The monotonically weak Lindelöf spaces

Bruno A. Pansera

joint work with M. Bonanzinga and F. Cammaroto

*Università di Messina Dipartimento di Matematica
e-mail: bpansera@unime.it

IVth Workshop on Coverings, Selections, and Games in Topology
Caserta, June 26, 2012
Outline

1 Preliminaries
 • Definitions

2 Results
 • Examples and counterexamples

3 Results
 • Closed and regular closed subspaces
 • Dense subspaces
 • Uncountable products
 • Cardinal Functions

4 Further problems

5 References

6 Final
Definitions

We assume all spaces to be *Tychonoff*.

Definition

The family of sets A *refines* a family of sets B we mean that every element of A is a subset of an element of B.

Definition

A space X is *weakly Lindelöf* (wL) [Frolik, 1959] if for every open cover U of X there is a countable subfamily $U_0 \subseteq U$ with the union dense in X.

Definition

A space X is *monotonically Lindelöf* (mL) [Matveev, 1994] if there is a function r, henceforth called an mL-operator, that assigns to every open cover U of X a *countable open cover* $r(U)$ which refines U in such a way that $r(U)$ refines $r(V)$ whenever U refines V.

Bruno A. Pansera

The monotonically weak Lindelöf spaces
Definitions

We assume all spaces to be *Tychonoff*.

Definition

The family of sets \(A \) *refines* a family of sets \(B \) we mean that every element of \(A \) is a subset of an element of \(B \).

Definition

A space \(X \) is *weakly Lindelöf* (wL) [Frolík, 1959] if for every open cover \(U \) of \(X \) there is a countable subfamily \(U_0 \subseteq U \) with the union dense in \(X \).

Definition

A space \(X \) is *monotonically Lindelöf* (mL) [Matveev, 1994] if there is a function \(r \), henceforth called an mL-operator, that assigns to every open cover \(U \) of \(X \) a countable open cover \(r(U) \) which refines \(U \) in such a way that \(r(U) \) refines \(r(V) \) whenever \(U \) refines \(V \).
Definitions

We assume all spaces to be Tychonoff.

Definition

The family of sets \mathcal{A} refines a family of sets \mathcal{B} we mean that every element of \mathcal{A} is a subset of an element of \mathcal{B}.

Definition

A space X is weakly Lindelöf (wL) [Frolík, 1959] if for every open cover \mathcal{U} of X there is a countable subfamily $\mathcal{U}_0 \subseteq \mathcal{U}$ with the union dense in X.

Definition

A space X is monotonically Lindelöf (mL) [Matveev, 1994] if there is a function r, henceforth called an mL-operator, that assigns to every open cover \mathcal{U} of X a countable open cover $r(\mathcal{U})$ which refines \mathcal{U} in such a way that $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.
Definitions

We assume all spaces to be *Tychonoff*.

Definition

The family of sets \mathcal{A} *refines* a family of sets \mathcal{B} we mean that every element of \mathcal{A} is a subset of an element of \mathcal{B}.

Definition

A space X is *weakly Lindelöf* (wL) [Frolík, 1959] if for every open cover \mathcal{U} of X there is a countable subfamily $\mathcal{U}_0 \subseteq \mathcal{U}$ with the union dense in X.

Definition

A space X is *monotonically Lindelöf* (mL) [Matveev, 1994] if there is a function r, henceforth called an mL-operator, that assigns to every open cover \mathcal{U} of X a countable open cover $r(\mathcal{U})$ which refines \mathcal{U} in such a way that $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.

Bruno A. Pansera The monotonically weak Lindelöf spaces
Definitions

We assume all spaces to be *Tychonoff*.

Definition

The family of sets \(A \) *refines* a family of sets \(B \) we mean that every element of \(A \) is a subset of an element of \(B \).

Definition

A space \(X \) is *weakly Lindelöf* (wL) [Frolík, 1959] if for every open cover \(U \) of \(X \) there is a countable subfamily \(U_0 \subseteq U \) with the union dense in \(X \).

Definition

A space \(X \) is *monotonically Lindelöf* (mL) [Matveev, 1994] if there is a function \(r \), henceforth called an mL-operator, that assigns to every open cover \(U \) of \(X \) a *countable open cover* \(r(U) \) which refines \(U \) in such a way that \(r(U) \) refines \(r(V) \) whenever \(U \) refines \(V \).
Definitions

We assume all spaces to be Tychonoff.

Definition
The family of sets \mathcal{A} refines a family of sets \mathcal{B} we mean that every element of \mathcal{A} is a subset of an element of \mathcal{B}.

Definition
A space X is weakly Lindelöf (wL) [Frolik, 1959] if for every open cover \mathcal{U} of X there is a countable subfamily $\mathcal{U}_0 \subseteq \mathcal{U}$ with the union dense in X.

Definition
A space X is monotonically Lindelöf (mL) [Matveev, 1994] if there is a function r, henceforth called an mL-operator, that assigns to every open cover \mathcal{U} of X a countable open cover $r(\mathcal{U})$ which refines \mathcal{U} in such a way that $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.
Definitions

Definition

A topological space X is *monotonically weakly Lindelöf* (mwL) [Bonanzinga, Cammaroto, Pansera- 2011] if there is a function r, henceforth called an mwL-operator, that assigns to every open cover \mathcal{U} of X a countable family $r(\mathcal{U})$ such that:

- $r(\mathcal{U})$ refines \mathcal{U};
- the union of $r(\mathcal{U})$ is dense in X, and
- $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.

Bruno A. Pansera

The monotonically weak Lindelöf spaces
Definitions

Definition

A topological space X is *monotonically weakly Lindelöf* (mwL) [Bonanzinga, Cammaroto, Pansera- 2011] if there is a function r, henceforth called an mwL-operator, that assigns to every open cover \mathcal{U} of X a countable family $r(\mathcal{U})$ such that:

- $r(\mathcal{U})$ refines \mathcal{U};
- the union of $r(\mathcal{U})$ is dense in X, and
- $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.

Definitions

Definition

A topological space X is *monotonically weakly Lindelöf* (mwL) [Bonanzinga, Cammaroto, Pansera- 2011] if there is a function r, henceforth called an mwL-operator, that assigns to every open cover \mathcal{U} of X a countable family $r(\mathcal{U})$ such that:

- $r(\mathcal{U})$ refines \mathcal{U};
- the union of $r(\mathcal{U})$ is dense in X, and
- $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.
Definitions

Definition

A topological space X is *monotonically weakly Lindelöf* (mwL) [Bonanzinga, Cammaroto, Pansera- 2011] if there is a function r, henceforth called an mwL-operator, that assigns to every open cover \mathcal{U} of X a countable family $r(\mathcal{U})$ such that:

- $r(\mathcal{U})$ refines \mathcal{U};
- the union of $r(\mathcal{U})$ is dense in X, and
- $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.
Definition

A topological space X is \textit{monotonically weakly Lindelöf} (mwL) [Bonanzinga, Cammaroto, Pansera- 2011] if there is a function r, henceforth called an mwL-operator, that assigns to every open cover \mathcal{U} of X a countable family $r(\mathcal{U})$ such that:

- $r(\mathcal{U})$ refines \mathcal{U};
- the union of $r(\mathcal{U})$ is dense in X; and
- $r(\mathcal{U})$ refines $r(\mathcal{V})$ whenever \mathcal{U} refines \mathcal{V}.
Remark

We will see that in some aspects mwL is similar to mL, but in some others it behaves quite differently. This is not surprising because wL follows not only from Lindelöfness, but also from c.c.c.
Remark

We will see that in some aspects mwL is similar to mL, but in some others it behaves quite differently. This is not surprising because wL follows not only from Lindelöfness, but also from c.c.c..
Examples and counterexamples

The class of mwL spaces contains: all second countable spaces, the one-point Lindelöfication of discrete space of cardinality ω_1.

Remark

The class of mwL spaces is much broader than the class of mL spaces: it contains many non-mL, sometimes even non-Lindelöf spaces.
Examples and counterexamples

The class of mwL spaces contains: all second countable spaces, the one-point Lindelöfication of discrete space of cardinality ω_1.

Remark

The class of mwL spaces is much broader than the class of mL spaces: it contains many non-mL, sometimes even non-Lindelöf spaces.
Examples and counterexamples

The class of mwL spaces contains: all second countable spaces, the one-point Lindelöfication of discrete space of cardinality ω_1.

Remark

The class of mwL spaces is much broader than the class of mL spaces: it contains many non-mL, sometimes even non-Lindelöf spaces.
Examples and counterexamples

Theorem 1

Let X be a space and D be a countable dense subspace of X consisting of isolated points. Then X is mwL.

Example

All Ψ-spaces are mwL.

$\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$: Isbell and Mrowka’s space, where \mathcal{A} is an infinite maximal almost disjoint family of infinite subsets of ω.
Examples and counterexamples

Theorem 1

Let X be a space and D be a countable dense subspace of X consisting of isolated points. Then X is mwL.

Example

All Ψ-spaces are mwL.

$\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$: Isbell and Mrowka’s space, where \mathcal{A} is an infinite maximal almost disjoint family of infinite subsets of ω.
Examples and counterexamples

Theorem 1

Let X be a space and D be a countable dense subspace of X consisting of isolated points. Then X is mwL.

Example

All Ψ-spaces are mwL.

$\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$: Isbell and Mrowka’s space, where \mathcal{A} is an infinite maximal almost disjoint family of infinite subsets of ω.
Examples and counterexamples

Recall that $L(\kappa)$, the one-point Lindelöfication of the discrete space of cardinality κ is the set $X = \kappa \cup \{p\}$ equipped with the topology in which the points of κ are isolated and every neighborhood of p has the form $\{p\} \cup (\kappa \setminus A)$ where $|A| \leq \omega$.

Theorem (Levy-Matveev)
$L(\kappa)$ is mL iff $\kappa \leq \omega_1$.
Thus $L(\omega_1)$ is mwL.

Problem
For what $\kappa > \omega_1$ is $L(\kappa)$ mwL?
Examples and counterexamples

Recall that $L(\kappa)$, the one-point Lindelöfication of the discrete space of cardinality κ is the set $X = \kappa \cup \{p\}$ equipped with the topology in which the points of κ are isolated and every neighborhood of p has the form $\{p\} \cup (\kappa \setminus A)$ where $|A| \leq \omega$.

Theorem (Levy-Matveev)
$L(\kappa)$ is mL iff $\kappa \leq \omega_1$.

Thus $L(\omega_1)$ is mwL.

Problem
For what $\kappa > \omega_1$ is $L(\kappa)$ mwL?
Examples and counterexamples

Recall that $L(\kappa)$, the one-point Lindelöfication of the discrete space of cardinality κ is the set $X = \kappa \cup \{p\}$ equipped with the topology in which the points of κ are isolated and every neighborhood of p has the form $\{p\} \cup (\kappa \setminus A)$ where $|A| \leq \omega$.

Theorem (Levy-Matveev)

$L(\kappa)$ is mL iff $\kappa \leq \omega_1$.

Thus $L(\omega_1)$ is mwL.

Problem

For what $\kappa > \omega_1$ is $L(\kappa)$ mwL?
Examples and counterexamples

Recall that $L(\kappa)$, the one-point Lindelöfication of the discrete space of cardinality κ is the set $X = \kappa \cup \{p\}$ equipped with the topology in which the points of κ are isolated and every neighborhood of p has the form $\{p\} \cup (\kappa \setminus A)$ where $|A| \leq \omega$.

\[8\]

Theorem (Levy-Matveev)

$L(\kappa)$ is mL iff $\kappa \leq \omega_1$.

Thus $L(\omega_1)$ is mwL.

Problem

For what $\kappa > \omega_1$ is $L(\kappa)$ mwL?
Examples and counterexamples

Recall that $L(\kappa)$, the one-point Lindelöfication of the discrete space of cardinality κ is the set $X = \kappa \cup \{p\}$ equipped with the topology in which the points of κ are isolated and every neighborhood of p has the form $\{p\} \cup (\kappa \setminus A)$ where $|A| \leq \omega$.

8

Theorem (Levy-Matveev)

$L(\kappa)$ is mL iff $\kappa \leq \omega_1$.

Thus $L(\omega_1)$ is mwL.

Problem

For what $\kappa > \omega_1$ is $L(\kappa)$ mwL?
Recall that the *Alexandroff duplicate* $AD(X)$ of the topological space X is the set $X \times 2$ where the points of $X \times \{1\}$ are isolated while a basic neighborhood of a point $(x, 0) \in X \times \{0\}$ takes the form $(U \times 2) \setminus \{(x, 1)\}$ where U is a neighborhood of x in X.

Theorem

If X is a second countable space, then $AD(X)$ is mwL.
Examples and counterexamples

Recall that the Alexandroff duplicate $AD(X)$ of the topological space X is the set $X \times 2$ where the points of $X \times \{1\}$ are isolated while a basic neighborhood of a point $(x, 0) \in X \times \{0\}$ takes the form $(U \times 2)\setminus\{(x, 1)\}$ where U is a neighborhood of x in X.

Theorem

If X is a second countable space, then $AD(X)$ is mwL.
Examples and counterexamples

Levy and Matveev proved that the one-point compactification of the discrete space of cardinality \(\geq \omega_1 \) is not mL.

Theorem

Let \(\kappa \leq c \). Then the one-point compactification of the discrete space of cardinality \(\kappa \) is mwL.

Problem

For what cardinals \(\kappa > c \) is the one-point compactification of the discrete space of cardinality \(\kappa \) mwL?
Examples and counterexamples

Levy and Matveev proved that the one-point compactification of the discrete space of cardinality $\geq \omega_1$ is not mL.

Theorem

Let $\kappa \leq c$. Then the one-point compactification of the discrete space of cardinality κ is mwL.

Problem

For what cardinals $\kappa > c$ is the one-point compactification of the discrete space of cardinality κ mwL?
Examples and counterexamples

Levy and Matveev proved that the one-point compactification of the discrete space of cardinality $\geq \omega_1$ is not mL.

Theorem

Let $\kappa \leq c$. Then the one-point compactification of the discrete space of cardinality κ is mwL.

Problem

For what cardinals $\kappa > c$ is the one-point compactification of the discrete space of cardinality κ mwL?
Examples and counterexamples

Levy and Matveev proved that the one-point compactification of the discrete space of cardinality $\geq \omega_1$ is not mL.

Theorem

Let $\kappa \leq \mathfrak{c}$. Then the one-point compactification of the discrete space of cardinality κ is mwL.

Problem

For what cardinals $\kappa > \mathfrak{c}$ is the one-point compactification of the discrete space of cardinality κ mwL?
Examples and counterexamples

Levy and Matveev proved that the one-point compactification of the discrete space of cardinality $\geq \omega_1$ is not mL.

Theorem

Let $\kappa \leq c$. Then the one-point compactification of the discrete space of cardinality κ is mwL.

Problem

For what cardinals $\kappa > c$ is the one-point compactification of the discrete space of cardinality κ mwL?
Recall that any hereditarily Lindelöf space having a base σ-(linearly ordered by \supset) is mL (see Levy and Matveev).

Theorem

Any space with σ-(linearly-ordered by \supset) π-base is mwL.

Corollary

Every space X with a dense countable set D of points of countable character is mwL.

Remark

In particular, every separable first countable space is mwL.
Subspaces

Recall that any hereditarily Lindelöf space having a base σ-(linearly ordered by \supset) is mL (see Levy and Matveev).

Theorem

Any space with σ-(linearly-ordered by \supset) π-base is mwL.

Corollary

Every space X with a dense countable set D of points of countable character is mwL.

Remark

In particular, every separable first countable space is mwL.
Subspaces

Recall that any hereditarily Lindelöf space having a base σ-(linearly ordered by \supset) is mL (see Levy and Matveev).

Theorem

Any space with σ-(linearly-ordered by \supset) π-base is mwL.

Corollary

Every space X with a dense countable set D of points of countable character is mwL.

Remark

In particular, every separable first countable space is mwL.
Subspaces

Recall that any hereditarily Lindelöf space having a base σ-(linearly ordered by \supset) is mL (see Levy and Matveev).

Theorem

Any space with σ-(linearly-ordered by \supset) π-base is mwL.

Corollary

Every space X with a dense countable set D of points of countable character is mwL.

Remark

In particular, every separable first countable space is mwL.
Subspaces

Recall that any hereditarily Lindelöf space having a base σ-(linearly ordered by \supset) is mL (see Levy and Matveev).

Theorem

Any space with σ-(linearly-ordered by \supset) π-base is mwL.

Corollary

Every space X with a dense countable set D of points of countable character is mwL.

Remark

In particular, every separable first countable space is mwL.
Recall that mL is preserved by closed subspaces. That mwL is not preserved by closed subspaces because a Ψ-space contains an uncountable closed discrete subspace which of course is not mwL.

Theorem

Let X be an mwL space and Y a regular closed subset of X. Then Y is mwL.
Closed and regular closed subspaces

Recall that mL is preserved by closed subspaces. That mwL is not preserved by closed subspaces because a Ψ-space contains an uncountable closed discrete subspace which of course is not mwL.

Theorem

Let X be an mwL space and Y a regular closed subset of X. Then Y is mwL.
Closed and regular closed subspaces

Recall that mL is preserved by closed subspaces. That mwL is not preserved by closed subspaces because a Ψ-space contains an uncountable closed discrete subspace which of course is not mwL.

Theorem

Let X be an mwL space and Y a regular closed subset of X. Then Y is mwL.
Dense subspaces

Theorem

Let X be a space and Y be an open dense mwL subspace of X. Then X is mwL.

Theorem

Let X be a T_3 space and Y be a dense mwL subspace of X. Then X is mwL.

Example

There is a Hausdorff space X and a dense subspace $Y \subseteq X$ such that Y is mwL but X is not.
Dense subspaces

Theorem

Let X be a space and Y be an open dense mwL subspace of X. Then X is mwL.

Theorem

Let X be a T_3 space and Y be a dense mwL subspace of X. Then X is mwL.

Example

There is a Hausdorff space X and a dense subspace $Y \subseteq X$ such that Y is mwL but X is not.
Dense subspaces

Theorem
Let X be a space and Y be an open dense mwL subspace of X. Then X is mwL.

Theorem
Let X be a T_3 space and Y be a dense mwL subspace of X. Then X is mwL.

Example
There is a Hausdorff space X and a dense subspace $Y \subseteq X$ such that Y is mwL but X is not.
Dense subspaces

Theorem

Let X be a space and Y be an open dense mwL subspace of X. Then X is mwL.

Theorem

Let X be a T_3 space and Y be a dense mwL subspace of X. Then X is mwL.

Example

There is a Hausdorff space X and a dense subspace $Y \subseteq X$ such that Y is mwL but X is not.
Dense subspaces

Theorem

Let X be a space and Y be an open dense mwL subspace of X. Then X is mwL.

Theorem

Let X be a T_3 space and Y be a dense mwL subspace of X. Then X is mwL.

Example

There is a Hausdorff space X and a dense subspace $Y \subseteq X$ such that Y is mwL but X is not.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq c$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq \mathfrak{c}$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq \text{c}$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq \mathfrak{c}$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq \kappa$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq c$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq c$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Uncountable products

Levy and Matveev shown that if X is a dense subspace in the product of uncountably many nontrivial (that is T_1 and consisting of at least two points) factors, then X is not mL at any point.

Theorem

If X is a dense subspace in the product $Y = \prod_{a \in A} Y_a$, where $|A| > \omega$ and for each a, Y_a is a regular space and $|Y_a| \geq 2$, then X is not mwL at any point.

The following are immediate corollaries from previous Theorem:

- 2^κ is not mwL whenever $\kappa > \omega$
- A dense countable subspace in 2^κ (where $\omega_1 \leq \kappa \leq \mathfrak{c}$) is an example of a countable space which is not mwL (at any point).
- $C_p(X)$ is mwL iff X is countable.
Cardinal Functions

Theorem

Every Tychonoff space of weight $\leq c$ can be embedded in an mwL Tychonoff space as a closed subspace.

So we see that an mwL space may have cardinality $\geq 2^c$, extent $\geq c$ and character $\geq c$.

Levy and Matveev asked if the weight of every mL space is not greater than c and noted that a similar question makes sense apparently for any other ”reasonable” cardinal function.
Cardinal Functions

Theorem

Every Tychonoff space of weight \(\leq c \) can be embedded in an mwL Tychonoff space as a closed subspace.

So we see that an mwL space may have cardinality \(\geq 2^c \), extent \(\geq c \) and character \(\geq c \).

Levy and Matveev asked if the weight of every mL space is not greater than \(c \) and noted that a similar question makes sense apparently for any other ”reasonable” cardinal function.
Theorem

Every Tychonoff space of weight $\leq c$ can be embedded in an mwL Tychonoff space as a closed subspace.

So we see that an mwL space may have cardinality $\geq 2^c$, extent $\geq c$ and character $\geq c$.

Levy and Matveev asked if the weight of every mL space is not greater than c and noted that a similar question makes sense apparently for any other "reasonable" cardinal function.
Cardinal Functions

Theorem

Every Tychonoff space of weight $\leq c$ can be embedded in an mwL Tychonoff space as a closed subspace.

So we see that an mwL space may have cardinality $\geq 2^c$, extent $\geq c$ and character $\geq c$.

Levy and Matveev asked if the weight of every mL space is not greater than c and noted that a similar question makes sense apparently for any other ”reasonable” cardinal function.
Cardinal Functions

Theorem

Every Tychonoff space of weight \(\leq c \) can be embedded in an mwL Tychonoff space as a closed subspace.

So we see that an mwL space may have cardinality \(\geq 2^c \), extent \(\geq c \) and character \(\geq c \).

Levy and Matveev asked if the weight of every mL space is not greater than \(c \) and noted that a similar question makes sense apparently for any other ”reasonable” cardinal function.
Further problems

Problem
If X is an mwL space, does it follow that $w(X) \leq c$? What can one say about other cardinal invariants of X?

Problem
Is $\omega^* = \beta\omega \setminus \omega$ mwL?
Further problems

Problem

If X is an mwL space, does it follow that $w(X) \leq c$? What can one say about other cardinal invariants of X?

Problem

Is $\omega^* = \beta\omega \setminus \omega$ mwL?
Further problems

Problem

If X is an mwL space, does it follow that $w(X) \leq c$? What can one say about other cardinal invariants of X?

Problem

Is $\omega^* = \beta\omega \setminus \omega$ mwL?
Further problems

Problem

Is mwL preserved by closed irreducible maps?

Problem

Suppose all continuous images of X are mwL. What can be concluded about X?

Problem

Is every mwL LOTS or GO-space mL? In particular, is $[0, \omega_1]$ mwL?
Further problems

Problem

Is mwL preserved by closed irreducible maps?

Problem

Suppose all continuous images of \(X \) are mwL. What can be concluded about \(X \)?

Problem

Is every mwL LOTS or GO-space mL? In particular, is \([0, \omega_1]\) mwL?
Further problems

Problem
Is mwL preserved by closed irreducible maps?

Problem
Suppose all continuous images of X are mwL. What can be concluded about X?

Problem
Is every mwL LOTS or GO-space mL? In particular, is $[0, \omega_1]$ mwL?
References

References

Thank you!!!