Second Workshop
Coverings, Selections and Games in Topology
Lecce, Italy, December 19–22, 2005

Convergence properties of hyperspaces
Giuseppe Di Maio
Seconda Universita di Napoli, Caserta, Italy
giuseppe.dimaio@unina2.it
2^X the set of closed subsets of $X \in T_2$

$A \subset X$, \mathcal{A} a family of subsets of X:

$$
A^c = X \setminus A \quad \text{and} \quad \mathcal{A}^c = \{A^c : A \in \mathcal{A}\}, \\
A^- = \{F \in 2^X : F \cap A \neq \emptyset\}, \\
A^+ = \{F \in 2^X : F \subset A\}.
$$

$\Delta \subset 2^X$ closed for finite unions and containing all singletons

upper Δ-topology Δ^+ has a base

$$
\{(D^c)^+ : D \in \Delta\} \cup \{2^X\}.
$$

1. $\Delta = \text{CL}(X)$: *upper Vietoris topology* V^+

2. $\Delta = \text{K}(X)$: *upper Fell topology* F^+

3. $\Delta = \text{F}(X)$: Z^+-topology
The lower Vietoris topology $V^- \subseteq X$ is generated by all the sets $U^-, U \subset X$ open.

The Δ-topology: $\tau_{\Delta} = \Delta^+ \lor V^-$. τ_{Δ}-basic sets:

$$(D^c)^+ \cap (\bigcap_{i \leq m} V_i^-), \; D \in \Delta, V_1, \cdots, V_m \text{ open in } X.$$

\(\Delta\)-topologies:

the Vietoris topology $V = V^+ \lor V^-$

the Fell topology $F = F^+ \lor V^-$

the topology $Z = Z^+ \lor V^-$
Let \mathcal{A} and \mathcal{B} be sets whose elements are families of subsets of an infinite set X. Then:

$S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each n, $b_n \in A_n$ and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B}.

$S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each n, $B_n \subset A_n$ and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B}.
For a space X, $x \in X$, $\Delta \subset 2^X$:

- \mathcal{O}: the collection of open covers of X;
- Ω: the collection of ω-covers of X;
- \mathcal{K}: the collection of k-covers of X;
- Γ: the collection of γ-covers;
- Γ_k: the collection of γ_k-covers;
- Γ_Δ: the collection of γ_Δ-covers;
- Ω_x: the set \{\(A \subset X \setminus \{x\} : x \in \overline{A}\)\};
- Σ_x: the set of all nontrivial sequences in X that converge to x.
Let us recall that if $\Delta \subset 2^X$, then an open cover \mathcal{U} of X is called a Δ-cover if each $D \in \Delta$ is contained in an element of \mathcal{U} and X does not belong to \mathcal{U} (i.e. the cover is not trivial).

$\mathcal{F}(X)$-covers (resp. $\mathcal{K}(X)$-covers) are called ω-covers (resp. k-covers).

An open cover \mathcal{U} of X is said to be a γ_Δ-cover if it is infinite and for each $D \in \Delta$ the set $\{U \in \mathcal{U} : D \notin U\}$ is finite.

$\gamma_{\mathcal{F}(X)}$-covers (resp. $\gamma_{\mathcal{K}(X)}$-covers) are called γ-covers (resp. γ_k-covers).

Observe that each infinite subset of a γ_Δ-cover is still a γ_Δ-cover. So, we may suppose that such covers are countable.
\(\alpha_i \)-properties in hyperspaces

A space \(X \) has property \(\alpha_i \), \(i = 1, 2, 3, 4 \), if for each \(x \in X \) and each sequence \((\sigma_n : n \in \mathbb{N}) \) of elements of \(\Sigma_x \) there is a \(\sigma \in \Sigma_x \) such that:

\(\alpha_1 \): for each \(n \in \mathbb{N} \) the set \(\sigma_n \setminus \sigma \) is finite;

\(\alpha_2 \): for each \(n \in \mathbb{N} \) the set \(\sigma_n \cap \sigma \) is infinite;

\(\alpha_3 \): for infinitely many \(n \in \mathbb{N} \) the set \(\sigma_n \cap \sigma \) is infinite;

\(\alpha_4 \): for infinitely many \(n \in \mathbb{N} \) the set \(\sigma_n \cap \sigma \) is nonempty.

Evidently,

\[\alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_3 \Rightarrow \alpha_4. \]
Theorem 1 For a space X and a collection $\Delta \subset 2^X$ the following statements are equivalent:

(1) $(2^X, \Delta^+) \text{ is an } \alpha_2\text{-space;}$

(2) $(2^X, \Delta^+) \text{ is an } \alpha_3\text{-space;}$

(3) $(2^X, \Delta^+) \text{ is an } \alpha_4\text{-space;}$

(4) For each $E \in 2^X$, $(2^X, \Delta^+) \text{ satisfies } S_1(\Sigma_E, \Sigma_E);$

(5) Each open set $Y \subset X$ satisfies $S_1(\Gamma_\Delta, \Gamma_\Delta).$
Remark 2 *The statement* (1) *implies* (2):

(1) *For each* $E \in 2^X$, $(2^X, \tau_{\Delta})$ *satisfies* $S_1(\Sigma_E, \Sigma_E)$;

(2) *Each open set* $Y \subset X$ *satisfies* $S_1(\Gamma_{\Delta}, \Gamma_{\Delta})$ *(equivalently, $S_{fin}(\Gamma_{\Delta}, \Gamma_{\Delta})$)*.

Two consequences of Theorem 1.

Corollary 3 *For a space* X *TFAE*:

(1) $(2^X, F^+)$ *is an* α_4-*space*;

(2) *Each open set* $Y \subset X$ *is an* $S_1(\Gamma_k, \Gamma_k)$-*set*.

Corollary 4 *For a space* X *TFAE*:

(1) $(2^X, Z^+)$ *is an* α_4-*space*;

(2) *Each open set* $Y \subset X$ *is an* $S_1(\Gamma, \Gamma)$-*set*.
A space is said to be a γ-set (resp. γ_k-set) if it satisfies the selection principle $S_1(\Omega, \Gamma)$ (resp. $S_1(\mathcal{K}, \Gamma_k)$).

$(2^X, Z^+)$ is FU ($(2^X, F^+)$ is SFU) if and only if each open set $Y \subset X$ is a γ-set (a γ_k-set).

$\Gamma \subset \Omega$ and $\Gamma_k \subset \mathcal{K}$, it follows that $S_1(\Omega, \Gamma) \subset S_1(\Gamma, \Gamma)$ and $S_1(\mathcal{K}, \Gamma_k) \subset S_1(\Gamma_k, \Gamma_k)$.

So:

Proposition 5 For a space X the following statements hold:

(1) *If* $(2^X, Z^+)$ *is a Fréchet-Urysohn space, then it is an α_2-space;*

(2) *If* $(2^X, F^+)$ *is strongly Fréchet-Urysohn, then it is an α_2-space.*
Theorem 6 For a space X and a collection $\Delta \subset 2^X$ the following are equivalent:

(1) $(2^X, \Delta^+)$ is an α_1-space;

(2) For each open set $Y \subset X$ and each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of γ_Δ-covers of Y there is a γ_Δ-cover \mathcal{U} of Y intersecting each \mathcal{U}_n in all but finitely many elements.
FU-type properties

X is FU if $\forall x \in X$ and $\forall A \in \Omega_x$ \exists a sequence $(x_n : n \in \mathbb{N})$ in A belonging to Σ_x. X is sequential if for each non-closed set $A \subset X$ there are a point $x \in X \setminus A$ and a sequence $(x_n : n \in \mathbb{N})$ in A that belongs to Σ_x. X has countable tightness if for each $x \in X$ and each $A \in \Omega_x$ there is a countable element $B \in \Omega_x$ such that $B \subset A$.

A space X has the Reznichenko property if for each $x \in X$ and each $A \in \Omega_x$ there is a sequence $(B_n : n \in \mathbb{N})$ of pairwise disjoint, finite subsets of A such that each neighborhood U of x intersects all but finitely many sets B_n.

A space X has the Pytkeev property if for each $x \in X$ and each $A \in \Omega_x$ there is a sequence $(B_n : n \in \mathbb{N})$ of infinite, countable subsets of A such that each neighborhood U of x contains some B_n.
A space X is said to be:

FF: *filter-Fréchet* if for each $x \in X$ and each $A \in \Omega_x$ there is a sequence $(\mathcal{F}_n : n \in \mathbb{N})$ of filter-bases on A such that:

(FF1) For each $n \in \mathbb{N}$, there is an $F_n \in \mathcal{F}_n$ such that $x \notin \overline{F_n}$;

(FF2) For each neighborhood U of x there is $n_0 \in \mathbb{N}$ such that $n \geq n_0$ implies $F_n \subset U$ for some $F_n \in \mathcal{F}_n$.

SFF: *strongly filter-Fréchet* if for each $x \in X$ and each $A \in \Omega_x$ there is a sequence $(\mathcal{F}_n : n \in \mathbb{N})$ of filter-bases on A satisfying (FF1) and (FF2) above and the condition

(FF3) For each $n \in \mathbb{N}$ there is a countable $F \in \mathcal{F}_n$.
SSF: *strongly set-Fréchet* if for each \(x \in X \) and each \(A \in \Omega_x \) there is a sequence \((B_n : n \in \mathbb{N}) \) of pairwise disjoint subsets of \(A \) such that the following conditions hold:

(SF1) \(x \notin \overline{B_n} \) for each \(n \in \mathbb{N} \);

(SF2) each neighborhood \(U \) of \(x \) intersects all but finitely many sets \(B_n \);

(SF3) each \(B_n \) is countable.

SF: *set-Fréchet* if only conditions (SF1) and (SF2) in SSF are satisfied.
Theorem 7 For a space X and a family $\Delta \subset 2^X$ the following statements are equivalent:

1. $(2^X, \Delta^+)$ is a filter-Fréchet space;

2. For each open set $Y \subset X$ and each Δ-cover \mathcal{U} of Y there is a sequence $(\mathcal{B}_n : n \in \mathbb{N})$ of filter-bases on \mathcal{U} such that:

 (i) For each n, there is $C_n \in \mathcal{B}_n$ which is not a Δ-cover of Y;

 (ii) For each $D \in \Delta$ with $D \subset Y$ there is $n_0 \in \mathbb{N}$ such that whenever $n \geq n_0$, then there exists $\mathcal{H}_n \in \mathcal{B}_n$ satisfying $D \subset H$ for every $H \in \mathcal{H}_n$.
Theorem 8 For a space X the following statements are equivalent:

(1) $(2^X, \Delta^+)$ is a strongly filter-Fréchet space;

(2) For each open set $Y \subset X$ and each Δ-cover \mathcal{U} of Y there is a sequence $(\mathcal{B}_n : n \in \mathbb{N})$ of filter-bases on \mathcal{U} such that:

(i) For each n, there is $\mathcal{C}_n \in \mathcal{B}_n$ which is not a Δ-cover of Y;

(ii) For each $D \in \Delta$ with $D \subset Y$ there is $n_0 \in \mathbb{N}$ such that whenever $n \geq n_0$, then there exists $\mathcal{H}_n \in \mathcal{B}_n$ satisfying $D \subset H$ for every $H \in \mathcal{H}_n$;

(iii) For each $n \in \mathbb{N}$ there is some countable element in \mathcal{B}_n.
The implication $(1) \Rightarrow (2)$ in Theorem 7 and in Theorem 8 is still valid if the Δ^+-topology is replaced with the τ_Δ-topology.

Example 9 [CH] *There exists a space X satisfying the condition (2) in the previous theorem, but $(2^X, \tau_\Delta)$ is not a strongly filter-Fréchet space.*

Let X be the Hausdorff, compact, hereditarily Lindelöf, non hereditarily separable space constructed by Kunene, and let $\Delta = \mathbb{K}(X)$, hence $\tau_\Delta = F$. $(\text{CL}(X), F)$ has uncountable tightness so that it is not SFF.

Let us show that the condition (2) in Theorem 8 holds. Let Y be any open subset of X and let \mathcal{U} be a k-cover of Y in X. As Y is locally compact and Lindelöf, it is hemicompact. Let $(K_n : n \in \mathbb{N})$ be an increasing countable family
of compact subsets of Y such that each compact subset of Y is contained in some K_n. For each n pick a set $U_n \in \mathcal{U}$ such that $K_n \subset U_n$. Since \mathcal{U} is a k-cover of Y in X, the family \{ $Y \cap U : U \in \mathcal{U}$ \} is a k-cover of Y in Y, so that Y is not a member of \{ $Y \cap U : U \in \mathcal{U}$ \}. Thus for each $n \in \{1, \cdots, n_0\}$, where n_0 is some element in \mathbb{N}, pick a point $x_n \in Y \setminus U_n$ and for each $n \in \mathbb{N}$ define

$$\mathcal{B}_n = \{ \{U_i : n \leq i \leq n^*\} : n^* \geq n\}.$$

It is clear that \{ $U_i : n \leq i \leq n_1^*$ \} \subset \{ $U_i : n \leq i \leq n_2^*$ \} for $n \leq n_1^* \leq n_2^*$, so that the collection \mathcal{B}_n is linearly ordered by inclusion and in particular it is a filter base. We show that the sequence $(\mathcal{B}_n : n \in \mathbb{N})$ satisfies:

(i) For each n, there is $C_n \in \mathcal{B}_n$ which is not a k-cover of Y;

(ii) For each compact set $K \subset Y$ there is $n_0 \in \mathbb{N}$ such that whenever $n \geq n_0$, then there
exists $\mathcal{H}_n \in \mathcal{B}_n$ satisfying $K \subset H$ for every $H \in \mathcal{H}_n$;

(iii) For each $n \in \mathbb{N}$ there is some countable element in \mathcal{B}_n.

Of course, (iii) is satisfied because every element of \mathcal{B}_n is finite. The condition (i) is also true. Indeed, for a given $i \in \mathbb{N}$, we have by the choice of points x_n that no element of $\{U_i : n \leq i \leq n^*\}$ includes the set $\{x_i : n \leq i \leq n^*\}$ which is a compact subset of Y. Finally, let us prove that (ii) holds. Let K be a compact subset of Y. There exists $n_0 \in \mathbb{N}$ such that $K \subset K_{n_0}$. For each $n \geq n_0$ take any element $\mathcal{H}_n := \{U_i : n \leq i \leq \overline{n}\}$ in $\mathcal{B}_n = \{\{U_i : n \leq i \leq n^*\} : n^* \geq n\}$, where \overline{n} is an element of \mathbb{N} with $\overline{n} \geq n$. Then we have $K \subset H$ for each $H \in \mathcal{H}_n$. Indeed, for each $i \in \mathbb{N}$ with $n \leq i \leq \overline{n}$ we have $K \subset K_{n_0} \subset K_n \subset K_i \subset U_i$. □
Theorem 10 For a space X the following statements are equivalent:

(1) $(2^X, \Delta^+)$ has the strong set-Fréchet property;

(2) For each open set $Y \subset X$ and each Δ-cover U of Y there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of countable, pairwise disjoint subsets of U such that:

(i) no \mathcal{V}_n is a Δ-cover of Y;

(ii) each $D \in \Delta$ which is a subset of Y is contained in an element of \mathcal{V}_n for all but finitely many n.
Theorem 11 For a space X the following statements are equivalent:

(1) $(2^X, \Delta^+) \text{ is a set-Fréchet space;}$

(2) For each open set $Y \subset X$ and each Δ-cover \mathcal{U} of Y there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of pairwise disjoint subsets of \mathcal{U} such that:

(i) no \mathcal{V}_n is a Δ-cover of Y;

(ii) each $D \subset Y$ such that $D \in \Delta$ is contained in an element of \mathcal{V}_n for all but finitely many n.
References

