Algorithms 2
Exercise 3

1. **Multiple Knapsack Problem**

 Consider the following version of the Knapsack problem, called the *Multiple Knapsack Problem* (MKP for short):

 GIVEN: A set S of n items with value v_i and weight w_i, and k different knapsacks with capacities B_1, \ldots, B_k.

 OUTPUT: Find a subset of S with maximum profit (value) which can be packed into the k knapsacks.

 (Assume $P \neq NP$)

 (a) Provide a pseudo-polynomial time algorithm which solves the MKP for $k = 2$ in $O(nB_1B_2)$ time.

 (b) Extend your algorithm for general k. Provide running time and space.

 (c) For the MKP with $k = 2$, prove that there does not exist a pseudo-polynomial time algorithm which is polynomial in n and $V = \sum_i v_i$ (HINT: recall that the partition problem defined below is NP-Hard).

 (d) Prove that the existence of a pseudo-polynomial time algorithm does not imply the existence of an FPTAS.

 PARTITION:

 GIVEN: A multi-set S of n integers.

 OUTPUT: Can S be partitioned into two multi-sets S_1 and S_2 such that $\sum_{s \in S_1} s = \sum_{s \in S_2} s$.

 REMARK - The problem is NP-Hard.