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Abstract

We propose a modular approach to paraphrase and
entailment-rule learning that addresses the morpho-
syntactic variability of lexical-syntactic templates.
Using an entailment module that captures generic
morpho-syntactic regularities, we transform every
identified template into a canonical form. This way,
statistics from different template variations are accu-
mulated for a single template form. Additionally,
morpho-syntactic redundant rules are not acquired.
This scheme also yields more informative evaluation
for the acquisition quality, since the bias towards rules
with many frequent variations is avoided.
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One noticeable phenomenon of lexical-syntactic tem-
plates is that they have many morpho-syntactic variations,
which (largely) represent the same predicate and are se-
mantically equivalent. For exampleX* composeY’ can
be expressed also by ™is composed by’ or * X's com-
position of Y’. Current learning algorithms ignore this
morpho-syntactic variability. They treat these variations
as semantically different, learning rules for each variation
separately. This leads to several undesired consequences.
First, statistics for a particular semantic predicate are scat-
tered among different templates. This may result in insuf-
ficient statistics for learning a rule in any of its variations.

Second, though rules may be learned in several variations
(see Table 1), in most cases only a small part of the morpho-
syntactic variations are learned. Thus, an inference system
that uses only these learned rules would miss recognizing

a substantial number of variations of the sought predicate.
It therefore makes more sense to design a modular archi-
tecture. In it, a separate entailment module recognizes en-
1 Introduction tailing variations that are based on generic morphological
and syntactic regularities (morpho-syntactic entailments).

In many NLP applications such as Question AnswerinyVe propose to use such a module first at learning time, by
(QA) and Information Extraction (IE), it is crucial to recog- Iearning only canonical forms of templates and rules. Then,
nize that a specific target meaning can be inferred from diffPPlying the module also at inference time, in conjunction
ferent text variants. For example, a QA system have twith the learned lexical-based can(_)nlcal_ru_les, guarantees
deduce that Mozart wrote the Jupiter symphdhgan be the coverage of all morpho-syntactic variations of a given
inferred from ‘Mozart composed the Jupiter symphbimy ~ canonical rule.
order to answerWho wrote the Jupiter symphorlyThis Our proposed approach poses two advantages. First, the
type of reasoning has been identified as a core semantic Btatistics from the different morpho-syntactic variations ac-
ference paradigm by the genetextual entailmenframe- cumulate for one template form only. The improved statis-
work [5]. tics may result, for example, in learning more rules. Sec-
An important type of knowledge representation neede@nd, the learning output is without redundancies due to
for such inference igntailment rules An entailment rule, variations of the same predicate. Additionally, the eval-
e.g. ‘X composeY — X write Y, is a directional rela- uation of learning algorithms is more accurate when the
tion between twaemplates Templates represents text pat-bias towards templates with many frequent variations is
terns with variables that typically corresponds to semantiavoided.
predicates. In an entailment rule, the left hand side tem- In this work we implemented a morpho-syntactic entail-
plate is assumed to entail the right hand side template ment module that utilizes syntactic rules for major syntactic
certain appropriate contexts, under the same variable iphenomena (like passive and conjunctions) and morpho-
stantiation. Such rules capture rudimentary inferences amayical rules that address nominalizations. We then applied
are used as building blocks for more complex inferencghe module within two entailment rule acquisition algo-
For example, given the above entailment rule, a QA systenthms. We measured redundancy removal of about 6% out
can identify ‘Mozart’ as the answer for the above ques-of all rules learned. For one of the algorithms, we measured
tion. A major obstacle for further advances in semantian increase of about 12% in the number of lexically differ-
inference is the lack of broad-scale knowledge-bases fent correct templates that were learned using our approach.
such rules [1]. This need sparked intensive research on datinally, we applied the morpho-syntactic entailment mod-
tomatic acquisition of entailment rules (and similarly paraule also at inference time in a Relation Extraction setup for
phrases). These algorithms’ strength is in learning relationgotein-interaction. In a preliminary experiment, we found
between lexical-syntactic templates, which capture lexicathat the rules learned using our new scheme yielded some
based knowledge and world knowledge (see Section 2.1)mprovement in recall.
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| Morpho-Syntactic Variations |
X composey” — X writeY X is composed by — X write Y
X accus&y” «— X blameY  X's accusation ot «— X blameY
X acquireY — X obtainY  acquisition ofY by X — Y is obtained byX

Table 1: Examples of learned rules that differ only in their morpho-syntactic structure.

Template Single-feature Approach (DIRT) Anchor-Set Approach
P X-vector Features | Y-vector Features Common Features
Bach Beethoven | symphony music
X compose’ Mozart he sonataopera {X='"Mozart’;Y'="Jupiter symphony},
: Tolstoy, Bach symphony anthem,| {X='Bach’;Y'="Sonata Abassoonatg’
X writeY =
author, Mozarthe | sonatabook, novel

Table 2: Examples for features of the anchor set and single-feature approaches for two related templates.

2 Backgrou nd put template is suggested as holding an entailment relation
with the input template, but current algorithms do not spec-
2.1 Entailment Rule Learning ify the entailment direction(s). Thus, each p@it O, } in-

_ . . _ duces two candidate directional entailment rulds=0O;’
Many algorithms for automatically learning entailmentand ‘O; —I".

rules and paraphrases (which can be viewed as bldlrec'As shown in previous evaluations the precision of DIRT

ﬁ?}”a' e”tiir']mgnt rules) were prlofose.’d ti” trecegt.geatr. nd TEASE is limited [10, 2, 20, 19]. Currently, their ap-
€se methods recognize tlemplates In 1exts and 10entityi-a4ion should typically involve manual filtering of the

entailment relations between them based on shared f 8arned rules, and the algorithms’ utility is reflected mainly
. - . by the amount of correct rules they learn. Specifically,
These algorithms may be divided into o types. Theypreamng a long tail of low quality rules with less signif-

prominent approach |den.t|fy_ an entallm(_ant relatlpn be|'cant statistics, which still yield a positive similarity value.
tween two templates by finding variable instantiation tu- )
ples, termed heranchor-sets that are common to both The learned e.nteylment' rulgs and paraphrases can be
templates [13, 18, 2, 12, 20, 16]. Anchor-sets are compléi@ed atnference timén applications such as IE [18, 14, 17]
features, consisting of several terms, labelled by their coRd QA [10, 13, 8], where matched rules deduce new target
responding variables. Table 2 (right column) presents corRredicate instances from texts (like the ‘compesavrite
mon anchor-sets for the related templat¥scomposey” ~ €xample in Section 1).
and ‘X write Y. Typically, only few common anchor-sets
are identified for each entailment relation.

A different single-feature approach is proposed by the
DIRT algorithm [10]. It uses simple, less informative but2.2 Morpho-Syntactic Template Variations
more frequent features. It constructs a feature vector for

each variable of a given template, representing the conteXéxical syntactic templates can take on many morpho-
words that fill the variable in the different occurrences okyntactic variations, which are usually semantically equiv-
the template in the corpus. Two templates are identified §ent. This phenomenon is addressed at the inference phase
Semantlca"y related if they have S!mllar vectors. Table %y recognizing semantica"y equiva|ent Syntactic varia-
shows examples for features of this type. DIRT parsestgns, such as passive forms and conjunctions (e.g. [14]).
whole corpus and limits the allowed structures of templategome work was done to systematically recognize morpho-
only to paths in the parse graphs, connecting nouns at th@dgical variations of predicates [11, 7], but it was not ap-
ends. plied for entailment inference.

In this paper we implemented the TEASE algorithm In contrast, current methods for learning lexical-

[20]. Itis an unsupervised algorithm that acquires entalléyntactic rules do not address the morpho-syntactic vari-

ment relations from the Web for given input templates us'biIity at learning time at all. Thus, they learn rules sepa-

ing the anchor-set approach (we required at least two Corﬁa{tely for each variation. This results in either learning re-

mgﬂtggiugrg?éﬁ' fglr lc?r?:[';’llﬁ:‘l]:] %\? e:e;alt(')%g)l' Cz\r/euzls?hg]f?rlggundant rules (see Table 1) or missing some of the relevant
9 pus, ules that occur in a corpus. Moreover, some rules might

CD of Reuters RCV{. Both algorithms procesiexical- not be learned in any variation. For example, if for each of
syntactic templateswhich are represented by parse sub: e rules X acquireY — X ownY" 'Y is acquired b
trees. All sentences are parsed using the Minipar depeg} . X own Ygand ‘X's acquisition’ oft — quwn Y,y

dency parser [Q]' . there are no sufficient statistics then none of them will be
For a given input templaté, these algorithms can be learned

viewed as learning a list of output templafes; }7/, where

n; is the number of templates learned far Each out- 10 sumup, though several problems rise from disregard-
ing the morpho-syntactic variability, there is still no sound
! http://about.reuters.com/researchandstandards/corpus/ solution for addressing it at learning time.



3 A Modular Approach for Entail- any sequence of rules until no other rule can apply will re-

] sult in the same final canonical template form. Figure 1
ment Rule Leammg illustrates an example for rule chaining.

A natural solution for addressing the morpho-syntactic

variability in templates is a modular architecture, in whick8.2 ~ Applying the Canonization Module

a separate entailment module recognizes entailing varia- ) ) ) -

tions that are based on generic morphological and syntaci{nen a morpho-syntactic entailment module is utilized

regularities. at inference time (e.g. [14]), it recognizes a closure of
In our scheme, we use this morpho-syntactic entailmeforpho-syntactic variations for a lexical-syntactic tem-

module to transform lexical-syntactic template variation®!ate. Accordingly, acquisition algorithms may learn just

that occur in a text into theicanonical form This form, @ Single morpho-syntactic variation of a template.

which we chose to be the active verb form with direct mod- With this modular scheme in mind, we propose to solve

ifiers, is entailed by other template variations. We next déh€ learning problems discussed in Section 2.2 by utilizing

scribe our implementation of such a module and its appﬁ_he morpho-syntactic entailment module at learning time as

cation within entailment rule acquisition algorithms. well. We incorporate the module in the learning algorithms
(TEASE and DIRT in our experiment) by converting each

) o template variation occurrence in the learning corpus into
3.1 Morpho-Syntactic Canonization Module an occurrence of a canonical template. Thus, the learning

. . algorithms operate only on canonical forms.
We implementated a morpho-syntactic module based on ElgAs discussed in Section 1, when canonization is used,

set ofcanonization ruleshighly accurate morpho-syntactic no morpho-syntactically redundant rules are learned, with

entaﬂmgnt rules.. anh ryle represents one mprph?éspect to the variations that are recognized by the mod-
syntactic “?gu'a”ty that is eliminated Wh_en the rule is aPle. This makes the output more compact, both for storage
plledlto a given template (see examples in Table 3 and F'%’nd for use. In addition, the statistical reliability of learned

ure 1). rules may be improved. For example, rules that could not

Our current canonization rule collection consists of tWQ)a learned before in any variation may be learned now for
types of rules: (@) syntactic-based rules; (b) morph he canonical form

syntactic nominalization rules. We next describe each rule Methodologically, previous evaluations of learning algo-

type. As we use the Minipar parser, all rules are adapted Fhms reported accuracy relative to the redundant list of

Minipar's output format. rules, which creates a bias for templates with many fre-
guent variations. When this bias is removed and only truly

Syntactic-based Rules These rules capture entailmentdifferent lexical-syntactic rules are assessed, evaluation is

patterns associated with common syntactic structuresiore efficient and accurate.

Their function is to simplify and generalize the syntactic

structure of a template. )

In the current implementation we manually created thét Evaluation

following simplification rules: (a) passive forms into ac-

tive forms; (b) removal of conjunctions; (c) removal of ap-We conducted two experiments: (a) a manual evaluation of

positions; (d) removal of abbreviations; (e) removal of sethe contribution of the canonization module to TEASE and

description by the 'such as’ preposition. Table 3 presenf3IRT, based on human judgment of the learned rules; (b) a

some of the rules we created together with examples &felation Extraction evaluation setup for a protein interac-

their effect. tion data-set.

Nominalization Rules Entailment rules such as ‘acqui- 4.1 Human Judgement Evaluation
sition of Y by X — X acquireY’ and ‘Y’s acquisition .
by X — X acquireY” capture the relations between verbsWe have selected 20 different verbs and verbal phfeses
and their nominalizations. We automatically derived thes#put templates for both TEASE and DIRT, and executed
rules from Nomlex, a hand-coded database of about 106@th the baseline versions (without canonization), marked
English nominalizations [11], as described in [15]. Thes@STEASE, and DIRT;, and the versions with the can-
rules transform any nominal template in Nomlex into itsonization module, marked &SEASE. and DIRT.. The
related verbal form. These rules preserve the semantics/ésults of the executions constitute our test-set rules.
the original template predicate. We chose the verbal form As discussed in Section 2.1, both TEASE and DIRT do
as the canonical form since for every predicate with speciffeot learn the direction(s) of an entailment relation between
semantic modifiers there is only one verbal active form ih input templateé and a learned output template Thus,
Nomlex, but typically several equivalent nominal forms. YVOe engluated both candidate directional rulés;»O’ and

— 1.

Chaining of Canonization Rules Each of the syntactic ) i
rules decreases the size of a template. In addition, nomin&tule Evaluation The prominent approach for evaluat-
ization rules can only be applied once for a given templatdg rules is to present them to human judges, who assess

since no rule in our rule-set transforms a verbal templat@hether each rule is correct or not. Generally, a rule is

no rule C"’?” apply is a finite process. In addltl.on’ each C.JTQ The verbs are: accuse, approve, calculate, change, demand, establish,
our rules is independent of th_e others, operating on a d_|f' finish, hit, invent, kill, know, leave, merge with, name as, quote, re-
ferent set of dependency relations. Consequently, applying cover, reflect, tell, worsen, write.




| Rule | Description | Original Template | Simplified Template |

pcomp—n by—subj
. : Xk'\b k‘h\v pcomp—n  by—subj obj subj obj
passive to active ysubj Xy find MY X find MY
=XV
conj subj obj conj subj obj
conjunction 77 Y=Y X“ " find~  gold” Y | X* find~ Y
appo subj obj appo subj obj
apposition 77 YY=—Y meind/_’\proteink\)/ X< " find Y
spellout subj obj spellout subj obj
abbreviation 727 Y ==Y | X* find~ NDA Y | X*“ find Y

Table 3: Some of the syntactic rules used in our implementation, together with usage examples (the application of the
second rule and the third rule is demonstrated in Figure 1).

acquisition acquire acquire acquire
mod mod M M M
by of company Kaltix X Kaltix X Y
\chomp—n \chomp—n i/appa i/conj \Lconj
company Kaltix X Y Y
i/’lppo i/conj
X Y

Fig. 1: Chaining of canonization rules that transforms the path template between the arguments
{X='Google’;Y='Sprinks’}, which occurs in the sentenceMe witnessed the acquisition of Kaltix and Sprinks

by another growing company, Googlénto a canonized template form. The first rule applied is a nominalization rule,
followed by removal of apposition and removal of conjunction (as described in Table 3). As can be seen, applying the
rules in any order will result in the same final canonized form.

contexts under which it holds. However, it is difficult to We randomly sampled 100 templates from each list and
explicitly define when a learned rule should be considereglvaluated their correctness according to the methodology
correct under this methodology. in Section 4.1. We retrieved 10 example sentences for each
Instead, we follow the evaluation methodology pre+ule from the first CD of Reuters RCV1. Two judges, fluent
sented in [19], where each rulé ‘— R’ is evaluated by English speakers, evaluated the examples. We randomly
presenting the judges not only with the rule but rather witlsplit the rules between the judges with 100 rules (942 ex-
a sample of sentences that match its left hand id€he amples) cross annotated for agreement measurement.
judges then assess whether the rule holds under each spe-
cific example sentence. The precision of arule is comput(?g
2

. . esults First, we measured the redundancy in the rules
by the percentage of examples for which entailment hol ' o : N
out of all “relevant” examples in the judged sample. A rule arned byI'EAS B, to be 6.2% per input template on av

; ; o N S rage. We considered only morpho-syntactic phenomena
is considered correct if its precision is higher than 0.8 (S%%a'?are addressed in our ir%lplemgntatign. This Fr)edundancy

19] for details). This instance-based approach was sho o : o
Eo b]e more reli)able than the rule-basedpappproach. as eliminated using the canonization module.
Next, we evaluated the quality of each rule sampled us-
ing two scores: (1) micro averag&@ecision the percent-
4.2 TEASE Evaluation age of correct templates out of all learned templates, and
(2) averageYield, the average number of correct templates
We separated the templates that were learnetBySE. learned for each input template, as extrapolated for the
into two lists: (a) ébaseline-templatelst containing tem- sample. The results are presented in Table 5. The agree-
plates also learned Y EASE,; (b) anew-templatefist ment between the judges was measured by the Kappa value
containing templates that were not learnedb§¥ ASFE,, [4], which is 0.67 on the relevant examples (corresponding
but learned byI' EAS E, thanks to the improved statistics. to substantial agreement).
In total, 3871 templates were learned: 3309 in the baseline-We expectl’ EASE. to learn new rules using the can-
templates list and 562 in the new-templates list. Inherentlgnization module. In our experiment, 5.8 more correct
every output template learned BY ASE}, is also learned templates were learned on average per input template by
in its canonical form by' EAS E.., since its supporting sta- TEASE.. This corresponds to an increase of 11.6% in
tistics may only increase. average Yield (see Table 5). Examples of new correctly



| Rule [
X clarify Y — X prepareY’
X hitY — X approach’
X regulateY — X reformY
X stressY — X stateY

Sentence |
He didn't clarify his position on the subject
Other earthquakeshave hitLebanon since '82.
The SRAregulateshe sale of sugar
Ben Yahiaalso stressethe need for action

Judgment |
Left not entailed
Irrelevant context
No entailment
Entailment holds

Table 4: Example sentences for rules and their evaluation judgment.

learned templates are shown in Table 6. We separated the templates learned for each input tem-
There is a slight decrease in precision when usinglate into three lists: (a) aammon-templatelgst contain-
TEASE.. One possible reason is that the new templatdag templates that appear in botW RT, and DI RT. top-
are usually learned from very few occurrences of differd90 lists; (b) anew-templateist containing templates that
ent variations, accumulated for the canonical templateappear only in theDIRT, list; (c) anold-templatedist
Thus, they may have a somewhat lower precision in gemontaining templates that appear only in thé RT list.
eral. Overall, the significantincrease in Yield is much mor®ut of the 3800 templates selected from each DIRT ver-
important, especially if the learned rules are later filteredion output, 3353 were in the common-list and 447 were in
manually (see Section 2.1). each of the new/old lists.
We sampled 100 templates from each list and evaluated
their correctness (10 sentences for each rule). One judge

| Template List [ Avg. Precision | Avg. Yield |

TEASE, 30.1% 498 evaluated the sample. The evaluation results were affirmed
TEASE., 28.7% 55.6 by an additional evaluation by one of the authors.

DIRT, 24.7% 46.9

DIRT, 24.9% 47.5 Results We measured the redundancy in the rules learned

by DIRT, to be 5.6% per input template on average. This
Table 5: Average Precision and Yield of the output lists. redundancy was removed using the canonization module.
We found that only about 13% of the learned templates
were learned by both TEASE and DIRT. This shows that
the algorithms do not compete but rather largely comple-
ment each other in terms of Yield, since they learn from

[ Input Template | Learned Template |

Table 6: Examples for correct templates that TEAS

learned only after using canonization rules.

X accusey” X blameY different resources.
X approveY | X take action ort’ 13.3% of the top-190 templates learnedRyRT;, were
X callforY, replaced by other templates DI RT,, as the change in
X demandy X in demand fory” statistics results in different template ranking. We mea-
X establisny” | X openY sured Precision and Yield as in Section 4.2. The results are
X hitY X slapY’ presented in Table 5.
. grantX patent ony, As can be seen, the performancelaf RT, is basically
X inventY’ X is co-inventor ofY” comparable to that oDIRT,. It seems that in typical
. X hangy’, paraphrase acquisition algorithms like TEASE, which use
X kill'Y chargeX in death oft’ complex and more informative features that are infrequent,
X named ay | hire X asY, selectX asY adding more statistics results in higher quality learning. On
X quoteY X citeY the other hand, DIRT is based on frequent simple features
XtellY X persuadd’, X say toy that are less informative. Under this approach, adding some
X worseny X impairy more statistics does not seem to dramatically change the

overall score of a rule. Perhaps a more substantial increase
gh the statistics, such as by adding more canonization rules,
will result in a positive change.

Overall, it is useful to incorporate canonization also in
DIRT in order to remove the redundancy within the learned
rules but also to enable a uniform architecture for applying
rules learned by different algorithms.

4.3 DIRT Evaluation

Unlike TEASE, DIRT has a very long noisy tail of can-4 4 Relation Extraction Evaluation
didate templates (see Section 2.1). However, DIRT poses

no hard threshold for filtering out this long tail. Instead,To illustrate the potential contribution of the increased
we follow [10], who evaluated only the top- templates number of learned rules we conducted a small-scale exper-
learned for each input template. [10] S€tto be 40, but iment in a Relation Extraction (RE) setup over a data-set
this choice seems quite arbitrary. We 8&to be 190 to as- of protein interactions [3]. The task is to identify pairs of
sess an output list that is similar in size to TEASE'’s outpufproteins that are described in a text as interacting.

Before selecting the top 190 templates, we removed redun-We have set a simple partial replication of the RE config-
dant templates fronDI RT}, those that are just morpho- uration presented in [14]. We used ‘interact withY” as
syntactic variations of a template with a higher score. Wihe only input template for both EASE, andT EASE.,,
converted the remaining templates to their canonical formshich learned entailment rules containing this template



from the Web. We then extracted protein pairs using themodule. Finally, we suggest that the evaluation of rules in
rules learned. For canonization at inference time. wa canonical form is more accurate, since the bias for tem-
used only the rules described in Section 3.1 (a wider rang®ates with many frequent variations learned is removed.
of matching techniques should be used in order to reach In future work we plan to investigate other types of en-
higher recall). tailment knowledge that can contribute to canonization,

Table 7 presents the results of our two TEASE versionsuch as synonyms. We also plan to add additional syntactic
for a test set of about 600 mentions of interacting paireand morpho-syntactic rules, which were not covered yet.
There is a relative improvement of about 10% in recall,
which reflects the yield increase IREASE.. These re-
sults are preliminary and of small scale, but they illustratdCKnowledgements
the potential benefit of learning with canonization.

We note that TEASE precision in this experiment, whichThe authors would like to thank Chen Erez for her help
was measured over actual applications of the learned rulésthe experiments. We also want to thank Efrat Brown,
in the test set, is much higher than that of Section 4.Ruthie Mandel and Malky Rabinowitz for their evalua-
where the percentage of correctly learned rules was me#on. This work was partially supported by the Israeli
sured. This shows that many incorrectly learned rules afdinistry of Industry and Trade under NEGEV Consortium
not applicable in typical contexts and thus rarely deteriowww.negev-initiative.org) and the IST Programme of the

rate overall performance.

European Community under the PASCAL Network of Ex-

cellence IST-2002-506778.

| Implementation | Recall [ Precision |

TEASE, 9.4% 83%
TEASE, 10.4% | 87.5%

(1

Table 7: Results for the protein interaction setup using

TEASE with and without canonization.
[2]

3]
4.5 Analysis

Parser errors are one of the main reasons that variations
are sometimes not transformed into their canonical formt
These errors result in different parse trees for the same syn-
tactic constructs. Thus, several parser dependent rules m
be needed to capture the same phenomenon. Moreover, it
is difficult to design canonization rules for some parsing
errors, since the resulting parse trees consist of structurﬁ
that are common to other irrelevant templates. For exam-
ple, when Minipar chooses the head of the conjul¢in ]
“The interaction between X and Y will not hold for 16ng
to be finteractiori and not X’, the appropriate nominaliza- 9
tion rule cannot be applied. These errors affect both thé
learning phase, where statistics are not accumulated to th
appropriate canonical form, and the inference phase, where
a variations of a canonical rule are not recognized. 11]
Finally, we note that the reported results correspond only
to the phenomena captured by our currently implementgg,
canonization rules. Adding more rules that cover more
morpho-syntactic phenomena is expected to increase tfg
performance obtained by our canonization scheme. For ex-
ample, there are many nominalizations that are not spegs
ified in the current Nomlex version, but can be found in

other resources, such as WordNet [6].
[15]

5 Conclusions a6l
We proposed a modular approach for addressing morphz!
syntactic variations of templates when learning entailment
rules, based on rule canonization. We then used it for terf$!
plate canonization in two state-of-the-art acquisition algo-
rithms. Our experiments showed that redundancy is rét
moved while new correct rules are learned. We also showed
initial improvement in a Relation Extraction setting when?®
using the additional rules learned with the canonization
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