
Multiple Robots For Multiple Missions: Architecture for Complex Collaboration

Noa Agmon1, Oleg Maximov1, Ariel Rosenfeld2, Shai Shlomai1, Sarit Kraus1
1Department of Computer Science, Bar-Ilan University, Israel

2Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Israel
agmon@cs.biu.ac.il, oleg@maksimov.co.il, arielros1@gmail.com, shaishlomai@gmail.com, sarit@cs.biu.ac.il

Abstract
As systems of multiple robots become more preva-
lent both in research and in real world applications,
they may be required to handle new missions, col-
laborate in teams they are not necessarily famil-
iar with, and react, during mission execution, to
changes in both the environment and in their own
abilities. In this paper we describe a six-layered ar-
chitecture that handles inherently these challenges,
as well as allowing human operator to oversee and
intervene whenever needed. We have implemented
the architecture and demonstrate the activity flow
of execution, namely: how does the system and its
components react to dynamic changes. We have
conducted experiments in both simulation and in
real robots, and show the efficiency of the system in
two different parameters: cost of coordination and
communication, and mission performance. The im-
plementation is open source, and available for fu-
ture use.

1 Introduction
Multi-Robot systems have been successfully deployed in dif-
ferent real-world tasks such as fire-fighting [Saez-Pons et al.,
2010], landmine detection [Dasgupta et al., 2015], decon-
tamination of radiation [Kaiman, 2016], agricultural work
[Auat Cheein and Carelli, 2013], construction [Ardiny et al.,
2015], underwater missions [Kulkarni and Pompili, 2010],
warehouse operation [Guizzo, 2008] and Search And Res-
cue (SAR) [Liu and Nejat, 2013]. A common theme amongst
these systems is that they are designed to accommodate a sin-
gle mission for all robots in the system. Therefore, each robot
is designed and programmed, prior to deployment, to engage
in a specific, unique mission. However, in reality, one may
want to deploy a team of robots to possibly multiple missions,
while allowing dynamic changes in the robots allocation to
different mission as execution progresses.

Consider a disaster-response multi-robot team deployed in
a disaster environment. Naturally, we would want the multi-
robot team to be scalable (allow the deployment a large num-
ber robots) and robust (easily recover from malfunctions). An
additional desideratum that should complement these proper-
ties is dynamism. For example, the human operator may want

all rescue robots to engage in a search and rescue task [Liu
and Nejat, 2013], seeking injured or trapped people. During
execution a need for a patrol task [Agmon et al., 2011] against
further threats may be required. A human operator should be
able to partition the robot team into two or more sub-teams,
while the robots are operating, and change robots assignments
on-the-go as needs change. Note that once a robot is assigned
to a team it should automatically adjust its behavior according
to the team’s mission and coordinate with its new teammates.

In this paper we propose a novel generic architecture and
implemented system for allowing multiple robots to dynam-
ically engage in multiple missions with on-the-fly changes.
Our framework is generic, not domain or platform dependent.
It integrates multiple components suggested in the literature
alongside newly introduced components resulting an holistic,
dynamic, open-source system.

The architecture is based on the fact that one can identify
basic abilities of a robot, that are used as building blocks for
constructing a whole mission for the robot. When deciding
on a new mission on-the-fly, the system injects logic into the
composition of those basic abilities, deciding on when to ac-
tivate what ability. Moreover, this composition is done also
in the perspective of a team, namely, deciding when to coor-
dinate, synchronize and allocate tasks and roles for the robot
as part of a team. By not hard-coding any characteristics of
the mission or the team, it allows those to be changed dynam-
ically, and also easily enables collaboration of heterogeneous
robots in a team.

We have implemented the architecture, and report our test-
ings of the system in both simulation and physical deploy-
ment that demonstrated its scalability, robustness, efficiency
and dynamism. Our code is released for future research.

The remainder of the paper is organized as follows. In Sec-
tion 2 we survey recent related work. In Section 3 we describe
the architecture components, along with the interaction be-
tween the layers of the architecture. In Section 4 we describe
our implementation of the suggested architecture, as well as
demonstrate a real-world physical deployment of our archi-
tecture and provide a code-release for our system. Finally, in
Section 5 we provide a summary and list future directions for
this line of work.

2 Related Work

Being one of the most prominent research areas in robotics,
one can find various solutions for handling multi-robot sys-
tems. Research on multi-robot systems tend to concentrate
on the planning aspects: how to best plan a mission such that
the efficiency of the team in task performance is maximized.
In such cases, solutions are limited to specific tasks: multi-
robot formation [Ren and Sorensen, 2008], multi-robot cov-
erage [Rekleitis et al., 2008], patrolling [Agmon et al., 2012],
search and rescue [Liu and Nejat, 2013], and more. Generic
solutions concerning challenges that arise from the existence
of multiple robots, that are not task-specific, can be found,
among others, in handling collision avoidance [Hennes et al.,
2012], pathfinding [Standley, 2010], and task allocation [Ko-
rsah et al., 2013]. Focus was given also to teamwork infras-
tructure for software agents, with no implementation on real
robotic systems, e.g., [Tambe, 1997].

Bowling et. al. [Bowling et al., 2004] suggest a method
for choosing a play for a team of soccer-playing robots. The
plays are known in advance (given in a form of a playbook),
and the decision regarding which play to pick is made during
the game (similar to choosing a mission during execution).
While they offer flexibility in their solution, their work differs
considerably from ours, since in their case the team is fixed,
and the plays are known prior to the execution.

Software architecture for robot teams offers robustness and
flexibility in mission execution by the team. Parker [Parker,
2001] formalized teamwork architecture in ALLIANCE, a
framework for controlling a team of robots in a distributed,
flexible, way. The architecture was deployed on real robotic
systems, showing its advantage in handling events such as
robot addition, removal, fault tolerance and more. AL-
LIANCE was shown to work efficiently in controlling a team
of robots performing one task (for example, patrolling), limit-
ing its effectiveness to the three lower levels of our suggested
architecture: individual, team, and one mission.

Kaminka and Frenkel reported the development of BITE in
[Kaminka and Frenkel, 2005], a teamwork architecture that
was also implemented in real robotic systems, which offers a
flexible, domain-independent teamwork architecture, which
aims at minimizing the development effort of such systems,
maximizing the reusability of code, and creating a separation
between self behavior and team behavior. The programmer
inserts synchronization points, as well as indication of syn-
chronization and allocation mechanism (there is no commit-
ment in advance to using a specific mechanism).

Similar to ALLIANCE, BITE concentrates on execution
of teamwork for a specific task, with a fixed team. MRMM,
standing for Multiple Robots for Multiple Missions, builds
upon teamwork architecture such as BITE, yet allows flexi-
bility in team members and missions by giving the ability to
change a mission on-the-fly, move robots from one mission
to another, without the need to be in physical proximity to the
robots. In addition, it inherently supports a human operator
in the loop.

3 Architecture
MRMM proposes a hierarchical architecture consisting of six
generic layers. We will first provide an overview of the archi-
tecture followed by a more in-depth discussion of each layer.

At the bottom of the hierarchy we have robots. The robots
can be grouped into teams which in turn can be members of
other teams as well. Namely, the robots are abstractly divided
into teams and sub-teams, similarly to how a hierarchical or-
ganization might operate, in what we call the team hierar-
chy layer. A robot will coordinate its actions and share its
knowledge, as needed, with its teammates—the robots that
are assigned to the same team as itself. Each (sub-)team can
be assigned to a mission which is controlled by a mission-
manager. The mission manager divides the mission into con-
crete tasks and generates plans that are assigned to the differ-
ent teams and their members. It is the mission manager’s task
to create, oversee and update these plans. Missions are cre-
ated, updated and terminated by the system-manager. The
system-manager itself presents all available information re-
garding the missions and resources, as well as receives its
instructions, through a UI. However, the communication be-
tween human operator(s) (who uses the UI) and the system-
manager is mitigated using an intelligent agent layer. The
agent decides which information to reveal to the human oper-
ator(s) and how (e.g., directing the human operator’s attention
and prioritizing her tasks) and can also take some actions on
its own. See Figure 1 for an illustration.

Note that our architecture is not restricted to any given
hardware or algorithm used in the different layers.

Figure 1: The six-layered MRMM architecture components.

3.1 Robots
The bottom layer consists of robots, either homogeneous or
heterogeneous, where each of them is mounted with pre-
compiled basic functions defined prior to deployment, de-
noted as behaviors - the building blocks of a robotic task.
These basic functions can vary between low-level functions
(e.g., “turn wheels 20 to the left”) and high-level function
(e.g., navigate to GPS coordinates x, y, z). The choice of
function level depends on the system designer’s needs; defin-
ing low level functions allows more freedom in generating di-
verse plans for the robots, yet using high-level functions ease
the planning burden. As part of these basic functions a robot

can also share information and synchronize its actions with
its teammates as necessary.

Each robot operates according to a given plan, generated
by the mission manager and delivered through the team layer
to all team members. A plan is a hierarchical structure which
is encapsulated during execution into a sequence of basic
function that the robot should execute as discussed below.

3.2 Team hierarchy
In the team hierarchy layer the robots are assigned to one or
more teams which in turn can be members of other teams
as well (and so on), according to the mission managers in-
structions. The assignment of robots to teams allows a robot
to communicate with only the robots that are relevant to its
work. For example, a robot may be planned to synchronize
its actions with its teammates. The team hierarchy will al-
low the robot to execute this synchronization effectively as it
is only exposed to messages that are relevant to it. Namely,
a plan (which is generated by the mission manager) will use
specific teams identities. The team hierarchy can be of any
size and shape as needed and instructed by the mission man-
ager.

3.3 Mission Manager
A mission manager is created and overseen by the system
manager. The mission manager stores the identity of the re-
sources (e.g., robots, computational resources) that are at its
dispense and the mission status at all times. The mission
manager is in charge of building the team-hierarchy for its
assigned robots and assigns each robot a specific plan. The
plans are generated using the notion of recipes (similar to
those used in STEAM [Tambe, 1997] and BITE [Kaminka
and Frenkel, 2005]).

A recipe is a generic plan which needs to be instantiated
in order to be executed by a robot. For example, a recipe for
a patrol task is originated by the patrol mission planner. It
decides, for example, that in order to maximize the frequency
of visits along a set of given waypoints, the robots should fol-
low a specific path in a certain pattern. It then creates a recipe
for the patrol, which includes the general patrol framework.
Since the mission may be executed by heterogeneous robots,
it creates a plan per robot type. Namely, the mission manager
instantiates the recipe with its knowledge (this is the plan),
and assigns the created plans to its robots.

The mission manager is also required to supervise its
robots and update the plans during the mission’s execution
as needed. For example, when a robot loses communication,
the mission manager may instantiate new plans for the robot’s
teammates to avoid obstruction of the rest of the team’s work.
Similarly, when resources are shifted from one mission to the
other by the system manager, the mission manager should be
able to adapt the robots’ plans to accommodate the changes.
The mission manager can also ask the system manager for
additional resources when the mission execution falls bellows
some defined standards.

The mission manager reports the mission and robots’ sta-
tus to the system manager. Furthermore, the mission man-
ager can be queried by the system manager in order to help

the system manager gain better situation awareness. For ex-
ample, the system manager can ask a mission manager what
will be the marginal benefit (in terms of mission fulfillment or
performance) from the assignment of an additional resource
to the mission.

The mission manager can be mounted on one of the robots
(i.e., a robot leader), or on any other device (e.g., a router or a
central computer). To prevent the mission manager to become
a vulnerability point copies of the mission manager’s infor-
mation is maintained by a sequence of robots (or devices) and
a recovery procedure should be defined.

3.4 System Manager
The system manager creates, updates and terminates mis-
sions. Specifically, the system manager is aware of all re-
sources in the system and assigns them to the different mis-
sions. The manager can change a resource assignment from
one mission to another, invoking the mission managers to
change the robots’ plans.

Once the system manager creates a new mission it assigns
a recipe for the mission manager to use. The recipes can be
either pre-defined (given by the designer as a “recipe bank”)
or generated on-line by the system manager itself. In the latter
case, the system manager can design a new recipe given a set
of requirements by the human operator(s).

The system manager receives information from all
mission-managers and passes this information to the agent
layer. In the other direction, the system manager receives its
instructions (e.g., create a new mission, move a robot from
mission x to mission y, etc.) from the agent layer.

3.5 Agent
Supervising and operating multiple robots simultaneously is
a difficult task for human operators to do [Goodrich et al.,
2005; Chen and Terrence, 2009; Squire and Parasuraman,
2010]. Therefore, the communication process between the
human operator(s) and the system manager is mitigated by an
automated intelligent agent as recently proposed in [Rosen-
feld et al., 2015]. The agent acts as a smart buffer between the
system manager and the human operator(s) and performs two
main functionalities: First, it filters and highlights some of the
information that is passed from the system manager to the UI
and thereby directs the human attention towards relevant and
critical information. Second, it can take active actions and di-
rect the system-operator to execute different commands (e.g.,
terminate a mission). For example, when a human operator is
engaged in a complex task (e.g., determining a patrol route)
the agent should avoid interrupting the operator with uncrit-
ical information or requests. In some cases, the agent can
provide the needed solution by itself or modify the operator’s
commands, depending its autonomy description.

The agent should be adaptive to changes in both the envi-
ronment and the human operator behavior.

3.6 User Interface (UI)
The UI presents the information received from the agent
layer to the human operator(s) and passes the instructions
given by the human operator(s) to the agent layer. Design-
ing efficient and well manageable UIs for human-multi-robot

is necessary in order to ease the human operator’s burden
and increase the system’s performance. This task has at-
tracted a lot of attention over the past years and several pro-
posals have provided intelligent interfaces and interaction
modes that have been shown to increase involvement and to-
tal human-multi robot team performance [Micire et al., 2011;
Clair and Mataric, 2015; Stoica et al., 2013; Sycara and
Lewis, 2012].

4 Implementation and Evaluation
We have implemented the MRMM architecture presented in
Section 3. In this section we describe the way this was imple-
mented (the code can be found in www.cs.biu.ac.il/
˜agmon/MRMM), and the evaluation of the system in terms
of mission efficiency, and coordination overhead.

4.1 Architecture Implementation
The MRMM architecture has been implemented across all six
levels. In this section we describe the implemented compo-
nents, as well as the execution flow of the system, demon-
strating the interaction between the levels.

Robots
We used the Hamster robots1 which use the Robot Operat-
ing System (ROS)2. Hamster is an autonomous unmanned
ground vehicle (AUGV) at shelf price of 1600$3 per robot
(See Figure 2). It is a 4WD rugged platform with a built-in
navigation algorithm that allows it to explore, map and local-
ize in unknown areas. Hamster has 2 on-board Raspberry PI 3
Linux servers for algorithm execution and an Arduino for low
level control. Hamster is mounted with an HD camera with
h264 video streaming over WiFi and a 360◦ 6-meter range
LIDAR laser. Each Hamster is 190mm in width, 240mm in
length and 150mm in height.

Figure 2: Hamster AUGV; one of the 5 identical robots used
in this study.

We defined the hamster’s basic functions (behaviors) as
follows: “Navigate to point x, y”, “Stream video”, “Synchro-
nize with teammates”.

Team Hierarchy
The team hierarchy is created and updated online by the mis-
sion manager and the shared data is updated by the robot
members directly.

1http://wiki.ros.org/Robots/Hamster
2http://www.ros.org/
32014 pricing.

For simplicity, in the released implementation we assume
each mission is conducted by a single team.

Each team has a unique team ID, defined by the system
designer. A robot is a team member once it has received in-
structions from the system manager to join a specific team,
and is approved by the mission manager. The team hierarchy
is represented in the system in an XML file which maps each
team identifier to its robot members and holds the data that is
shared among the team members.

When reaching a predefined synchronization point (for ex-
ample, if robots should enter a room together), a robot an-
nounces to the team manager that it is ready for synchroniza-
tion. Upon receiving all the messages, i.e., all robots in the
sub-team are ready, the team manager (through the system
manager) announces to all robots that they may proceed. A
robot may be requested to synchronize its action with a mem-
ber of a different sub-team, yet they must share a mission.

Mission Manager
The mission manager manages the different teams and robots
(all part of the same mission) using dictionary-based data
structures, where all information regarding the mission’s
robots and status is available. The mission manager queries
its robots status every fixed time interval and invokes the plan-
ner services in order to instantiate the pre-defined recipes into
plans for its robots.

Recipes are represented in our system in XML format and
are instantiated to robot plans using designated services that
register at the mission manager.

In our implementation, a mission manager is mounted on
a router, with the assumption that if the router is down, then
the mission is terminated (since in this case the robots can-
not communicate, thus will not be able to collaborate as a
team). However, the physical location of the mission man-
ager is flexible, and can be placed wherever communication
is available between all the mission’s team representatives.

System Manager
Similar to the mission manager design, the system manager
is using dictionary-based data structures where all available
resources and active missions are available. Our system in-
cludes only two recipes at the moment: Patrolling (e.g., [Ag-
mon et al., 2011]) and static coverage, a.k.a blanket cover-
age (e.g., [Cheng and Savkin, 2013]). In order to add a new
recipe, a new planner service needs to be implemented.

The system manager is also mounted on a router, with the
assumption that if the central communication mean is lost
then the whole system is terminated.

Currently, the system manager simply assigns an equal
number of robots to each mission. Implementing a more so-
phisticated mechanism, either at the Agent layer or the UI
layer, is straightforward.

Agent
For simplicity, we implemented a simple agent that does not
alter the information provided from system manager to the
UI and vice-versa. Instead, we adopted an advising agent ap-
proach (see [Rosenfeld, 2015]) in which the agent merely ob-
serves the environment and the human operator’s actions and

www.cs.biu.ac.il/~agmon/MRMM
www.cs.biu.ac.il/~agmon/MRMM
http://wiki.ros.org/Robots/Hamster
http://www.ros.org/

Figure 3: Screen-shot of the system’s GUI, presenting a sim-
ulated environment of 20 robots, patrolling along a circular
environment.

provides advice as to which task should the operator execute
next.

The agent presents the advice in both textual format on the
GUI (see Figure 3) as well as in a prerecorded, human-voice
message, played in the operator’s head-set.

UI
We used a simple GUI as presented in Figure 3. The human
operator can select any number of robots using the computer
mouse and instruct them to engage in a new mission. In the
way, the operator can also shift robots from one mission to
another. The UI presents the positioning of each robot and its
status.

4.2 Execution Flow
In order to demonstrate the conduct of the system, the re-
sponsibilities of each component, and the interaction between
them, we now describe the flow of the system in key scenar-
ios: initiating a new mission, removing a robot from a mis-
sion, joining a new robot to an existing mission, and switch-
ing a robot between two missions.

Initiating a new mission
When a robot is turned on, the only information it must have
in advance is the address of the central server (logically, part
of the system manager). Once connected to the system man-
ager, it registers to the system by sending its ID, characteris-
tics and capabilities.

When an operator defines a new mission (for example in
the patrol mission it defines the waypoints for patrolling), a
new mission manager is created, which provides the system
manager and the operator information about the mission. This
information, along with the details of the robots available for
the mission, is sent to the relevant mission planner (here: pa-
trol planner), which is an independent service that can run
on any robot or server. The mission planner plans the specific
details of the mission (in the patrolling example, it defines the
patrolling path and pattern), and sends this plan to the system
manager. The system manager sends a plan for each of the
robots, while also assigning it to the relevant mission man-
ager. The robot registers to the mission manager, joins the

relevant team, and starts executing the mission. The mission
manager reports to the system manager upon a successful de-
ployment of the robot to the system.

Removing a robot from a mission
Departure of a robot from a mission can happen in several
cases:

• The robot decides it should terminate the mission (com-
monly happens when the mission is accomplished).

• The robot receives an order to stop performing the mis-
sion (for example, when transferring it to a new mis-
sion).

• Communication loss between the robot and the mission
manager.

Once a mission manager detects that a robot has been (or
should be) removed from the mission, it is responsible to no-
tify all relevant teams of its departure, and reports to the op-
erator (via the system manager) of the change in resources
to the mission. The system manager decides whether to re-
assign a new robot to the mission instead of the one that has
left, re-plan the mission (by calling the mission planner), or
do something else that was defined by the operator (or prede-
fined in the system). Once a new plan is created, it sends it to
all members of the relevant mission.

Adding a robot to a mission
A robot may be added to a mission only upon receiving the
communication details of the mission manager. Once it is reg-
istered to the mission manager, the latter notifies the system
manager that it was successfully added to the mission. If the
robot does not appear in the current plan, a request for replan-
ning (along with the updated information about the members
assigned to the mission) is sent to the mission planner. Once
receiving a new plan, it is sent to all robots in the mission
(including the new robot assigned to the mission).

Switching a robot between missions
When the operator or the system manager decides to move a
robot from one mission to another, the robot receives a com-
mand to stop the mission, along with a single piece of in-
formation: the details of the new mission manager the robot
has to connect to. Upon receiving this command, the robot
leaves the mission, registers to the new mission manager, and
waits for a plan. The process of joining a mission has been
described above.

4.3 Deployment and Evaluation
The system has been fully implemented on four Hamster
robots in a patrolling mission. In addition, excessive experi-
ments have been conducted in simulation, using ROS/Gazebo
simulated environment. The goal of the experiments was
threefold: Perform a sanity check for the execution flow
and the behavior of the system, examine the coordination
cost of the system, and evaluate the performance of the
missions. Concentrating one main mission—Multi Robot
Patrolling—and one minor one—Blanket Coverage—the sys-
tem was shown to pass successfully the sanity check, have lit-
tle overhead in terms of communication cost associated with

the system management, and increase efficiency of the sys-
tem by using teams of robots. In all experiments, there was
no need to restart the robots when switching to a new mission,
and it was possible to instantiate the missions on-the-fly, as
designed originally.

The patrolling algorithm used was the circular patrol. In
this scenario, the n patrolling robots are spread uniformly (in
time) along the patrol path, and maintain this distance be-
tween them throughout the execution.

Experiments in a physical system
The system consisted of four Hamster robots, all perform-
ing a patrolling task in an outdoor environment (a basketball
court)4. In the experiment, we demonstrated the behavior of
the system in the following flow of execution:

1. Robots are turned on, connect to the system manager,
and wait for instructions.

2. The operator decides to execute a patrolling task, and
defines the waypoints for the mission.

3. The patrol-planner is launched, and creates a patrol path
through the waypoints using a TSP approximation [Ag-
mon et al., 2011].

4. The plan is sent to the robots, and the allocation of initial
location for each robot is decided based on the Hungar-
ian Algorithm.

5. Communication with the centralized station is turned
off. The robots continue to perform the patrolling task,
as expected. This shows that the system can be dis-
tributed, thus needs no centralized control.

6. A robot is taken out of the system. The team realizes
that the robot has exited, the system manager displays
this information, and the remaining team continues to
perform without the extracted robot (specifically, they
do not get stuck and wait for it indefinitely).

7. The extracted robot returns to the system, and joins the
team/mission again.

The experiment completed successfully, which shows the
flexibility and dynamic nature of the system.

Simulated environment
We have run extensive experiment in ROS/Gazebo simulated
environment with 5, 10, 15 and 20 robots. Two scenarios
were tested:
• Robots performing the patrolling mission.
• Robots performing the patrolling mission, and after one

round of patrol, 5 of them were extracted to the blanket-
coverage mission.

Each patrolling mission was executed for 10 rounds (each
experiment lasting between 40 to 72 minutes).

Figure 4 describes the number of messages exchanged in
the system throughout the execution of the patrolling prob-
lem. At each synchronization point, the leading robot is re-
sponsible for the synchronization: it receives a synchroniza-
tion message from all teammates, and distributes a synched

4Summary of the experiment can be seen here: https://
www.youtube.com/watch?v=oLF89tekvmI

Figure 4: The number of messages sent in the system by a
team of 10, 15 and 20 robots, where 5 are extracted to a new
mission after one round of patrolling.

message to all. Thus the number of messages exchanged in
each point is linear in the number of robots. However, the
more robots there are in the system, we must add more syn-
chronization points (note that synchronization points are not
necessarily the waypoint). thus the total number of messages
grows, and is polynomial in the number of robots. We also
show in the figure the number of messages exchanged in the
system in case 5 robots leave the team to perform a new task
(the notion x → y denoted a case in which x robots started
the experiment, and a after one rounds, 5 robots are extracted
to the new mission). They all engage in a cooperative pa-
trolling task, and after one round - the group of 5 leave the
team, leaving the rest of the robots to patrol. In each pair of
values - on the right: number of messages sent in an eventless
execution of 5, 10, and 15 robots. On the left - the number
of sent messages if we start with 10, 15 and 20 robots, and
5 of them are taken to a new mission soon after the exper-
iment started. Surprisingly, the number of synchronization
messages when removing 5 robots to a new mission is slightly
(insignificantly) smaller than the number of synchronization
messages when they are assigned to the mission from the be-
ginning. The reason lies in the points they were extracted
from: when replanning after the removal of 5 robots, the new
chosen synchronization points were closer to the waypoints,
thus required less synchronization throughout the execution.
We leave it for future work to optimize synchronization points
also with respect to the synchronization cost, and not only
with respect to the performance of the mission itself (here,
idleness criteria in the patrolling mission).

Figure 5 describes the idleness criteria, which corresponds
to the performance of the mission by the team of robots. It
is clear that as we add more robots to the system, the perfor-
mance of the system grows. Here: the idleness (time between
visits to a point) decreases. It is interesting to see that after
reaching 15 robots, there is a plateau in the performance, i.e.,
adding more robots does not increase the productivity of the
system (the idleness does decrease). This happens because
of the overhead spent on synchronization (see this data above
each bar in the figure). As the number of robots grow, cost
of coordination (measured in coordination time) increases.

https://www.youtube.com/watch?v=oLF89tekvmI
https://www.youtube.com/watch?v=oLF89tekvmI

Figure 5: The idleness criteria as the number of robots grow.
Above: the average time spent on synchronization.

Figure 6: The resulting idleness obtained by a team of 15 and
20 robots. Increasing the size of the space in factors of 2.5, 5
and 10. In each pair or values - on the right: 20 robots, and
on the left: 15 robots.

However, if the environment grows, thus the time between
visits (idleness) grows as well, the relative cost of synchro-
nization becomes negligible compared to the idleness (see
Figure 6), thus losing the plateau effect (or more accurately:
shifting it to larger values of number of robots).

5 Conclusions
In this paper, we have presented a novel architecture for con-
trolling a large group of heterogeneous robots, responsible
for carrying out multiple missions by multiple sub-teams of
robots. The layers span from the robotic platform (in the
“lower level” of the system) to a human operator at the top
of the system, possibly being assisted by a supporting agent.
The missions are saved as recipes, instantiated for the specific
type of (possibly heterogeneous) robots available in the sys-
tem by a plan. The operator can create new recipes for new
types of robots, and send them the plans on-the-fly. We have
implemented the system, and have shown its effectiveness in
handling teams of robots engaged in different missions, in the
same physical compound.

This architecture, and its implementation (available on-
line), can be used in various multi-robot systems, thus cre-

ates many new opportunities for future research - both on the
system itself, and by using the system. Among those one
can consider increasing efficiency of the system in terms of
communication constraints, allowing a robot to be part of two
completely different missions, and more.

References
[Agmon et al., 2011] Noa Agmon, Daniel Urieli, and Peter

Stone. Multiagent patrol generalized to complex environ-
mental conditions. In AAAI, 2011.

[Agmon et al., 2012] Noa Agmon, Chien-Liang Fok,
Yehuda Emaliah, Peter Stone, Christine Julien, and Sriram
Vishwanath. On coordination in practical multi-robot
patrol. In Proceedings of the 2012 IEEE International
Conference on Robotics and Automation (ICRA), pages
650–656, 2012.

[Ardiny et al., 2015] Hadi Ardiny, Stefan John Witwicki,
and Francesco Mondada. Are autonomous mobile robots
able to take over construction? a review. International
Journal of Robotics, 4(EPFL-ARTICLE-217004):10–21,
2015.

[Auat Cheein and Carelli, 2013] Fernando Alfredo
Auat Cheein and Ricardo Carelli. Agricultural robotics:
Unmanned robotic service units in agricultural tasks.
Industrial Electronics Magazine, IEEE, 7(3):48–58, 2013.

[Bowling et al., 2004] Michael H Bowling, Brett Browning,
and Manuela M Veloso. Plays as effective multiagent plans
enabling opponent-adaptive play selection. In Proceedings
of the International Conference on Automated Planning
and Scheduling (ICAPS), pages 376–383, 2004.

[Chen and Terrence, 2009] JYC Chen and PI Terrence. Ef-
fects of imperfect automation and individual differences
on concurrent performance of military and robotics tasks
in a simulated multitasking environment. Ergonomics,
52(8):907–920, 2009.

[Cheng and Savkin, 2013] Teddy M Cheng and Andrey V
Savkin. Decentralized control of mobile sensor networks
for asymptotically optimal blanket coverage between two
boundaries. IEEE Transactions on Industrial Informatics,
9(1):365–376, 2013.

[Clair and Mataric, 2015] Aaron St Clair and Maja Mataric.
How robot verbal feedback can improve team performance
in human-robot task collaborations. In Proceedings of
the Tenth Annual ACM/IEEE International Conference on
Human-Robot Interaction, pages 213–220. ACM, 2015.

[Dasgupta et al., 2015] Prithviraj Dasgupta, José Baca,
KR Guruprasad, Angélica Muñoz-Meléndez, and Janyl
Jumadinova. The comrade system for multirobot au-
tonomous landmine detection in postconflict regions.
Journal of Robotics, 2015, 2015.

[Goodrich et al., 2005] Michael A Goodrich, Morgan
Quigley, and Keryl Cosenzo. Task switching and multi-
robot teams. In Multi-Robot Systems. From Swarms to
Intelligent Automata Volume III, pages 185–195. Springer,
2005.

[Guizzo, 2008] Erico Guizzo. Three engineers, hundreds of
robots, one warehouse. Spectrum, 45(7):26–34, 2008.

[Hennes et al., 2012] Daniel Hennes, Daniel Claes, Wim
Meeussen, and Karl Tuyls. Multi-robot collision avoid-
ance with localization uncertainty. In Proceedings of the
11th International Conference on Autonomous Agents and
Multiagent Systems, pages 147–154, 2012.

[Kaiman, 2016] Jonathan Kaiman. At japan’s fukushima nu-
clear complex, robots aiding the cleanup after 2011 disas-
ter, March 2016. [Online; posted 10-March-2016].

[Kaminka and Frenkel, 2005] Gal A Kaminka and Inna
Frenkel. Flexible teamwork in behavior-based robots. In
Proceedings Of The National Conference On Artificial In-
telligence, volume 20, page 108, 2005.

[Korsah et al., 2013] G Ayorkor Korsah, Anthony Stentz,
and M Bernardine Dias. A comprehensive taxonomy for
multi-robot task allocation. The International Journal of
Robotics Research, 32(12):1495–1512, 2013.

[Kulkarni and Pompili, 2010] Indraneel S Kulkarni and
Dario Pompili. Task allocation for networked autonomous
underwater vehicles in critical missions. Selected Areas in
Communications, 28(5):716–727, 2010.

[Liu and Nejat, 2013] Yugang Liu and Goldie Nejat. Robotic
urban search and rescue: A survey from the control
perspective. Journal of Intelligent & Robotic Systems,
72(2):147–165, 2013.

[Micire et al., 2011] Mark Micire, Eric McCann, Munjal De-
sai, Katherine M Tsui, Adam Norton, and Holly A Yanco.
Hand and finger registration for multi-touch joysticks on
software-based operator control units. In Technologies
for Practical Robot Applications (TePRA), pages 88–93.
IEEE, 2011.

[Parker, 2001] Lynne E Parker. Evaluating success in au-
tonomous multi-robot teams: experiences from alliance
architecture implementations. Journal of Experimental &
Theoretical Artificial Intelligence, 13(2):95–98, 2001.

[Rekleitis et al., 2008] Ioannis Rekleitis, Ai Peng New, Ed-
ward Samuel Rankin, and Howie Choset. Efficient bous-
trophedon multi-robot coverage: an algorithmic approach.
Annals of Mathematics and Artificial Intelligence, 52(2-
4):109–142, 2008.

[Ren and Sorensen, 2008] Wei Ren and Nathan Sorensen.
Distributed coordination architecture for multi-robot for-
mation control. Robotics and Autonomous Systems,
56(4):324–333, 2008.

[Rosenfeld et al., 2015] Ariel Rosenfeld, Noa Agmon,
Azaria Amos Maksimov, Oleg, and Sarit Kraus. In-
telligent agent supporting human-multi-robot team
collaboration. In Proceedings of the Twenty-Fouth Inter-
national Conference on Artificial Intelligence (IJCAI),
2015.

[Rosenfeld, 2015] Ariel Rosenfeld. Automated agents for
advice provision. In Proceedings of the 24th International
Conference on Artificial Intelligence, pages 4391–4392.
AAAI Press, 2015.

[Saez-Pons et al., 2010] Joan Saez-Pons, Lyuba Alboul,
Jacques Penders, and Leo Nomdedeu. Multi-robot team
formation control in the guardians project. Industrial
Robot: An International Journal, 37(4):372–383, 2010.

[Squire and Parasuraman, 2010] PN Squire and R Parasura-
man. Effects of automation and task load on task switching
during human supervision of multiple semi-autonomous
robots in a dynamic environment. Ergonomics, 53(8):951–
961, 2010.

[Standley, 2010] Trevor Scott Standley. Finding optimal so-
lutions to cooperative pathfinding problems. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 1, pages 28–29, 2010.

[Stoica et al., 2013] Atanasia Stoica, Theodoros Theodor-
idis, Huosheng Hu, Klaus McDonald-Maier, and David F
Barrero. Towards human-friendly efficient control of
multi-robot teams. In Collaboration Technologies and Sys-
tems (CTS), 2013 International Conference on, pages 226–
231. IEEE, 2013.

[Sycara and Lewis, 2012] Katia Sycara and Michael Lewis.
Human control strategies for multi-robot teams. In Pro-
ceedings of the 16th WSEAS International Conference on
Computers, pages 149–154. World Scientific and Engi-
neering Academy and Society, 2012.

[Tambe, 1997] Milind Tambe. Agent architectures for flex-
ible, practical teamwork. In Proceedings of the National
Conference on Artificial Intelligence, pages 22–28, 1997.

	Introduction
	Related Work
	Architecture
	Robots
	Team hierarchy
	Mission Manager
	System Manager
	Agent
	User Interface (UI)

	Implementation and Evaluation
	Architecture Implementation
	Execution Flow
	Deployment and Evaluation

	Conclusions

