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Abstract

The process of pair partnership formation is an important
infrastructure for many plausible MAS applications. Each
agent evaluates potential partner agents, where each poten-
tial match yields a different utility. Commonly, the utility as-
sociated with a given agent partner in such two-sided search
processes may change over time. This change in the agent’s
future attractiveness to potential partners significantly in-
creases the complexity of the agent’s decision making pro-
cess regarding the set of agents it is willing to partner with.
In this paper we analyze the special dynamics and present
equilibrium characteristics of such a model. The agents can
gain a utility derived from the partner agent’s type. How-
ever, as an agent has an incentive to extend its search for a
better type partner, the benefit that can be offered to poten-
tial partners reduces as the search proceeds. We introduce
a two-sided model which takes into consideration a continu-
ous decrease in the agent’s type and formulate the appropri-
ate equilibrium equations. The suggested equilibrium anal-
ysis yields an algorithm for the calculation of the agents’
equilibrium strategy. Special emphasis is placed on the sce-
nario where an agent’s attractiveness is influenced by an ad-
ditional dimension other than just time. Simulation results
are presented to illustrate the findings.

1. Introduction
Pair partnership formation is an important variant of the

general coalition formation process. The main incentive for
this process is similar to the one which drives the coalition
formation: throughout a coalition, the agents (as a group) can
operate more effectively and coordinate their activities [12],
thus increasing the participants’ benefits [2]. However in the
pair partnership formation model, the agent is satisfied with
only one partner for forming a coalition.

Typical applications that make use of size-two partner-
ship formation process include buyer-seller, peer-to-peer me-
dia exchange, dual long distance call partnering termination-
services, etc. In these types of applications the agent can gain
utility only if it eventually partners with another agent. How-
ever, once a coalition is formed, adding additional agents
does not produce any additional benefit.
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As in the general coalition formation model, the key issue
for the partnering process is for each agent to determine the
set of agents it is willing to form a partnership with. This is
where each agent is associated with a specific type that cap-
tures special characterizing properties. Two important factors
significantly increase the complexity of the model. The first
factor is the search costs (associated with the resources the
agent has to spend as part of its search for partners - commu-
nication, CPU, memory, etc.), induced at each search stage
[11]. The second is whether or not the agents types are con-
stant (stationary) or changing over time (non stationary). The
latter attribute, which will be discussed in this paper, is ac-
tually application-dependant. For example, while in a buyer-
seller application, the seller’s preferences may remain con-
stant over time1, the buyer agent’s preferences may change
as it reaches its purchase deadline. The main contribution
of this paper is the formalization, analysis, and algorithm
for finding the equilibrium strategies for partnership forma-
tion in a distributed environment where the agent type is: (a)
changing over time, and (b) comprised of more than one at-
tribute. Even though most partnership applications are asso-
ciated with type changes, to the best of our knowledge no
such model has been developed to date.

As a framework for our analysis, we introduce and uti-
lize the dual-backup application, though the suggested model
is general and applicable for any domain in which the agents
types weaken constantly over time. The dual-backup applica-
tion is a peer-to-peer based backup service. Here, agents, rep-
resenting different servers search for similar agents to form a
partnership for a mutual backup purpose.

Recall that for most corporations and small businesses,
the general definition of ”proper” backups requires redun-
dancy. One must keep multiple copies of the same files
at different locations. This is why backups are sent (either
through the internet, intranet or any other secure link) to a
remote server (either offsite or within the organization), and
stored safely away from the clients’ computers. Whether the
backup server belongs to a service provider or is operated
by the organization itself, the billing is mainly calculated
based on actual usage2. An alternative for the above tradi-

1 The seller’s preferences may also change over time, i.e. when the seller
considers interest over equity.

2 Usually around $50 per month per gig - see for example
http://www.persontech.com/



tional costly backup method is the distributed dual backup
application. Many intra-organizational servers occasionally
have free resources (mostly disk space). Though these re-
sources are not compatible for self backup (the source and
backup files shouldn’t reside on the same machine), they
can be used for backing up other servers within the orga-
nization network and vice versa. Similar applications can be
used for offsite dual-backup between organizations or differ-
ent branches, assuming security issues can be resolved. Any
volume of backup that can be obtained, in such a manner, can
be deducted from the total backup volume directed to the ex-
ternal backup provider or the internal backup server.

Since the volume of free resources of each server largely
varies over time, any server can supply only a short-term
forecast of its availability for these dual-backup partner-
ships. Therefore, periodically, the server creates a new agent,
equipped with its short term commitment details (file size
and due date), offering its backup services from the current
time until a pre-defined due-date. In exchange for the offered
resources, the agent will try to obtain similar backup services
from the agents representing the other servers. An exchange
is considered rather than a direct sell, as selling the backup
service is not supported by backoffice infrastructure.

A centralized partnerships allocation would require a cen-
tral planner (broker) and complete visibility of available
agents. It would also require a solution which would pre-
vent a conflict of interests. However, in the absence of any
of the above requirements (for example, when agents repre-
sent servers from different corporations or divisions) a dis-
tributed model should be considered.

In our model, we consider the utility an agent can gain
out of a partnership with any given potential partner as the
product of the file size (disk space) offered by the partner
and the time left until the agent’s due date3. An agent’s type
at any given time is determined by these two parameters.
We envision an environment with numerous agents of dif-
ferent types. Each agent sequentially locates and interacts
with other agents to form partnerships as described above.
After reviewing the information regarding the current poten-
tial partner, the agent must make a decision whether to form
a coalition with this partner or to keep searching for other po-
tential partners. Obviously continuing the search will even-
tually yield a higher type partner. However, search is timely
and the more selective the agent is, it will take it more time to
find an appropriate partner. As the agent extends the search
period, the time interval it can commit to (until its deadline)
shortens, resulting with a decrease in its own type (and thus
a decrease in its future attractiveness to other agents).

The context of this paper does not deal with the process of
locating other agents (though search costs can be easily in-

3 This utility can also be expressed in monetary values, since this is the
amount of backup volume the corporations can deduct from the alterna-
tive costly remote backup usage. However, if the agent’s type is a func-
tion of more than one dimension, then monetary values are not applica-
ble for describing the agent’s type.

tegrated into the model), but rather with finding the mech-
anisms used by the agent to determine which of the other
agents it is willing to form a partnership with. The main
challenge for each agent is to determine how its strategy
will affect the other agent types’ strategies towards equilib-
rium, considering the fact that the agent’s own type changes
over time. In the next section we address relevant multi-agent
models and two-sided matching literature. In these mod-
els, search behavior is influenced mainly by explicit search
costs rather than type change considerations. In section 3 we
present the model and analyze the agent’s equilibrium strat-
egy. The influence of several environmental factors on the
equilibrium strategies, carried out throughout simulations, as
well as a comparison with the model of stationary agent types
are given in section 4. We conclude and present directions for
future work in section 5.

2. Related Work
The use of agents for matchmaking is not new [6]. Ser-

vice matchmaking and brokering have been referred to in
several systems and applications [15, 7]. Most of the pro-
posed applications have been in the buyers and sellers do-
main [2]. Extended coalition formation models evolved as
a group buying mechanism based on agent-mediated elec-
tronic commerce [5] and for large-scale electronic markets
[8]. While some mechanisms assume that an agent can scan
as many agents as needed, others use a central matcher or
middle agents [3]. Few, have considered the problem of find-
ing matches for cooperative tasks without the help of a pre-
defined organization or central facilitator [10, 11]. However,
to the best of our knowledge, a model in which agents types
change over time (and the influence of this factor on the equi-
librium strategies) has not been studied.

The concept of matching is an important function of many
domains and processes, thus relevant research can also be
found in economic and social studies (e.g. applications of
students and colleges, workers and firms, marriageable men
and women, etc.). A legacy matching application, was in-
troduced by Gale and Shapley [4], emphasizing the stabil-
ity of matching. Nevertheless, the model (as well as the rich
literature that followed) assumes a relatively ”free” search
process, e.g. all parties involved have complete knowledge
about the available options to choose among, allowing each
searcher to consider all opportunities. More relevant to our
model, is the ”assortative matching” literature, which sug-
gests models where preferences and options are at least par-
tially unknown, and the search process is usually associated
with costs. These models involved a decentralized search
of more than two heterogeneous agent types, assuming an
agent’s utility is mainly derived from its partner’s type. Such
costless model was first introduced by Becker [1], and later
on extended to include some search cost elements [13, 14].
Nonetheless, all the above mentioned models assume the
searcher’s type, in terms of the utility it can offer poten-
tial partners, remains constant over time. In these models the



only incentives to limit search activity were the actual search
costs incurred or the discounting of future revenues.

Variants of the model, incorporating strategy change over
time (due to finite decision horizon [9] and environmental
changes [16]) can be found in one-sided search applications.
Here, the initial focus is on establishing optimal strategies
for the searcher while assuming no mutual search activities.
These models lack the equilibrium concept of the two-sided
search and thus, are not compatible to our problem.

The transition from stationary to non-stationary agent
types models adds several constraints that needs to be con-
sidered, as will be demonstrated in the next section. Fur-
thermore, while economic models are more concerned with
describing the equilibrium equations, MAS applications re-
quire also computational means (algorithms) for deriving the
agent’s policy for different settings.

3. The Model
Consider an environment with numerous heterogeneous

agents, where each agent represents a server interested in a
remote backup service. At any timet, each agent is char-
acterized by a type, defined by the pair(q, l(t)), reflecting
the volume of backup it is committed to supply. Here,q is
the offered file size andl(t) is a measure of availability, ex-
pressed as the time length left for this offer (the total time
the server can commit forq, assuming the process will start
at current time). The population of agent types is associated
with a p.d.f.f(q, l) and c.d.f.F (q, l).

Each agent randomly becomes acquainted with other po-
tential agent partners in a sequential process with an inter-
arrival time, denoted by4. Thus, if agent(q, l(t)) has an
unsuccessful interaction (where no partnership is formed)
at time t, its next interaction with another random poten-
tial partner agent will take place at timet + 4, however,
in the latter interaction the agent’s type will be reduced to
(q, l(t)−4). Thus, the agent’s type changes (decreases) con-
stantly over time, and its decision horizon is limited - once
the agent has exceeded its due date, it can’t offer any backup
services to other agents, and thus it ceases to exist. We as-
sume that agents, while ignorant of other individual agents’
types are acquainted with the overall distribution of agent
types in the environment4 and that this distribution remains
constant over time (widely common assumptions in search
models - see for example [13, 14]). Similarly, the interaction
with other agents doesn’t imply any new information about
the environment structure.

A similar scenario can be found in other plausible appli-
cations. Consider, for example, a service provider that can
produce a short term forecast for its unused bandwidth. The
service provider can create an agent that will search for simi-
lar agents to exchange this bandwidth. Each potential partner
agent will be characterized by the bandwidth and the due-

4 There are several methods by which an agent can be acquainted with
this distribution function: past experience (assuming the server fre-
quently executes such agent), bayesian update through sampling, etc.

date for which it can commit. Once a partnership is formed,
each service provider will route some of its traffic to the re-
mote destinations via the other service provider’s network,
instead of using its costly formal termination partners. Alter-
natively, consider content companies which pay for mirror-
ing their content - these companies can reduce the amount of
mirroring service consumed, by exchanging their idle servers
resources with other different geographically located content
companies for mirroring purposes.

The limited decision horizon, and the constant change of
type, suggests that the agent’s strategy is non-stationary - an
agent will be willing to accept different sets of agent types at
different time points along its life cycle. An opportunity re-
jected in the past can’t be recalled, as other agents change
their type as well. At the encounter, both agents will reveal
their current updated type. Then, each agent will make a de-
cision whether to continue searching or to form a partner-
ship with the current encountered agent. In the latter case, the
new partnership will take effect only if both agents are will-
ing to form it. Upon the creation of a new partnership, both
agents will exchange technical parameters (servers’ IP ad-
dresses, etc.) and each represented server will be able to use
the other represented server’s resources, up to a capacity of
q for an l length of time. The agents are self-interested and
therefore, given several alternatives, they will prefer to select
the more beneficial ones. Thus the agent’s strategy is reserva-
tion value based (following a reservation-value rule: accept-
ing all offers greater than or equal to the reservation value,
and rejecting all those less than this value), with a chang-
ing reservation value over time. Recall that the agent’s util-
ity is derived from the total backup volume offered, which is
the product of the disk size and time length (the amount re-
duced from the alternative costly remote service). Thus the
agent’s reservation value should be related to this product.
Namely, if the agent is willing to accept a specific agent of
type(qi, lj), it will also be willing to accept any other agent
of type(qm, ln) whereqmln ≥ qilj .

3.1. Agent’s Strategy
As in most real-life applications, we expect agent types

to be discrete. Thus the agents population can be described
using the probability functionP (q, l). The variablel will
be used to represent the number of time units of length4,
left at timet until the agent exceeds its expiration due-date
(l(t) = 1, ..., n, wheren is the highest type agent, and the
product n4 can be considered the longest forecast made by
any of the servers). Since4 is a parameter of the environ-
ment, the agent’s decision at time pointt of its search is ex-
clusively a function of its type at this time(q, l(t)).

Consider an agent of type(qi, li) at timet, using a reser-
vation valuexi. The expected utility of this agent, denoted
Vqi,li(xi), can be described using the following equation:

Vqi,li(xi) =E[qj lj • 1[(qili ≥ xj) ∩ ((qj lj ≥ xi))]+ (1)
+ Vqi,li−1 • 1[(qili < xj) ∪ ((qj lj < xi)]]



Here•1[(qili ≥ xj)∩ ((qj lj ≥ xi))] represents the indicator
of the event(qili ≥ xj) ∩ ((qj lj ≥ xi)).

Theorem 1 Given the other agents’ reservation values, the
optimal strategy of type(q, li) agent is a reservation value
xi which equals the utility of agent type(q, li−1). Formally
stated:xi = Vq,li−1(xi−1).

Proof: Consider any agent at a given stage of its search,
where its type is(qi, li). After reviewing the current po-
tential partner’s type(qj , lj), the agent has two alterna-
tives: to continue the search, resulting in an expected
future total utility of Vqi,li−1 or to accept the partner-
ship. The latter option will result in a utility ofqj lj , if the
other agent agrees to form a coalition, otherwise the agent
will have to keep searching with an expected future to-
tal utility of Vqi,li−1 . Therefore, the optimal reservation
value isxi = qj lj , where the agent is indifferent to both op-
tions:

Vqi,li−1 = xi • 1[qili ≥ xj ] + Vqi,li−1 • 1[qili < xj ] (2)

Resulting with:xi = Vqi,li−1 . ¤
Figure 1 illustrates this scenario. The inter arrival time is

10, though assuming an agent of typel3 or l2 didn’t find a
match, its next search stage will be as typel2 andl1 accord-
ingly. The equilibrium reservation values and the obtained
utilities are given in the figure. None of the agents have an
incentive to deviate from this strategy.
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Figure 1: Simple equilibrium example
Notice that if the agents are subject to a search costc

(in terms of the resources associated with finding a potential
partner agent and communication) then, the equation in The-
orem 1 simply transforms into:xi = Vq,li−1(xi−1)−c, where
the validity of the following analysis remains unchanged. For
simplification, we’ll proceed with the analysis assuming the
agents are not subject to any search costs.

The agent types can be described over the bi-dimensional
grid (see Figure (2)), where the horizontal axis represents the
time intervall, and the vertical axis is the file sizeq. Each
agent type(qi, li) uses its own reservation value,xi, accept-
ing all other agents of type(q, l) satisfyingql ≥ xi.

Notice that even though the agent’s attractiveness is the
productqili, two agents, offering the same product, may be
using two different reservation values. This is simply because
the agent’s attractiveness may decrease in different rates (a
parameter ofqi).

Theorem 2 For any givenq, the agents equilibrium reserva-
tion value increases with the agent’s type. Formally stated:
Given the two agents(q, li) and (q, lj), whereli ≥ lj then
the following holds:xi ≥ xj

interval (l)
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Figure 2: Agent type representation over a grid

Proof: Consider an agent of type(q, li). Assuming all other
agents behave according to the theorem, then the utility of
this agent can be written as:

Vqi,li(xi) =
n∑

j=1

Lj(qi)∑

l=
xi
qj

qj lP (qj , l)+ (3)

+ Vqi,li−1(1−
n∑

j=1

Lj(qi)∑

t=
xi
qj

P (qj , l))

This is whereLj(qi) = max(lk|xlk ≤ qili), the maximal
time interval offered by any of the agent types(qj , l), ac-
cepting agent type(qi, li). We will prove that agent(qi, li)’s
strategy is to act according to the theorem. Utilizing Theo-
rem 1, the following equation should hold:

xi =
n∑

j=1

Lj(qi−1)∑

l=
xi−1

qj

qj lP (qj , l)+xi−1(1−
n∑

j=1

Lj(qi−1)∑

l=
xi−1

qj

P (qj , l)) (4)

Rearranging the equation, we obtain:

xi − xi−1 =
n∑

j=1

Lj(qi−1)∑

l=
xi−1

qj

(qj l − xi−1)P (qj , l) (5)

The right hand-side of the above equation is always posi-
tive, thusxi ≥ xi−1.¤
3.2. Equilibrium Analysis and Algorithm

For the purpose of simplification of the equilibrium dis-
cussion and notation of the algorithm that follows, a simpler
scenario will be used. We’ll consider each agent to be re-
sponsible for a fixed disk space size (for example 1Gb), for
a variable amount of time (differing in the value ofl). Thus,
the agent’s type can be exclusively represented byl(t). At
the end of the section we show that the suggested algorithm
can be applicable in the general case as well. Equation (3)
can be now formulated as:

Vli(xi) =
Li∑

l=xi

lP (l) + Vli−1(1−
Li∑

l=xi

P (l)) (6)

=
i∑

y=1

( Ly∑

k=xy

kP (k)
i∏

k=y+1

(1−
Lk∑

j=lk

P (j))
)



whereli = 1, ..., n andLi = max(lk|xlk ≤ li).
We’ll start by stating that an equilibrium will not neces-

sarily exist, when there is a type change. A simple example
for demonstrating this is given in figure (3) below:
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Figure 3: No equilibrium can be found

If agents of typel3 will not accept agents of typel2,
then the maximum utility for agents of typel2 is necessar-
ily smaller than 20. However, for an individual agent of type
l3 it is beneficial to accept agentl2 (utility of 20) rather than
become this agent’s type at the next search stage (expected
utility of 11.2). Similarly, if all agents of typel3 will accept
agents of typel2 then an individual agent of typel3 can ben-
efit by rejecting an agent of typel2, hoping to partner with an
agent of typel3 at the next search stage. An equilibrium can
be assured only if the agents types are defined over a con-
tinuous interval with a positive distribution function5. How-
ever in most domains types are discrete and each agent type
has an actual probability, rather than a distribution function.
Thus, any reservation valuexi within the continuous inter-
val [lj , lj+1] will yield agent li a similar utility as if using
other values in this interval as a reservation value.

Thus, the equationxi = Vq,li−1(xi−1) as stated in Theo-
rem 1 becomes a condition for equilibrium, when the types
are discrete, formulated as:

bVq,li−1(xi−1)c ≤ xi ≤ dVq,li−1(xi−1)e (7)

Obviously, a pure equilibrium for this problem (if exists)
can be identified by solving a set ofn complex equations, of
the type similar to Equation (6), under the set ofn − 1 con-
straints of the type similar to Equation (7). Since each equa-
tion contains the reservation values as the sums upper bound,
the solution method will involve solvingnn combinations of
n equation sets, which can be reduced to(n − 1)! equations
utilizing Theorem 2. However considering Theorem 1, a sim-
ple and efficient algorithm can be suggested for the task of
calculating the equilibrium strategies.

Algorithm 1 An algorithm for calculating the equilib-
rium reservation values(x1, ..., xn).
Input: P [1 : n] - Vector of probabilities(

∑n
i=1 P [i] = 1).

V [1 : n] - Vector of types.
Output: X[1 : n] - Vector of reservation values.

5 With the continuous type function, we can always maintain the equa-
tion xi = Vq,li−1 (xi−1) by slightly increasing/decreasing an agent’s
reservation value.

01 init: done=false; i=n; U[]=V[];
for (j=1; j ≤ n-1;j++) X[j+1]=j;

02 While not((i == 1)&&(done)) do{
03 PrevUtil=U[i]; U[i]=min(CalcUtil(i),V[i]);
04 if (i<n)&&( PrevUtil>U [i]) then{
05 done=false;
06 if (X[i+1] >1)&&((V[X[i+1]]- bU[i] c)>4) then{
07 X[i+1]−−;
08 for (k=2;k<=i;k++) {
09 X[k]=min(X[i+1],k-1);
10 if (k<X[i+1]) thenU[k]=V[k];
11 elseU[i]=CalcUtil(i);

} }
12 i++;

}
10 elsei−−;
11 if (i==n) thendone=true;

}
12 return(X[]);

The function CalcUtil(i) in the algorithm calculates∑max(k|X[k]≤i)
j=X[i] jP [j]+U [j−1](1−∑max(k|X[k]≤i)

j=X[i] P [j]).
Once the algorithm has terminated, the vectorX[] will hold a
set of reservation values. If Equation (7) holds for these val-
ues (which can be easily checked) then this is the equilibrium
strategy. Otherwise, the problem doesn’t have an equilib-
rium.

The algorithm is based on a continuous update of the
agent’s estimation for the upper bound value of the utility
that can be gained by becoming the next best type agent
(the upper bound of the expected future utility if the cur-
rent interaction will not yield a partnership). The vector U[]
is used to keep track of the upper bound for the agent’s util-
ity, where U[i] is the current upper bound for the utility agent
li can gain, given the current set X[i],...,X[n]. The initial util-
ity’s upper bound for each agent is set as its own type and
from this point on, it can only decrease as the algorithm pro-
ceeds. Each agenti’s initial reservation value is set as type
li−1 agent.

The algorithm will stop, once it has completed a full pass
over all agent types, top down, and verified that the chain of
utilities and reservation values is valid, in terms of the in-
ternal constraints that must hold. At each stage the current
agent’s utility upper bound is recalculated for typeli and
compared with the previous value. If the new value reflects
a decrease (rather than stagnation), then agent typeli’s util-
ity should be updated and so the variablei will be increased.
Otherwise, the current utility for agentli can be supported,
and the indexi can be decreased. A reservation value change
(decrease) will take place if the left-hand-side inequality of
(7) does not hold for the current agentli. In this case, the
agent’s reservation value will be decreased to x[i]-1, and all
the agents having a lower type will be initialized as before.

The following Lemma will be used to prove the correct-
ness of the algorithm.



Lemma 1 In equilibrium (a) an agent’s utility will never ex-
ceed its own type. Formally stated:Vli < li. (b) an agent’s
reservation value will always be smaller or equal to the next
best agent type. Formally stated:xi ≤ li−1. (c) a decrease in
an agent’s reservation value, can only improve the expected
utility related to the next best type agent. Formally stated:
dVli−1

dxi
≤ 0.

Proof:
(a) Assume there is an agent of typeli, for which Vli ≥ li.
Now, consider agentli+1 evaluating agentli as a potential
partner. In this scenario, agentli+1’s best strategy is to use
xi+1 > li, and according to Theorem 2, the rest of the higher
type agents will reject agentli as well. Being accepted only
by lower type agents, agentli’s maximum possible utility is
now smaller thanli which contradicts the assumption of the
proof.
(b) Consider an agent of typeli evaluating an agent of type
li−1. Rejecting agentli−1 will bring agent li to the next
search stage asli−1. According to part (a) of the Lemma, the
maximum utility that can be obtained by this type is smaller
than li−1. Thus typeli should have initially accepted type
li−1.
(c) Sketch of proof: Consider an agent of typelj which was
formerly rejected by agents of typeli, and using the new
reservation value ofli it is now accepted by this type. Ob-
viously this agent type has improved its utility, and the in-
crease will affect all other agents with a better type up to
li−1. ¤

Theorem 3 (a) Algorithm 1 will always terminate in finite
time. (b) Upon termination of the algorithm, if X[] satisfies
(7) then the problem has a pure equilibrium, specified by X[].
(c) Otherwise, there is no pure equilibrium for this environ-
ment settings.

Proof: Notice that in the initial state of the algorithm
(stage 01), each agenti is equipped with an upper bound (ac-
cording to Lemma 1) for its equilibrium reservation value
X[i] and an upper bound measure for the utility that it can
gain U [i]. Stages 02-11 keep updating these upper bounds,
based on an optimistic evaluation of the highest lower type
agent (i − 1). Thus, a decrease in the latter agent’s up-
per bound evaluation, will unavoidably decrease the current
agenti’s upper bound as well. Whenever such a utility de-
crease violates Equation (7), it is obvious that no equilibrium
can be maintained within the current subset values X[i,...,n].
Therefore the reservation value of agenti must be decreased
further. In this case, all lower type agents1, ..., i initial-
ize their optimistic utility upper bound, which equals their
own value type (steps 7-11). In any case where U[i] was de-
creased, the algorithm draws back to the former agenti + 1,
in order to check if a further decrease is required in reserva-
tion values. Otherwise it can proceed towards the lowest type
agent. Since a change in the agent’s reservation value and
utility can only cause a decrease in other upper agent types’

reservation values and utilities, then eventually the process
will end leaving every agenti’s reservation value smaller
than the expected utility of agenti−1. At the end of the pro-
cess, vector U[] needs to be re-calculated one more time us-
ing Equation (4). If the problem has a pure equilibrium strat-
egy, then Equation (7) should hold for every X[i]. Otherwise,
the only way to maintain Equation (7) is by increasing one
of the upper types agents’ reservation values. However, this
can not be done because each agent’s utility as stored in U[]
at the end of the algorithm execution, is an upper bound for
the equilibrium utilities.¤
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Figure 4: Average algorithm completion time (miliseconds)

The performance of the algorithm is highly corre-
lated with the distribution function being used. Theoretically
(worst-case scenario) the algorithm will need to per-
form (n-1)! type changes, each resulting from an average of
n/2 simple utility update calculations. Practically, we found
that the mechanisms used by the algorithm in order to elim-
inate non-relevant reservation values vector structures, sug-
gests quite an impressive performance. The following graph
presented in Figure (4) illustrates the algorithm perfor-
mance as obtained in the simulations, for different numbers
of agent types. Each point in the graph represents the av-
erage time it took to complete the algorithm execution.
Each average was calculated over 10,000 different en-
vironments with randomly drawn agent type probability
functions. The simulation was implemented using Java, run-
ning on a 2.4Ghz Windows based PC.

One may observe, that even for a relatively large number
of agent types, each agent is able to calculate the equilibrium
strategy in quite a short time. Moreover, since equilibrium
is concerned, and the agent is familiar with the distribution
function of agent types, the calculation can be performed of-
fline. The results presented in Figure 4, demonstrate signif-
icant improvement in comparison to the method of solving
the proposed complex equilibrium equation set.

Lastly, we would like to emphasize that the suggested
algorithm can be adjusted to the general case where the
agent’s type is a function of two parameters(qi, li). The bi-
dimensional problem can be represented by a vector V[],
where the agents are sorted according to the productqili
(if two agents will have the same product, they will be
ordered according to the value of q). Initially, each agent
(qi, li)’s reservation value will be set toxqi,li = qili−1

and the upper bound utility will be calculated in the same
manner suggested in the algorithm, also taking into consid-
eration the other agent types above the reservation value.
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Figure 5: Equilibrium strategies by probability functions comparison

A reduction in the value of any member of the reserva-
tion values vector X[], will be to the highest lower type
in the vector V[], having the next best value of the prod-
uct ql. The appropriate algorithm for the general case, as
well as an extended version of the paper can be found at
http://www.cs.biu.ac.il/ sarit/Articles/TimeVariantFull.pdf.

3.3. Comparison with the stationary model
If the agent types would have remained constant over

time, then we wouldn’t have needed the bi-dimensional grid
representation, and the agent’s type could have been con-
sidered simply as the productql. For the stationary agent
type model with no search costs, Becker [1] showed that
matched partners are identical (in type). If search costs are in-
tegrated into the stationary agent types model, a perfect seg-
regation equilibrium will hold [14]: An interval of the ‘high-
est’ types agents join together only with each other, then the
agents in the next highest type interval join together only
with each other, and so on; there is no intermingling. The rea-
son is that individuals in each class have the same opportu-
nity set (namely, those willing to match with them), and thus
make the same matching decisions. Therefore, for the sta-
tionary agent type model with search costs, the agent’s prob-
lem would have become a simple problem of choosing the
best reservation value, given the reservation value of upper
types agents and assuming all agents of lower types will ac-
cept it. This process as described in [11] would have required
n calculations.

However, given our non-stationary agent type character-
istic, an agent must also consider the reflected change in
the lower agents types’ strategy, as part of its calculations6.
Thus equilibrium strategy is distinguished from the above de-
scribed stationary type equilibriums.

4. Equilibrium in different environments
For the purpose of demonstrating the dynamics of changes

in the agent’s policy, and the equilibrium calculation we used
a simulation environment with varying numbers of agent

6 This is simply because a possible future world state for this agent is to
become of a lower type.

types7 and three different agent type probability functions
(uniform, binomial and bi-triangular). The probability func-
tions’ parameters were all set to support an equal mean of
( l1+ln

2 ).

Figure 5 uses 26 agent types to demonstrate the differ-
ent affects of agent type probability functions (Figure 5-a) on
the equilibrium strategy (Figure 5-b) and the perceived util-
ity (Figure 5-c). The highest curves in Figures 5-b and 5-c
are the theoretical reservation values and the perceived utili-
ties that can be gained if the agent types remain unchanged.
The three lower curves are related to our model, where the
agent type decreases along time. One may see that the en-
vironment with a bi-triangular function produces the highest
utilities for upper and lower type agents (in comparison to the
center type agents). The same can be said for the reservation
values. The intuitive explanation is that these agents have a
good acceptance probability even as their type decreases, and
thus can remain selective for a substantial time. The environ-
ment with the binomial probability function projects the op-
posite behavior, that can be explained in a similar manner.
Notice however, that the center type agents’ expected utility,
when the agent types are characterized by a binomial proba-
bility function, is very close to the theoretical utility these
agents could have obtained if their types remained stable.
This is mainly because of the high probability for encoun-
tering a similar type agent. As expected, the utility of agents
when uniformly distributed, is bounded by the utility of these
agents in the environments of the other two probability func-
tions.

Figure 6, demonstrates the obtained utility and the equi-
librium reservation values for similar agents in different en-
vironments characterized by different granularity of agent
types (different values of4 - the inter-arrival time of po-
tential partner agents). The agent’s utility increases as the
granularity increases. This can be explained as follows: since
the agent has more opportunities to scan potential partnering
agents, without a significant decrease in its type, it can be-
come more selective and improve its expected utility.

7 Agent types were set asli = 1 + i4, i = 1, ..., n, where we had con-
trol over the value ofn and4.



Lastly, in Figure 7 we compare the equilibrium strategy
and the perceived utilities in our model, with the known re-
sults for the stationary agent types model (with and with-
out search costs). As suggested in section 3, the stationary
model suggests identical types matching or perfect segre-
gation equilibrium (depending on implementation of search
costs). This is illustrated by the upper and middle curves (us-
ing search costc = 0.5 for middle curve). In our model,
as proved in the analysis given in section 3, the agents use
monotonic decreasing matching sets (illustrated by the bot-
tom curve).
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5. Conclusions
The non-stationary characteristic of agents types adds

many complexities to the analysis of MAS two-sided search
applications. Unlike stationary agent type models, where the
agent’s strategy is affected only by the distribution of higher
type agents, a similar change in the non-stationary agent
types model will affect all other agent types and conse-
quently also affect the agent’s future strategies. In this pa-
per we introduce the dual-backup application which utilize
this model, and analyze the appropriate equilibrium strate-
gies.

Though the model was derived from the dual-backup ap-
plication, it is appropriate for many other applications where
the agent gains a utility only by strictly partnering with one
other agent. The suggested analysis is also valid for the case
where agent types are a function of an additional dimension,
as well as for the case where search costs are integrated along
the process. We show that generally, the equilibrium strategy
structure differs from the one obtained in stationary agent

types model. Specifically, the equilibrium shifts from identi-
cal types matching (for the stationary model with no search
cost) or perfect segregation (for the stationary model with
search costs) to monotonic decreasing matching sets.

An algorithm for identifying the agents equilibrium strate-
gies is suggested, based on the comprehensive analysis. Em-
pirically we show that the algorithm can efficiently determine
the equilibrium strategies. We plan to extend the research
to further improve the calculation algorithm, either by us-
ing heuristics or for specific probability functions. Through-
out simulation, we manage to demonstrate a substantial af-
fect of agent types probability functions and a moderate af-
fect of the granularity of search intervals on the equilibrium
strategies and the perceived utilities.
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