ON THEOREMS OF YANG AND SCHWICK

SHAHAR NEVO

Abstract. Let D be a plane domain, $\psi \not\equiv 0$ a meromorphic function on D, and k a fixed positive integer. Let \mathcal{F} be a collection of functions meromorphic on D, none of which have poles in common with ψ. According to a result of Schwick [6] (cf. Yang [9]), if each $f \in \mathcal{F}$ satisfies $f(z) \neq 0$ and $f^{(k)}(z) \neq \psi(z)$ for $z \in D$, then \mathcal{F} is a normal family. We give a very simple proof of this result, based on applying a suitable refinement of Zalcman’s Lemma.

1. Introduction.

The goal of this paper is to give a simple proof of the following result.

Theorem 1. Let \mathcal{F} be a family of functions meromorphic on a plane domain D and k a positive integer. Let ψ be a function meromorphic on D such that the following conditions hold:

(a) $\psi \not\equiv 0$;
(b) $f(z) \neq 0$, $z \in D$, $f \in \mathcal{F}$;
(c) $f^{(k)} \neq \psi(z)$, $z \in D$, $f \in \mathcal{F}$;
(d) no $f \in \mathcal{F}$ has poles in common with ψ in D.

Then \mathcal{F} is a normal family on D.

This theorem was first proved by Yang Lo [9] (cf. [7]) for ψ analytic and later generalized by Schwick [6] to meromorphic ψ. Their proofs are based on Nevanlinna theory.

1991 Mathematics Subject Classification. 30D45, 30D30.
Key words and phrases. normal family, Zalcman’s lemma.
2. Notation.

We shall write χ for the spherical (chordal) metric on the extended complex plane $\hat{\mathbb{C}}$ and for $z_0 \in \mathbb{C}$, $r > 0$ set $\Delta(z_0, r) = \{ z : |z - z_0| < r \}$, $\overline{\Delta}(z_0, r) = \{ z : |z - z_0| \leq r \}$, $\Delta'(z_0, r) = \{ z : 0 < |z - z_0| < r \}$.

Let $\{ g_n \}$ be a sequence of meromorphic functions on a domain $D \subset \mathbb{C}$. If $\{ g_n \}$ converges uniformly on compact subsets of D to g (where g is a meromorphic function on D or the constant ∞) with respect to the spherical metric χ on $\hat{\mathbb{C}}$, we say that $\{ g_n \}$ converges to g locally χ-uniformly on D and write $g_n \chi \Rightarrow g$ on D.

In case the functions g_n are holomorphic in D, then either the convergence is locally uniform with respect to the Euclidean metric, in which case the limit function g is holomorphic on D, or $\{ g_n \}$ diverges uniformly to ∞ on compacta. In this case, we write $g_n \Rightarrow g$ on D or $g_n \Rightarrow \infty$ on D, respectively.

Likewise, if $A \subset D$ and $\{ g_n \}$ converges uniformly with respect to χ to g (which may be ∞) on A, we shall write $g_n \chi \rightarrow g$ on A for meromorphic functions, g_n, $n \geq 1$; and $g_n \rightarrow g$ on A in the case of holomorphic functions.

3. Preliminary results.

We shall use the following sharpening of Zalcman’s Lemma [10], [3, p.74] due to Chen and Gu [2] (cf. [11]).

Lemma 1. Let k be a positive integer and let \mathcal{F} be a family of meromorphic functions on a domain D with the property that each function in \mathcal{F} has only zeros of degree at least k. If \mathcal{F} is not normal at the point $z_0 \in D$, then for each α such that $0 \leq \alpha < k$ there exist

1. points $z_n \in D$, $z_n \rightarrow z_0$;
2. numbers $\rho_n \rightarrow 0^+$, and
3. functions $f_n \in \mathcal{F}$,
such that

$$
\rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) \overset{\chi}{\Rightarrow} g(\zeta) \quad \text{on} \quad \mathbb{C},
$$

where g is a nonconstant meromorphic function on \mathbb{C}.

In particular, if the function in \mathcal{F} do not vanish on D (so that the multiplicity condition is satisfied vacuously for every ℓ), one may choose $\alpha \geq 0$ arbitrarily so that

(1) $$
\rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) \overset{\chi}{\Rightarrow} g(\zeta) \quad \text{on} \quad \mathbb{C}
$$

will be satisfied for appropriate $\{f_n\}, \{\rho_n\}, \text{and} \{z_n\}$.

Remark. Our reference to the result of Chen and Gu is more a matter of convenience than necessity. In our application, the functions on \mathcal{F} do not vanish; thus, it would suffice to invoke the (earlier and simpler) result of Xue and Pang [8] (suitably localized to require $z_n \to z_0$) instead. However, as this reference is relatively inaccessible in the West, we have chosen to cite the result of [2] instead.

For a self-contained, elementary proof of (the nonlocal version of) Lemma 1, see [5].

Lemma 2. Let $S = \{f_n\}$ be a sequence of meromorphic functions in a domain D, and assume that $f_n \overset{\chi}{\Rightarrow} f$ on D, where f is a meromorphic function on D. Let E be a compact subset of D. Assume that f is finite on E. Then there exists a positive integer N such that $f_n(z)$ is finite on E for $n \geq N$, and $f_n \overset{n \to \infty}{\to} f$ on E.

Lemma 3. Let $\{f_n\}$ be a sequence of meromorphic functions in a domain D which converges there locally χ-uniformly, and let $\{a_n\}$ be a sequence of holomorphic functions in D, converging locally uniformly to a holomorphic function in D. Then the sequence of functions $g_n = f_n + a_n \ (n = 1, 2, \ldots) \text{ converges locally }\chi\text{-uniformly on } D$.

The proofs are almost obvious; for details, see [3].

Finally, we need the following important result due to W.K. Hayman.
Theorem H. Suppose that f is meromorphic and transcendental in the plane and $\ell \in \mathbb{N}$. Then either $f(z)$ assumes every finite value infinitely often, or $f^{(\ell)}(z)$ assumes every finite value except possibly zero infinitely often.

3. Proof of Theorem 1 and an extension.

Proof of Theorem 1. Normality is a local property; hence it is enough to show that \mathcal{F} is normal at each $z_0 \in D$. We distinguish two cases.

Case (1). $\psi(z_0) \neq 0, \infty$. Suppose, to the contrary, that \mathcal{F} is not normal at $z_0 \in D$. Then condition (b) and (1) (Lemma 1 is applicable) imply the existence of sequences $\rho_n \to 0^+, z_n \to z_0, \{f_n\}, f_n \in \mathcal{F}$ such that

$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} \xrightarrow{\mathcal{C}} g(\zeta)$$

on \mathbb{C}, where g is a nonconstant meromorphic function in \mathbb{C}. By condition (b) and Hurwitz’s Theorem,

$$g(\zeta) \neq 0, \quad \zeta \in \mathbb{C}. \tag{2}$$

For every compact subset K of \mathbb{C} which contains no pole of g, one has $g_n^{(k)}(\zeta) \to g^{(k)}(\zeta)$ in K, so that

$$f_n^{(k)}(z_n + \rho_n \zeta) \to g^{(k)}(\zeta) \quad \text{on} \quad K. \tag{3}$$

Since $\psi(z)$ is holomorphic at z_0 and $z_n + \rho_n \zeta \to z_0$ on \mathbb{C}, (3) gives rise to

$$f_n^{(k)}(z_n + \rho_n \zeta) - \psi(z_n + \rho_n \zeta) \to g^{(k)}(\zeta) - \psi(z_0) \quad \text{in} \quad K.$$

Thus, by condition (c) and Hurwitz’s theorem, we have for any $\zeta \in \mathbb{C}$ that is not a pole of g

$$g^{(k)}(\zeta) \neq \psi(z_0). \tag{4}$$
(The second alternative, \(g^{(k)}(\zeta) \equiv \psi(z_0) \) for any \(\zeta \) which is not a pole of \(g \), would force \(g \) to be a polynomial, violating (2)).

Since (4) certainly holds for any pole of \(g \), we have (4) for each \(\zeta \in \mathbb{C} \). Thus, together with (2) and Theorem H, we deduce that \(g \) is constant, a contradiction. So \(\mathcal{F} \) must be normal at \(z_0 \).

Case (2). \(\psi(z_0) = 0 \) or \(\psi(z_0) = \infty \). According to condition (a), there exists \(r > 0 \) such that \(\psi(z) \not\equiv 0, \infty \) in \(\Delta'(z_0, r) \); and by Case (1) \(\mathcal{F} \) is normal there. Now if \(S = \{ f_n \} \) is a sequence of functions of \(\mathcal{F} \), then \(S \) has a subsequence (which, without loss of generality, we may take to be \(S \) itself) with \(f_n \Rightarrow h \) on \(\Delta'(z_0, r) \).

Here \(h \) is a meromorphic function in \(\Delta'(z_0, r) \) or the constant \(\infty \). We consider three possibilities.

- **(A)** \(h \equiv \infty \). Then for each \(0 < r' < r \), \(\frac{1}{f_n(z)} \rightarrow 0 \) on \(\{|z - z_0| = r'\} \); and since the functions \(\frac{1}{f_n} \) are holomorphic, we get by the maximum principle that \(\frac{1}{f_n} \rightarrow 0 \) on \(\Delta(z_0, r') \). Since this is true for any \(0 < r' < r \), we conclude that \(f_n \Rightarrow \infty \) on \(\Delta(z_0, r) \), and \(\{ f_n \} \) is normal at \(z_0 \).

- **(B)** \(h \not\equiv 0, \infty \). In this case, Hurwitz’s Theorem implies that \(h(z) \not\equiv 0 \) in \(\Delta'(z_0, r) \); hence for each \(0 < r' < r \), \(\frac{1}{f_n} \Rightarrow \frac{1}{h} \) on \(\Delta'(z_0, r) \). Set \(M = \max_{|z - z_0| = r'} \frac{1}{|h(z)|} > 0 \).

Then for large enough \(n \), \(\frac{1}{|f_n(z)|} \leq M + 1 \) for \(z \in \{|z - z_0| = r'\} \), and by the maximum principle \(\frac{1}{|f_n|} \leq M + 1 \) in \(\Delta(z_0, r') \). Hence \(\frac{1}{h} \) is holomorphic and bounded in \(\Delta'(z_0, r') \). Thus, \(\frac{1}{h} \) extends to be holomorphic in \(\Delta(z_0, r') \); and, again by the maximum principle, it follows that \(\left| \frac{1}{f_n} - \frac{1}{h} \right| \rightarrow 0 \) on \(\Delta(z_0, r') \). Thus \(f_n \Rightarrow h \) on \(\Delta(z_0, r) \).

- **(C)** \(h \equiv 0 \). Here we borrow an idea from Yang [7]. For a meromorphic function \(f \) defined in a domain \(D \), denote by \(n(f, w_0, R) \) the number of poles (counting multiplicity) of \(f \) in \(\Delta(w_0, R) \subset D \). By Lemma 2, for sufficiently large \(n \), \(f_n \) is holomorphic in \(E = \{ \frac{r}{4} \leq |z - z_0| \leq \frac{3}{4}r \} \). Since \(f_n \rightarrow 0 \) on \(E \), we get that \(f_n^{(k)} \rightarrow 0 \) on \(E \). Now there exists \(C > 0 \) such that \(|\psi(z)| \geq C, z \in E \). Thus \(f_n^{(k)} \psi \rightarrow 0 \) there,
and so \(\left[\frac{f^{(k)}}{\psi} \right]' \rightarrow 0 \) on \(E \).

By conditions (c) and (d), \(\frac{f^{(k)}}{\psi}(z) - 1 \neq 0 \) (in \(D \)), whence \(n \left(\frac{1}{\frac{f^{(k)}}{\psi} - 1}, z_0, \frac{r}{2} \right) = 0 \). Then by the argument principle

\[
(5) \quad \left| n \left(\frac{f^{(k)}}{\psi} - 1, z_0, \frac{r}{2} \right) \right| = \left| \frac{1}{2\pi i} \int_{|z-z_0|=\frac{r}{2}} \frac{\left(\frac{f^{(k)}}{\psi} - 1 \right)'(z)}{\frac{f^{(k)}}{\psi}(z) - 1} \, dz \right| \rightarrow 0, \quad n \rightarrow \infty
\]

(since the denominator of the integrand converges uniformly to \(-1\) on \(\{ |z-z_0|=\frac{r}{2} \} \), and the numerator tends uniformly to \(0 \) there). The left-hand side of (5) is an integer, which implies that \(n \left(\frac{f^{(k)}}{\psi} - 1, z_0, \frac{r}{2} \right) = 0 \) for large enough \(n \). Thus \(f^{(k)}_n \) is holomorphic in \(\Delta(z_0, \frac{r}{2}) \) for sufficiently large \(n \), and hence so is \(f_n \). By the maximum principle, it follows that \(f_n \Rightarrow 0 \) on \(\Delta(z_0, \frac{r}{2}) \); and the proof is completed.

It is possible to extend Theorem 1 in the following way.

Theorem 2. Let \(F \) be a family of meromorphic functions in a domain \(D \), and let \(k \) be a positive integer. Suppose that \(\varphi \) is a holomorphic function on \(D \) and \(\psi \) is a meromorphic function on \(D \) such that the following conditions hold:

(a') \(\psi \neq \varphi^{(k)} \);
(b') \(f(z) - \varphi(z) \neq 0, \quad z \in D, \quad f \in F \);
(c') \(f^{(k)} \neq \psi(z), \quad z \in D, \quad f \in F \);
(d') For each \(f \in F \), \(f \) and \(\psi \) have no common poles in \(D \).

Then \(F \) is a normal family on \(D \).

Indeed, set \(\psi^* = \psi - \varphi^{(k)} \); then from conditions (a') - (d') one obtains conditions (a) - (d) of Theorem 1 for the family \(F^* = \{ f - \varphi : f \in F \} \). Since \(F \) is normal if and only if \(F^* \) is normal (see Lemma 3), it follows from Theorem 1 that \(F \) is a normal family on \(D \).

Remark. Theorem 2 does not hold for meromorphic \(\varphi \). An instructive example is
given by taking $D = \Delta'(0,1)$, $k = 2$, and

$$f_n(z) = nz + \frac{1}{z - \frac{1}{2}}, \quad \varphi(z) = \frac{1}{z - \frac{1}{2}}, \quad \psi \equiv 0.$$

Acknowledgment. The results of this paper are taken from the author’s doctoral dissertation, written under the direction of Professor Lawrence Zalcman, at Bar-Ilan University. Sincere thanks to Professor Zalcman for his warm encouragement, valuable advice and friendly criticism.

References