Gauss decompositions of kac-moody groups
Jun Morita \(^{a}\); Eugene Plotkin \(^{b}\)

\(^{a}\) Institute of Mathematics, University of Tsukuba, Tsukuba, Japan
\(^{b}\) Department of Mathematics and Computer Science, Bar Han University, Ramat Gan, Israel

Online Publication Date: 01 January 1999

To cite this Article: Morita, Jun and Plotkin, Eugene (1999) ‘Gauss decompositions of kac-moody groups’, Communications in Algebra, 27:1, 465 - 475

To link to this article: DOI: 10.1080/00927879908826442
URL: http://dx.doi.org/10.1080/00927879908826442
GAUSS DECOMPOSITIONS OF
KAC-MOODY GROUPS

Jun Morita
Institute of Mathematics
University of Tsukuba
Tsukuba, 305, JAPAN

Eugene Plotkin
Department of Mathematics
and Computer Science
Bar Ilan University
52900, Ramat Gan, ISRAEL

Dedicated to Eiichi Abe on his 70th birthday

Abstract. We present an axiomatic approach to both a Gauss decomposition of a Kac-Moody group and a Gauss decomposition of the associated Steinberg group. We study also a prescribed version in case of rank 2.

1. AXIOMATIC APPROACH

Here we call $(G,U,T,V,\{\phi_1, \cdots, \phi_n\})$ a triangular system (or a Gauss system) if

1. G is a group, and $U, T, V \leq G$ are subgroups,
2. $\phi_i : SL_2(K) \to G$ is a group homomorphism of SL_2 over a field K into G with
(3) $G = \langle U, V_1, \ldots, V_n \rangle$, and $TU_i = U_i T$ for $1 \leq i \leq n$.

(4) There exist the subgroups of G called U'_i and V'_i for $1 \leq i \leq n$ such that

$U = U'_1 U_1 = U_i U'_i$,

$V = V'_1 V_1 = V_i V'_i$,

$V_i U'_i = U'_i V_i$,

$U_i V'_i = V'_i U_i$.

Then we can establish

$G = UVTU$

$= \bigcup_{u \in U} u(VTU)u^{-1}$

(see below). We call this decomposition a Gauss decomposition of G.

First, we shall review the situation in the case when $G = SL_2(K), \ n = 1, \ \phi_1 = \text{identity}$ and

$U = U_1, \ T = T_1, \ V = V_1$.

Let us take an element

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(K).$$

Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & b/a \\ 0 & 1 \end{pmatrix}$$

if $a \neq 0$. Otherwise, $c \neq 0$ and

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & b/a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b/a \\ 0 & c \end{pmatrix}.$$

Hence,

$SL_2(K) = VTVU \cup u(VTVU)u^{-1}$

$= UVTU$

with

$$u = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Now, we shall return to a general case. We want to confirm $G = UVTU$. Let $X = UVTU \subset G$. Then $UX = X$ and
GAUSS DECOMPOSITIONS OF KAC-MOODY GROUPS

Theorem 1. Every triangular system has a Gauss decomposition.

We can find such a system for a standard Kac-Moody group and for a Marcuson-type Kac-Moody group. One can also find a Gauss decomposition for the Steinberg groups associated with Kac-Moody groups. We will discuss them in the next section.

2. KAC-MOODY GROUPS

Let \(A = (a_{ij}) \) be an \(n \times n \) generalized Cartan matrix. Let \(g \) be the Kac-Moody Lie algebra over a field \(C \) defined by \(A \) with the so-called Cartan subalgebra \(\mathfrak{h} \) (cf. [8], [9], [11], [16], [17]). Let \(\Delta \subset \mathfrak{h}^* \) be the root system of \(g \) with respect to \(\mathfrak{h} \) with the fundamental system \(\Pi = \{ \alpha_1, \cdots, \alpha_n \} \). Let \(\Delta^+ \) (resp. \(\Delta^- \)) be the set of positive (resp. negative) roots defined by \(\Pi \), and \(\Delta^r \) the set of real roots. Put \(\Delta^r_{\pm} = \Delta^\pm \cap \Delta^r \). Then we obtain

\[
g = \mathfrak{h} \oplus \bigcup_{\alpha \in \Delta^r} \mathfrak{g}_\alpha \quad \text{(root space decomposition)}
\]
and

\[
g = \mathfrak{g}^- \oplus \mathfrak{h} \oplus \mathfrak{g}^+ \quad \text{(triangular decomposition),}
\]
where \(\mathfrak{g}_\pm = \oplus_{\alpha \in \Delta^\pm} \mathfrak{g}_\alpha \). Let \(M \) be an integrable \(g \)-module, which means that

\[
M = \oplus_{\mu \in \Delta^r} M_\mu,
\]
where \(M_\mu = \{ v \in M \mid hv = \mu(h)v \ (\forall h \in \mathfrak{h}) \} \), and that \(x \) is locally nilpotent on \(M \) for all \(x \in \mathfrak{g}_\alpha \) with \(\alpha \in \Delta^r \). For the set of real roots, \(\Delta^r \), we can choose and fix a Chevalley basis

\[
\{ e_\alpha \mid \alpha \in \Delta^r \}
\]
(cf. [19]). We now suppose that \(M \) has a basis \(\{ v_\gamma \mid \gamma \in \Gamma \} \) whose \(\mathbb{Z} \)-span, \(M_\mathbb{Z} \), is invariant under the action of

\[
\frac{e_\alpha^m}{m!}
\]
for all \(m \geq 0 \). Such basis exists, for example, for the cases of adjoint representations, highest weight integrable representations, lowest weight integrable representations, and some others (see [9], [25] and references therein). Then, for any field \(K \), we put \(M(K) = K \otimes \mathbb{M}_2 \) and define \(x_\alpha(t) \in \text{GL}(M(K)) \) by

\[
x_\alpha(t)(s \otimes v) = \sum_{m=0}^{\infty} t^m s \otimes \frac{\alpha_m}{m!} v.
\]

Let \(G \) be the subgroup of \(\text{GL}(M(K)) \) generated by \(x_\alpha(t) \) for all \(\alpha \in \Delta^r \) and \(t \in K \). We call \(G \) a standard (or elementary) Kac-Moody group (cf. [7], [18], [21], [22], [24], [25], [26]). Let

\[
\begin{align*}
 w_\alpha(t) &= x_\alpha(t)x_{-\alpha}(-t^{-1})x_\alpha(t), \\
 h_\alpha(t) &= w_\alpha(t)w_\alpha(-1)
\end{align*}
\]

for \(t \in K^\times \). Then, we put

\[
\begin{align*}
 U &= \langle x_\alpha(a) \mid \alpha \in \Delta^r, a \in K \rangle, \\
 T &= \langle h_\alpha(t) \mid \alpha \in \Delta^r, t \in K^\times \rangle, \\
 V &= \langle x_\alpha(a) \mid \alpha \in \Delta^r, a \in K \rangle,
\end{align*}
\]

Define the maps \(\phi_i \) by

\[
\begin{align*}
 \phi_1 &: \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mapsto x_\alpha(a), \\
 \phi_2 &: \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mapsto h_\alpha(t), \\
 \phi_3 &: \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \mapsto x_{-\alpha}(a),
\end{align*}
\]

These maps are not necessarily injective. The subgroups \(U'_i \) and \(V'_i \) are defined as follows

\[
\begin{align*}
 U'_i &= \langle x_{\alpha_i}(s)x_{\beta}(t)x_{\alpha_i}(-s) \mid s, t \in K, \beta \in \Delta^r \setminus \{\alpha_i\} \rangle, \\
 V'_i &= \langle x_{-\alpha_i}(s)x_{\beta}(t)x_{-\alpha_i}(-s) \mid s, t \in K, \beta \in \Delta^r \setminus \{-\alpha_i\} \rangle.
\end{align*}
\]

Then \((G, U, T, V; \{\phi_1, \ldots, \phi_3\}) \) is a triangular system. Hence,

\[
G = UV'TU = \bigcup_{u \in U} u(V'TU)u^{-1}.
\]

Theorem 2. Every standard Kac-Moody group \(G \) over a field has a Gauss decomposition.

Remark 1. Gauss decomposition is tightly connected with the existence of Bruhat decomposition. Since for Kac-Moody groups the existence of Tits system is known (cf. [18], [12], [21]), it is quite natural to look for Gauss
decomposition for these groups, as well as for groups associated with them (cf. [1]).

Remark 2. If \(V \) is an integrable highest weight module generated by a maximal vector with a highest weight, then we can construct a bigger group \(\tilde{G} \), called a Marcuson-type Kac-Moody group, than \(G \) (cf. [12], [24]). Namely, \(\tilde{U} \), which is bigger than \(U \), is corresponding to all \(\alpha \in \Delta_+ \). On the other hand, \(\tilde{T}, \tilde{V}, \tilde{\phi}_i \) are the same as \(T, V, \phi_i \). Then we see that \(\{ \tilde{G}, \tilde{U}, \tilde{T}, \tilde{V}, \{ \tilde{\phi}_1, \cdots, \tilde{\phi}_n \} \) is a triangular system. Hence,

\[
\tilde{G} = \tilde{U} \tilde{T} \tilde{U} = \bigcup_{u \in \tilde{U}} u(\tilde{V} \tilde{T} \tilde{U}) u^{-1}.
\]

Therefore, every Marcuson-type Kac-Moody group has a Gauss decomposition.

Remark 3. Let \(\text{St}_2(K) \) be the Steinberg group of rank one over a field \(K \) (cf. [15], [22]). Then, it is also easily seen that there is a Gauss decomposition for \(\text{St}_2(K) \) naturally induced from \(\text{SL}_2(K) \). Therefore, we can replace \(\text{SL}_2(K) \) by \(\text{St}_2(K) \) in the condition (2) of a triangular system. Hence, there is a Gauss decomposition of the Steinberg group, \(\tilde{G} = \text{St}(A, K) \), associated with a Kac-Moody group \(G \) (cf. [26]). Namely,

\[
\tilde{G} = \tilde{U} \tilde{T} \tilde{U} = \bigcup_{u \in \tilde{U}} u(\tilde{V} \tilde{T} \tilde{U}) u^{-1}.
\]

where \(\tilde{U}, \tilde{T}, \tilde{V} \) are the corresponding subgroups of \(\tilde{G} \). Therefore, every Steinberg group associated with a standard Kac-Moody group over a field has a Gauss decomposition.

Remark 4. If we replace the condition (3) of a triangular system by

\[(3') \quad G = \langle U, T, V, \cdots, V_n \rangle, \quad TU = UT, \quad VT = TV, \quad \text{and} \quad T U_i = U_i T \quad \text{for} \quad 1 \leq i \leq n. \]

then we can apply our method to a Tits-type Kac-Moody group (cf. [26]). \(\tilde{G} \), whose torus \(\tilde{T} \) is bigger than the group \(T \) above. Hence,

\[
\tilde{G} = \tilde{U} \tilde{T} \tilde{U} = \bigcup_{u \in \tilde{U}} u(\tilde{V} \tilde{T} \tilde{U}) u^{-1},
\]

where \(\tilde{U} \) and \(\tilde{V} \) are the same as \(U \) and \(V \) above. Therefore \(\tilde{G} \) has a Gauss decomposition.

Remark 5. The same method can be applied for other groups associated with Kac-Moody data. In particular, we think that it can be used in the framework of the scheme theoretical approach to Kac-Moody groups, introduced by Mathieu [13], [14].

Remark 6. Furthermore, axiomatically we can replace the group \(\text{SL}_2(K) \) in the condition (2) of a triangular system by a certain group \(G^* \) with subgroups \(U^*, T^*, V^* \) satisfying
In this case, we must set
\[\phi_i(U^*) = U_i, \quad \phi_i(T^*) = T_i, \quad \phi_i(V^*) = V_i. \]
Then the same method works.

3. Prescribed version

Let \((G, U, T, V, \{\phi_1, \ldots, \phi_n\})\) be a triangular system. Then, as in Section 1, we obtain
\[G = \bigcup_{u \in U} u(VTU)u^{-1}. \]
We now take an element \(h^* \in T\). Put
\[G(h^*) = Z(G) \cup \bigcup_{g \in G} g(Vh^*U)g^{-1}, \]
where \(Z(G)\) is the center of \(G\). Then we want to consider whether \(G = G(h^*)\) or not. If \(G = G(h^*)\) for all \(h^* \in T\), then we say that \(G\) has a Gauss decomposition with prescribed elements in \(T\). This is equivalent to the fact, that for every non central element \(g \in G\) there exists an element \(g_1 \in G\) satisfying \(g_1gg_1^{-1} = vhu\), where \(v \in V, u \in U,\) and \(h\) is a prescribed element from \(T\).

In such a form this decomposition first appeared in the paper \([23]\) for the case of general linear group and then it was studied in detail by Ellers and Gordeev for all split semisimple algebraic groups (=Chevalley groups = finite dimensional Kac-Moody groups), see \([3]\), \([4]\), and for twisted Chevalley groups \([5]\). It turns out that the prescribed Gauss decomposition has various applications and is the main tool for solving remarkable Ore and Thompson conjectures (see \([20]\), \([2]\), \([6]\) and references therein). Here, we will check this in the case when \(G = SL_2(K)\), which is the easiest but important in our discussion later. We choose and fix
\[h^* = \begin{pmatrix} t & 0 \\ 0 & \frac{1}{t} \end{pmatrix} \in T. \]

Let
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in VTU \subset SL_2(K). \]
Then \(a \neq 0\), and
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{c}{a} & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{pmatrix}. \]
If \(b \neq 0\), then
\[\begin{pmatrix} 1 & 0 \\ \frac{a-t}{b} & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{t-a}{b} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{c}{t} & 1 \end{pmatrix} \begin{pmatrix} t & 0 \\ 0 & \frac{1}{t} \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{t} \\ 0 & 1 \end{pmatrix}, \]
GAUSS DECOMPOSITIONS OF KAC-MOODY GROUPS

where

\[c' = \frac{1}{b} \{ ta + td - t^2 - ad + bc \} \]

If \(c \neq 0 \), then

\[
\begin{pmatrix}
1 & \frac{t-a}{c} \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}
1 & \frac{a-t}{c} \\
0 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
\frac{c}{t} & 1
\end{pmatrix}
\begin{pmatrix}
t & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & \frac{c}{t} \\
0 & 1
\end{pmatrix},
\]

where

\[b' = \frac{1}{c} \{ ta + td - t^2 - ad + bc \} \]

If \(b = c = 0, a \neq \pm 1 \), then

\[
\begin{pmatrix}
1 & -1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
=
\begin{pmatrix}
a & \frac{a - \frac{1}{a}}{c} \\
0 & \frac{1}{a}
\end{pmatrix},
\]

which arrives at the case of \(b \neq 0 \) above. If \(b = c = 0, a = \pm 1 \), then

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
\pm 1 & 0 \\
0 & \pm 1
\end{pmatrix} \in Z(G).
\]

Therefore, we obtain

\[G = G(h^*) \]

for all \(h^* \in T \) when \(G = SL_2(K) \). Hence, \(SL_2(K) \) has a Gauss decomposition with prescribed elements in \(T \).

4. IN CASE OF RANK 2

Let

\[A = \begin{pmatrix}
2 & -a \\
-b & 2
\end{pmatrix} \]

be a generalized Cartan matrix with \(ab \geq 4 \). Then, the corresponding Kac-Moody groups are called of type \(A \). Here, we define

\[m = \max \{ a, b \}. \]

Let

\[G = G(A, \mathcal{K}) \]

be the family of all standard Kac-Moody groups over a field \(K \) of type \(A \). Then, there is a unique, up to isomorphism, element of \(G \) which dominates all other elements. We fix it, and also we call it \(G \). Put

\[N = \langle w_\alpha(t) \mid \alpha \in \Delta^e, t \in K^\times \rangle, \]

then \(T \triangleleft N \), and \(W = N/T \) is an infinite dihedral group. For each \(w \in W \), we
can write
\[wUw^{-1} = \bar{w}U\bar{w}^{-1} \]
if \(\bar{w} \in N \) and \(w = \bar{w} \mod T \). Then
\[\bigcap_{w \in W} wUw^{-1} = 1 \]
and
\[\bigcap_{w \in W} wVw^{-1} = 1 \]
(cf. [10], [21]). Therefore, if \(1 \neq u \in U \) (resp. \(1 \neq v \in V \)), then there exists \(\bar{w} \in N \) such that
\[\bar{w}uw^{-1} = u_1u'_1, \quad u_1 \neq 1 \]
(resp. \(\bar{w}uv^{-1} = v_1v'_1, \quad v_1 \neq 1 \))
or
\[\bar{w}uw^{-1} = u_2u'_2, \quad u_2 \neq 1 \]
(resp. \(\bar{w}uv^{-1} = v_2v'_2, \quad v_2 \neq 1 \)).
where \(u_1 \in U_1, \ u'_1 \in U'_1 \) (resp. \(v_1 \in V_1, \ v'_1 \in V'_1 \)) for \(i = 1, 2 \).

To consider a prescribed version, we will assume, from here on, \(|K| > m+3 \). Let \(h^* = h_{\alpha_1}(t_1)h_{\alpha_2}(t_2^*) \in T \) and fix it. Let
\[g = vhu \in VTU \]
with \(u \in U, \ h \in T, \ v \in V \). Then we fall into one of the following four cases.

Case 1: \(g \) is conjugate to
\[g' = v'_1v_1h_1h_2u_1u'_1 \]
with \(v'_1 \in V'_1, \ v_1 \in V_1, \ h_1 \in T_1, \ h_2 \in T_2, \ u_1 \in U_1, \ u'_1 \in U'_1 \) and
\(v_1u_1 \neq 1 \).

Case 2: \(g \) is conjugate to
\[g' = v'_2v_2h_1h_2u_2u'_2 \]
with \(v'_2 \in V'_2, \ v_2 \in V_2, \ h_1 \in T_1, \ h_2 \in T_2, \ u_2 \in U_2, \ u'_2 \in U'_2 \) and
\(v_2u_2 \neq 1 \).

Case 3: \(g \) is conjugate to
\[g' = h_1h_2 \]
with \(h_1h_2 \notin Z(G) \).

Case 4: \(g \) is just an element of \(Z(G) \).

In Case 3, we obtain
\[x_{\alpha_i}(1)g'x_{\alpha_i}(-1) = h_1h_2u_i \]
for some \(i = 1, 2 \) with \(1 \neq u_i \in U_i \), which arrives at Case 1 or Case 2. In Case 2, we will change the numbering of 1 and 2 (and then \(a \) and \(b \) are exchanged), which arrives at Case 1. Therefore, for our purpose, we can assume that Case 1 holds. We choose and fix an element
\[
t' \in K^*
\]
such that
\[
t'^a \neq \bar{t}'^2, \quad t'^2 \neq \bar{t}'^b,
\]
where \(h_2 = h_{\alpha_2}(t_2) \). Then, as in Section 3, we obtain that \(g' \) is conjugate to
\[
g'' = v'h_{\alpha_1}(t')h_2u'
\]
with \(v' \in V \), \(h_2 \in T_2 \), \(u' \in U \). We can rewrite
\[
g'' = v'v_2h_{\alpha_1}(t')h_2u_2u_2'
\]
with \(v_2' \in V'_2 \), \(v_2 \in V_2 \), \(u_2 \in U_2 \), \(u_2' \in U'_2 \). If \(v_2u_2 = 1 \), then \(g'' \) is conjugate to
\[
x_{\alpha_2}(1)g''x_{\alpha_2}(-1) = v''h_{\alpha_1}(t')h_{\alpha_2}(t_2)u_2u_2'
\]
with \(v_2'' \in V'_2 \), \(1 \neq u_2'' = x_{\alpha_2}(t'^*t_2^{-2} - 1) \in U'_2 \), \(u_2'' \in U'_2 \). Therefore, we can assume
\[
v_2u_2 \neq 1.
\]
Then, also as in Section 3, we see that \(g'' \) is conjugate to
\[
g''' = v''h_{\alpha_1}(t')h_{\alpha_2}(t''_2)u''
\]
with \(v'' \in V \), \(u'' \in U \). We can rewrite again
\[
g''' = v'_1v_1h_{\alpha_1}(t')h_{\alpha_2}(t''_2)u_1u_1'
\]
with \(v'_1 \in V'_1 \), \(v_1 \in V_1 \), \(u_1 \in U_1 \), \(u_1' \in U'_1 \). If \(v_1u_1 = 1 \), then \(g''' \) is conjugate to
\[
x_{\alpha_1}(1)g'''x_{\alpha_1}(-1) = v''h_{\alpha_1}(t')h_{\alpha_2}(t''_2)u''u''_1
\]
with \(v''_1 \in V'_1 \), \(1 \neq u''_1 = x_{\alpha_1}(t'^{-2}t''_2 - 1) \). \(u''_1 \in U'_1 \). Hence, we can assume
\[
u_1v_1 \neq 1.
\]
Then, again as in Section 3, we obtain that \(g''' \) is conjugate to
\[
g^* = v'''h_{\alpha_1}(t'_1)h_{\alpha_2}(t''_2)u''' = v'''h*u'''
\]
with \(v''' \in V \), \(u''' \in U \). Hence, combining this and Case 4, we see that \(g \) is conjugate to some element \(g^* \in V^*U \) if \(g \notin Z(G) \). Thus,
\[
G(h^*) = G
\]
for all \(h^* \in T \). Therefore, we obtain the following result.

Theorem 3. Let \(A = \begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix} \) be a generalized Cartan matrix with \(ab \geq 4 \). Put \(m = \max \{ a, b \} \). Let \(K \) be a field with \(|K| > m + 3 \). Then every standard Kac-Moody group, \(G \in G(A, K) \), over \(K \) of type \(A \) has a Gauss decomposition with prescribed elements in \(T \).
It remains to consider the same problem for (infinite dimensional) standard Kac-Moody groups of rank ≥ 3.

REFERENCES

GAUSS DECOMPOSITIONS OF KAC-MOODY GROUPS

Received: September 1997
Revised: February 1998