bounded quasi-uniformity on X having a countable base.
Theorem 2 Let U be a t-symmetrizable quasi-uniformity on a set X. Then U can be written as the supremum of a family of quasi-pseudometric quasi-uniformities U_q where q is a quasi-pseudometric on X such that the quasi-uniformity U_q is t-symmetrizable.

A quasi-uniformity U on a set X is called *proximally symmetric* provided that the finest totally bounded quasi-uniformity U_ω coarser than U is a uniformity on X.
Proposition 8 Each t-symmetrizable proximally symmetric quasi-uniformity U on a set X is a uniformity.

Proposition 9 Each t-symmetrizable quasi-uniformity U on a set X satisfies $(U^s)_\omega = (U^{-1})_\omega \lor U_\omega$.
Several results that were originally proved for weightable quasi-pseudometrics (with bounded weights) indeed hold for t-symmetrizable quasi-uniformities:

In our next result $|X|$ will denote the (infinite) cardinality of a set X.

Proposition 10 For each t-symmetrizable quasi-uniformity \mathcal{U} on a set X, if D is an infinite \mathcal{U}^s-discrete subset of X, then there is $B \subseteq D$ such that $|B| = |D|$ and B is \mathcal{U}-discrete.
A base \mathcal{B} is a θ-base for a topological space X if \mathcal{B} can be written as $\bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ in such a way that given any open set U of X and any point $x \in U$ there is $n_x \in \mathbb{N}$ such that ord(x, \mathcal{B}_{n_x}) (that is, the order of \mathcal{B}_{n_x} at x) is finite and some member B of \mathcal{B}_{n_x} has $x \in B \subseteq U$.

It is known that a topological space has a θ-base if and only if it is quasi-developable.
The following result generalizes the fact that for each weightable quasi-pseudometric d on a set X the topology τ_{U_d} has a θ-base.

Proposition 11 Let \mathcal{U} be a quasi-uniformity with a countable base on a set X possessing the property that $\mathcal{U}^s = \mathcal{U} \vee \mathcal{A}$ where \mathcal{A} is a quasi-uniformity on X such that \mathcal{A}^s is preLindelöf.

Then $\tau_{\mathcal{U}}$ has a θ-base.
A quasi-uniformity \mathcal{U} on a set X is called *Smyth completable* provided that each left K-Cauchy filter on (X, \mathcal{U}) is a \mathcal{U}^s-Cauchy filter.

A filter \mathcal{F} on a quasi-uniform space (X, \mathcal{U}) is called a *left K-Cauchy filter* (resp. *right K-Cauchy filter*) provided that for each $U \in \mathcal{U}$ there is $\mathcal{F}_U \in \mathcal{F}$ such that $U(x) \in \mathcal{F}$ (resp. $U^{-1}(x) \in \mathcal{F}$) whenever $x \in \mathcal{F}_U$.

A filter \mathcal{F} on a quasi-uniform space (X, \mathcal{U}) is called *\mathcal{U}-stable* provided that for each $U \in \mathcal{U}$ we have that

$$\bigcap_{F \in \mathcal{F}} U(F) \in \mathcal{F}.$$
Remark 8 Let (X,\mathcal{U}) be a quasi-uniform space such that each left K-Cauchy filter on (X,\mathcal{U}) is contained in a \mathcal{U}^s-Cauchy filter. Then each left K-Cauchy filter \mathcal{F} on X is in fact a \mathcal{U}^s-Cauchy filter.

The following result generalizes the fact that for each weightable quasi-pseudometric d on a set X with a weight $|\cdot|$ the quasi-uniformity \mathcal{U}_d is Smyth completable.
Proposition 12 Each quasi-uniformity \(U \) on a set \(X \) possessing an adequate symmetrizer \(A \) where \(A \) is hereditarily precompact is Smyth completable.

Problem 1 Let \(q \) be a quasi-pseudometric on a set \(X \) such that the quasi-uniformity \(U_q \) is \(t \)-symmetrizable.

Is \(U_q = U_d \) where \(d \) is a quasi-pseudometric on \(X \) that is weightable by a bounded weight?
References

