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Abstract
We propose a modular approach to paraphrase and
entailment-rule learning that addresses the morpho-
syntactic variability of lexical-syntactic templates.
Using an entailment module that captures generic
morpho-syntactic regularities, we transform every
identified template into a canonical form. This way,
statistics from different template variations are accu-
mulated for a single template form. Additionally,
morpho-syntactic redundant rules are not acquired.
This scheme also yields more informative evaluation
for the acquisition quality, since the bias towards rules
with many frequent variations is avoided.
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1 Introduction

In many NLP applications such as Question Answering
(QA) and Information Extraction (IE), it is crucial to recog-
nize that a specific target meaning can be inferred from dif-
ferent text variants. For example, a QA system have to
deduce that “Mozart wrote the Jupiter symphony” can be
inferred from “Mozart composed the Jupiter symphony” in
order to answer “Who wrote the Jupiter symphony?”. This
type of reasoning has been identified as a core semantic in-
ference paradigm by the generictextual entailmentframe-
work [5].

An important type of knowledge representation needed
for such inference isentailment rules. An entailment rule,
e.g. ‘X composeY → X write Y ’, is a directional rela-
tion between twotemplates. Templates represents text pat-
terns with variables that typically corresponds to semantic
predicates. In an entailment rule, the left hand side tem-
plate is assumed to entail the right hand side template in
certain appropriate contexts, under the same variable in-
stantiation. Such rules capture rudimentary inferences and
are used as building blocks for more complex inference.
For example, given the above entailment rule, a QA system
can identify “Mozart” as the answer for the above ques-
tion. A major obstacle for further advances in semantic
inference is the lack of broad-scale knowledge-bases for
such rules [1]. This need sparked intensive research on au-
tomatic acquisition of entailment rules (and similarly para-
phrases). These algorithms’ strength is in learning relations
between lexical-syntactic templates, which capture lexical-
based knowledge and world knowledge (see Section 2.1).

One noticeable phenomenon of lexical-syntactic tem-
plates is that they have many morpho-syntactic variations,
which (largely) represent the same predicate and are se-
mantically equivalent. For example, ‘X composeY ’ can
be expressed also by ‘Y is composed byX ’ or ‘ X ’s com-
position of Y ’. Current learning algorithms ignore this
morpho-syntactic variability. They treat these variations
as semantically different, learning rules for each variation
separately. This leads to several undesired consequences.
First, statistics for a particular semantic predicate are scat-
tered among different templates. This may result in insuf-
ficient statistics for learning a rule in any of its variations.
Second, though rules may be learned in several variations
(see Table 1), in most cases only a small part of the morpho-
syntactic variations are learned. Thus, an inference system
that uses only these learned rules would miss recognizing
a substantial number of variations of the sought predicate.

It therefore makes more sense to design a modular archi-
tecture. In it, a separate entailment module recognizes en-
tailing variations that are based on generic morphological
and syntactic regularities (morpho-syntactic entailments).
We propose to use such a module first at learning time, by
learning only canonical forms of templates and rules. Then,
applying the module also at inference time, in conjunction
with the learned lexical-based canonical rules, guarantees
the coverage of all morpho-syntactic variations of a given
canonical rule.

Our proposed approach poses two advantages. First, the
statistics from the different morpho-syntactic variations ac-
cumulate for one template form only. The improved statis-
tics may result, for example, in learning more rules. Sec-
ond, the learning output is without redundancies due to
variations of the same predicate. Additionally, the eval-
uation of learning algorithms is more accurate when the
bias towards templates with many frequent variations is
avoided.

In this work we implemented a morpho-syntactic entail-
ment module that utilizes syntactic rules for major syntactic
phenomena (like passive and conjunctions) and morpho-
logical rules that address nominalizations. We then applied
the module within two entailment rule acquisition algo-
rithms. We measured redundancy removal of about 6% out
of all rules learned. For one of the algorithms, we measured
an increase of about 12% in the number of lexically differ-
ent correct templates that were learned using our approach.
Finally, we applied the morpho-syntactic entailment mod-
ule also at inference time in a Relation Extraction setup for
protein-interaction. In a preliminary experiment, we found
that the rules learned using our new scheme yielded some
improvement in recall.
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Morpho-Syntactic Variations
X composeY → X write Y X is composed byY → X write Y
X accuseY ↔ X blameY X ’s accusation ofY ↔ X blameY
X acquireY → X obtainY acquisition ofY by X → Y is obtained byX

Table 1: Examples of learned rules that differ only in their morpho-syntactic structure.

Template Single-feature Approach (DIRT) Anchor-Set Approach
X-vector Features Y-vector Features Common Features

X composeY Bach, Beethoven symphony, music
Mozart, he sonata, opera {X=‘Mozart’;Y =‘Jupiter symphony’},

X write Y
Tolstoy, Bach, symphony, anthem, {X=‘Bach’;Y =‘Sonata Abassoonata’}
author, Mozart, he sonata, book, novel

Table 2: Examples for features of the anchor set and single-feature approaches for two related templates.

2 Background

2.1 Entailment Rule Learning

Many algorithms for automatically learning entailment
rules and paraphrases (which can be viewed as bidirec-
tional entailment rules) were proposed in recent years.
These methods recognize templates in texts and identify
entailment relations between them based on shared fea-
tures.

These algorithms may be divided into two types. The
prominent approach identify an entailment relation be-
tween two templates by finding variable instantiation tu-
ples, termed hereanchor-sets, that are common to both
templates [13, 18, 2, 12, 20, 16]. Anchor-sets are complex
features, consisting of several terms, labelled by their cor-
responding variables. Table 2 (right column) presents com-
mon anchor-sets for the related templates ‘X composeY ’
and ‘X write Y ’. Typically, only few common anchor-sets
are identified for each entailment relation.

A different single-feature approach is proposed by the
DIRT algorithm [10]. It uses simple, less informative but
more frequent features. It constructs a feature vector for
each variable of a given template, representing the context
words that fill the variable in the different occurrences of
the template in the corpus. Two templates are identified as
semantically related if they have similar vectors. Table 2
shows examples for features of this type. DIRT parses a
whole corpus and limits the allowed structures of templates
only to paths in the parse graphs, connecting nouns at their
ends.

In this paper we implemented the TEASE algorithm
[20]. It is an unsupervised algorithm that acquires entail-
ment relations from the Web for given input templates us-
ing the anchor-set approach (we required at least two com-
mon anchor-sets for learning a relation). We also imple-
mented the DIRT algorithm over a local corpus, the first
CD of Reuters RCV11. Both algorithms processlexical-
syntactic templates, which are represented by parse sub-
trees. All sentences are parsed using the Minipar depen-
dency parser [9].

For a given input templateI, these algorithms can be
viewed as learning a list of output templates{Oj}nI

1 , where
nI is the number of templates learned forI. Each out-

1 http://about.reuters.com/researchandstandards/corpus/

put template is suggested as holding an entailment relation
with the input template, but current algorithms do not spec-
ify the entailment direction(s). Thus, each pair{I,Oj} in-
duces two candidate directional entailment rules: ‘I→Oj ’
and ‘Oj→I ’.

As shown in previous evaluations the precision of DIRT
and TEASE is limited [10, 2, 20, 19]. Currently, their ap-
plication should typically involve manual filtering of the
learned rules, and the algorithms’ utility is reflected mainly
by the amount of correct rules they learn. Specifically,
DIRT learns a long tail of low quality rules with less signif-
icant statistics, which still yield a positive similarity value.

The learned entailment rules and paraphrases can be
used atinference timein applications such as IE [18, 14, 17]
and QA [10, 13, 8], where matched rules deduce new target
predicate instances from texts (like the ‘compose→ write’
example in Section 1).

2.2 Morpho-Syntactic Template Variations

Lexical syntactic templates can take on many morpho-
syntactic variations, which are usually semantically equiv-
alent. This phenomenon is addressed at the inference phase
by recognizing semantically equivalent syntactic varia-
tions, such as passive forms and conjunctions (e.g. [14]).
Some work was done to systematically recognize morpho-
logical variations of predicates [11, 7], but it was not ap-
plied for entailment inference.

In contrast, current methods for learning lexical-
syntactic rules do not address the morpho-syntactic vari-
ability at learning time at all. Thus, they learn rules sepa-
rately for each variation. This results in either learning re-
dundant rules (see Table 1) or missing some of the relevant
rules that occur in a corpus. Moreover, some rules might
not be learned in any variation. For example, if for each of
the rules ‘X acquireY → X own Y ’, ‘ Y is acquired by
X → X own Y ’ and ‘X ’s acquisition ofY → X own Y ’
there are no sufficient statistics then none of them will be
learned.

To sum up, though several problems rise from disregard-
ing the morpho-syntactic variability, there is still no sound
solution for addressing it at learning time.
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3 A Modular Approach for Entail-
ment Rule Learning

A natural solution for addressing the morpho-syntactic
variability in templates is a modular architecture, in which
a separate entailment module recognizes entailing varia-
tions that are based on generic morphological and syntactic
regularities.

In our scheme, we use this morpho-syntactic entailment
module to transform lexical-syntactic template variations
that occur in a text into theircanonical form. This form,
which we chose to be the active verb form with direct mod-
ifiers, is entailed by other template variations. We next de-
scribe our implementation of such a module and its appli-
cation within entailment rule acquisition algorithms.

3.1 Morpho-Syntactic Canonization Module

We implementated a morpho-syntactic module based on a
set ofcanonization rules, highly accurate morpho-syntactic
entailment rules. Each rule represents one morpho-
syntactic regularity that is eliminated when the rule is ap-
plied to a given template (see examples in Table 3 and Fig-
ure 1).

Our current canonization rule collection consists of two
types of rules: (a) syntactic-based rules; (b) morpho-
syntactic nominalization rules. We next describe each rule
type. As we use the Minipar parser, all rules are adapted to
Minipar’s output format.

Syntactic-based Rules These rules capture entailment
patterns associated with common syntactic structures.
Their function is to simplify and generalize the syntactic
structure of a template.

In the current implementation we manually created the
following simplification rules: (a) passive forms into ac-
tive forms; (b) removal of conjunctions; (c) removal of ap-
positions; (d) removal of abbreviations; (e) removal of set
description by the ’such as’ preposition. Table 3 presents
some of the rules we created together with examples of
their effect.

Nominalization Rules Entailment rules such as ‘acqui-
sition of Y by X → X acquireY ’ and ‘Y ’s acquisition
by X → X acquireY ’ capture the relations between verbs
and their nominalizations. We automatically derived these
rules from Nomlex, a hand-coded database of about 1000
English nominalizations [11], as described in [15]. These
rules transform any nominal template in Nomlex into its
related verbal form. These rules preserve the semantics of
the original template predicate. We chose the verbal form
as the canonical form since for every predicate with specific
semantic modifiers there is only one verbal active form in
Nomlex, but typically several equivalent nominal forms.

Chaining of Canonization Rules Each of the syntactic
rules decreases the size of a template. In addition, nominal-
ization rules can only be applied once for a given template,
since no rule in our rule-set transforms a verbal template
into one of its nominal forms. Thus, applying rules until
no rule can apply is a finite process. In addition, each of
our rules is independent of the others, operating on a dif-
ferent set of dependency relations. Consequently, applying

any sequence of rules until no other rule can apply will re-
sult in the same final canonical template form. Figure 1
illustrates an example for rule chaining.

3.2 Applying the Canonization Module

When a morpho-syntactic entailment module is utilized
at inference time (e.g. [14]), it recognizes a closure of
morpho-syntactic variations for a lexical-syntactic tem-
plate. Accordingly, acquisition algorithms may learn just
a single morpho-syntactic variation of a template.

With this modular scheme in mind, we propose to solve
the learning problems discussed in Section 2.2 by utilizing
the morpho-syntactic entailment module at learning time as
well. We incorporate the module in the learning algorithms
(TEASE and DIRT in our experiment) by converting each
template variation occurrence in the learning corpus into
an occurrence of a canonical template. Thus, the learning
algorithms operate only on canonical forms.

As discussed in Section 1, when canonization is used,
no morpho-syntactically redundant rules are learned, with
respect to the variations that are recognized by the mod-
ule. This makes the output more compact, both for storage
and for use. In addition, the statistical reliability of learned
rules may be improved. For example, rules that could not
be learned before in any variation may be learned now for
the canonical form.

Methodologically, previous evaluations of learning algo-
rithms reported accuracy relative to the redundant list of
rules, which creates a bias for templates with many fre-
quent variations. When this bias is removed and only truly
different lexical-syntactic rules are assessed, evaluation is
more efficient and accurate.

4 Evaluation

We conducted two experiments: (a) a manual evaluation of
the contribution of the canonization module to TEASE and
DIRT, based on human judgment of the learned rules; (b) a
Relation Extraction evaluation setup for a protein interac-
tion data-set.

4.1 Human Judgement Evaluation

We have selected 20 different verbs and verbal phrases2 as
input templates for both TEASE and DIRT, and executed
both the baseline versions (without canonization), marked
asTEASEb andDIRTb, and the versions with the can-
onization module, marked asTEASEc andDIRTc. The
results of the executions constitute our test-set rules.

As discussed in Section 2.1, both TEASE and DIRT do
not learn the direction(s) of an entailment relation between
an input templateI and a learned output templateO. Thus,
we evaluated both candidate directional rules, ‘I→O’ and
‘O→I ’.

Rule Evaluation The prominent approach for evaluat-
ing rules is to present them to human judges, who assess
whether each rule is correct or not. Generally, a rule is
considered correct if the judge could think of reasonable

2 The verbs are: accuse, approve, calculate, change, demand, establish,
finish, hit, invent, kill, know, leave, merge with, name as, quote, re-
cover, reflect, tell, worsen, write.
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Rule Description Original Template Simplified Template

passive to active X by

pcomp−n
ww

V

by−subj
vv

X by

pcomp−n
ww

find

by−subj
vv

obj
((
Y X find

subj
vv

obj
((
Y

+3X V

subj
ww

conjunction Z

conj
''
Y +3Y X find

subj
vv

obj
**
gold

conj
((
Y X find

subj
vv

obj
((
Y

apposition Z

appo
''
Y +3Y X find

subj
vv

obj ,,
protein

appo
((Y X find

subj
vv

obj
((
Y

abbreviation Z

spellout
''
Y +3Y X find

subj
vv

obj
,,
NDA

spellout
((Y X find

subj
vv

obj
((
Y

Table 3: Some of the syntactic rules used in our implementation, together with usage examples (the application of the
second rule and the third rule is demonstrated in Figure 1).

acquisition
mod

xxqqqqqqq mod

&&MMMMMMM
+3

by

pcomp−n
��

of

pcomp−n
��

company
appo

��

Kaltix

conj
��

X Y

acquire
subj

xxqqqqqqq obj

&&MMMMMMM
+3

company
appo

��

Kaltix

conj
��

X Y

acquire
subj

xxqqqqqqq obj

&&MMMMMMM
+3

X Kaltix

conj
��

Y

acquire
subj

xxqqqqqqq obj

&&MMMMMMM

X Y

Fig. 1: Chaining of canonization rules that transforms the path template between the arguments
{X=‘Google’;Y =‘Sprinks’}, which occurs in the sentence “We witnessed the acquisition of Kaltix and Sprinks
by another growing company, Google”, into a canonized template form. The first rule applied is a nominalization rule,
followed by removal of apposition and removal of conjunction (as described in Table 3). As can be seen, applying the
rules in any order will result in the same final canonized form.

contexts under which it holds. However, it is difficult to
explicitly define when a learned rule should be considered
correct under this methodology.

Instead, we follow the evaluation methodology pre-
sented in [19], where each rule ‘L → R’ is evaluated by
presenting the judges not only with the rule but rather with
a sample of sentences that match its left hand sideL. The
judges then assess whether the rule holds under each spe-
cific example sentence. The precision of a rule is computed
by the percentage of examples for which entailment holds
out of all “relevant” examples in the judged sample. A rule
is considered correct if its precision is higher than 0.8 (see
[19] for details). This instance-based approach was shown
to be more reliable than the rule-based approach.

4.2 TEASE Evaluation

We separated the templates that were learned byTEASEc

into two lists: (a) abaseline-templateslist containing tem-
plates also learned byTEASEb; (b) a new-templateslist
containing templates that were not learned byTEASEb,
but learned byTEASEc thanks to the improved statistics.
In total, 3871 templates were learned: 3309 in the baseline-
templates list and 562 in the new-templates list. Inherently,
every output template learned byTEASEb is also learned
in its canonical form byTEASEc, since its supporting sta-
tistics may only increase.

We randomly sampled 100 templates from each list and
evaluated their correctness according to the methodology
in Section 4.1. We retrieved 10 example sentences for each
rule from the first CD of Reuters RCV1. Two judges, fluent
English speakers, evaluated the examples. We randomly
split the rules between the judges with 100 rules (942 ex-
amples) cross annotated for agreement measurement.

Results First, we measured the redundancy in the rules
learned byTEASEb to be 6.2% per input template on av-
erage. We considered only morpho-syntactic phenomena
that are addressed in our implementation. This redundancy
was eliminated using the canonization module.

Next, we evaluated the quality of each rule sampled us-
ing two scores: (1) micro averagePrecision, the percent-
age of correct templates out of all learned templates, and
(2) averageYield, the average number of correct templates
learned for each input template, as extrapolated for the
sample. The results are presented in Table 5. The agree-
ment between the judges was measured by the Kappa value
[4], which is 0.67 on the relevant examples (corresponding
to substantial agreement).

We expectTEASEc to learn new rules using the can-
onization module. In our experiment, 5.8 more correct
templates were learned on average per input template by
TEASEc. This corresponds to an increase of 11.6% in
average Yield (see Table 5). Examples of new correctly
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Rule Sentence Judgment
X clarify Y →X prepareY He didn’t clarify his position on the subject. Left not entailed
X hit Y →X approachY Other earthquakeshave hitLebanonsince ’82. Irrelevant context
X regulateY →X reformY The SRA regulatesthe sale of sugar. No entailment
X stressY →X stateY Ben Yahiaalso stressedthe need for action. Entailment holds

Table 4: Example sentences for rules and their evaluation judgment.

learned templates are shown in Table 6.
There is a slight decrease in precision when using

TEASEc. One possible reason is that the new templates
are usually learned from very few occurrences of differ-
ent variations, accumulated for the canonical templates.
Thus, they may have a somewhat lower precision in gen-
eral. Overall, the significant increase in Yield is much more
important, especially if the learned rules are later filtered
manually (see Section 2.1).

Template List Avg. Precision Avg. Yield
TEASEb 30.1% 49.8
TEASEc 28.7% 55.6
DIRTb 24.7% 46.9
DIRTc 24.9% 47.5

Table 5: Average Precision and Yield of the output lists.

Input Template Learned Template
X accuseY X blameY
X approveY X take action onY

X demandY X call for Y ,
X in demand forY

X establishY X openY
X hit Y X slapY

X inventY grantX patent onY ,
X is co-inventor ofY

X kill Y
X hangY ,
chargeX in death ofY

X named asY hireX asY , selectX asY
X quoteY X citeY
X tell Y X persuadeY , X say toY

X worsenY X impairY

Table 6: Examples for correct templates that TEASE
learned only after using canonization rules.

4.3 DIRT Evaluation

Unlike TEASE, DIRT has a very long noisy tail of can-
didate templates (see Section 2.1). However, DIRT poses
no hard threshold for filtering out this long tail. Instead,
we follow [10], who evaluated only the top-N templates
learned for each input template. [10] setN to be 40, but
this choice seems quite arbitrary. We setN to be 190 to as-
sess an output list that is similar in size to TEASE’s output.
Before selecting the top 190 templates, we removed redun-
dant templates fromDIRTb, those that are just morpho-
syntactic variations of a template with a higher score. We
converted the remaining templates to their canonical forms.

We separated the templates learned for each input tem-
plate into three lists: (a) acommon-templateslist contain-
ing templates that appear in bothDIRTb andDIRTc top-
190 lists; (b) anew-templateslist containing templates that
appear only in theDIRTc list; (c) an old-templateslist
containing templates that appear only in theDIRTb list.
Out of the 3800 templates selected from each DIRT ver-
sion output, 3353 were in the common-list and 447 were in
each of the new/old lists.

We sampled 100 templates from each list and evaluated
their correctness (10 sentences for each rule). One judge
evaluated the sample. The evaluation results were affirmed
by an additional evaluation by one of the authors.

Results We measured the redundancy in the rules learned
by DIRTb to be 5.6% per input template on average. This
redundancy was removed using the canonization module.
We found that only about 13% of the learned templates
were learned by both TEASE and DIRT. This shows that
the algorithms do not compete but rather largely comple-
ment each other in terms of Yield, since they learn from
different resources.

13.3% of the top-190 templates learned byDIRTb were
replaced by other templates inDIRTc, as the change in
statistics results in different template ranking. We mea-
sured Precision and Yield as in Section 4.2. The results are
presented in Table 5.

As can be seen, the performance ofDIRTc is basically
comparable to that ofDIRTb. It seems that in typical
paraphrase acquisition algorithms like TEASE, which use
complex and more informative features that are infrequent,
adding more statistics results in higher quality learning. On
the other hand, DIRT is based on frequent simple features
that are less informative. Under this approach, adding some
more statistics does not seem to dramatically change the
overall score of a rule. Perhaps a more substantial increase
in the statistics, such as by adding more canonization rules,
will result in a positive change.

Overall, it is useful to incorporate canonization also in
DIRT in order to remove the redundancy within the learned
rules but also to enable a uniform architecture for applying
rules learned by different algorithms.

4.4 Relation Extraction Evaluation

To illustrate the potential contribution of the increased
number of learned rules we conducted a small-scale exper-
iment in a Relation Extraction (RE) setup over a data-set
of protein interactions [3]. The task is to identify pairs of
proteins that are described in a text as interacting.

We have set a simple partial replication of the RE config-
uration presented in [14]. We used ‘X interact withY ’ as
the only input template for bothTEASEb andTEASEc,
which learned entailment rules containing this template

5



from the Web. We then extracted protein pairs using the
rules learned. For canonization at inference time. we
used only the rules described in Section 3.1 (a wider range
of matching techniques should be used in order to reach
higher recall).

Table 7 presents the results of our two TEASE versions
for a test set of about 600 mentions of interacting pairs.
There is a relative improvement of about 10% in recall,
which reflects the yield increase inTEASEc. These re-
sults are preliminary and of small scale, but they illustrate
the potential benefit of learning with canonization.

We note that TEASE precision in this experiment, which
was measured over actual applications of the learned rules
in the test set, is much higher than that of Section 4.2,
where the percentage of correctly learned rules was mea-
sured. This shows that many incorrectly learned rules are
not applicable in typical contexts and thus rarely deterio-
rate overall performance.

Implementation Recall Precision
TEASEb 9.4% 83%
TEASEc 10.4% 87.5%

Table 7: Results for the protein interaction setup using
TEASE with and without canonization.

4.5 Analysis

Parser errors are one of the main reasons that variations
are sometimes not transformed into their canonical form.
These errors result in different parse trees for the same syn-
tactic constructs. Thus, several parser dependent rules may
be needed to capture the same phenomenon. Moreover, it
is difficult to design canonization rules for some parsing
errors, since the resulting parse trees consist of structures
that are common to other irrelevant templates. For exam-
ple, when Minipar chooses the head of the conjunct ‘Y’ in
“The interaction between X and Y will not hold for long”
to be ‘interaction’ and not ‘X’, the appropriate nominaliza-
tion rule cannot be applied. These errors affect both the
learning phase, where statistics are not accumulated to the
appropriate canonical form, and the inference phase, where
a variations of a canonical rule are not recognized.

Finally, we note that the reported results correspond only
to the phenomena captured by our currently implemented
canonization rules. Adding more rules that cover more
morpho-syntactic phenomena is expected to increase the
performance obtained by our canonization scheme. For ex-
ample, there are many nominalizations that are not spec-
ified in the current Nomlex version, but can be found in
other resources, such as WordNet [6].

5 Conclusions

We proposed a modular approach for addressing morpho-
syntactic variations of templates when learning entailment
rules, based on rule canonization. We then used it for tem-
plate canonization in two state-of-the-art acquisition algo-
rithms. Our experiments showed that redundancy is re-
moved while new correct rules are learned. We also showed
initial improvement in a Relation Extraction setting when
using the additional rules learned with the canonization

module. Finally, we suggest that the evaluation of rules in
a canonical form is more accurate, since the bias for tem-
plates with many frequent variations learned is removed.

In future work we plan to investigate other types of en-
tailment knowledge that can contribute to canonization,
such as synonyms. We also plan to add additional syntactic
and morpho-syntactic rules, which were not covered yet.
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