DISCREPANCY ESTIMATE OF NORMAL VECTORS

Mordechay B. Levin — Irina L. Volinsky

ABSTRACT. Let A be an $s \times s$ invertible matrix with integer entries and with eigenvalues $|\lambda_i| > 1$, $i = 1, \ldots, s$. In this paper we prove explicitly that there exists a vector α, such that the discrepancy of the sequence $\{\alpha A^n\}_{n=1}^{N}$ is equal to $O(N^{-1} (\log N)^{1/2} + 3)$ for $N \rightarrow \infty$. This estimate can be improved no more than on the logarithmic factor.

Communicated by Robert F. Tichy

1. Introduction

Let $(x_n)_{n\geq 0}$ be an infinite sequence of points in an s-dimensional unit cube $[0,1)^s$; $v = [0,\gamma_1] \times \cdots \times [0,\gamma_s]$ a box in $[0,1)^s$; and $J_v(N)$ a number of indexes $n \in [1,N]$ such that x_n lies in v. The sequence $(x_n)_{n\geq 0}$ is said to be uniformly distributed in $[0,1)^s$ if for every box v, $J_v(N)/N \rightarrow \gamma_1 \ldots \gamma_s$. The quantity

$$D((x_n)_{n=1}^{N}) = \sup_{v \in [0,1]^s} \left| \frac{1}{N} J_v(N) - \gamma_1 \ldots \gamma_s \right|$$

is called the discrepancy of $(x_n)_{n=1}^{N}$.

In 1954 Roth (see [DrTi], [KN]) proved that for any sequence in $[0,1)^s$

$$\lim_{N \rightarrow \infty} N D(N)/\log^{s/2} N > 0.$$ (2)

Let A be an $s \times s$ invertible matrix with integer entries. A matrix A is said to be ergodic if for almost all $\alpha \in \mathbb{R}^s$ the sequence $\{\alpha A^n\}_{n\geq 1}$ is uniformly distributed.

A vector $\alpha \in \mathbb{R}^s$ is said to be normal (A normal) if the sequence $\{\alpha A^n\}_{n\geq 1}$ is uniformly distributed.

Let λ_i ($1 \leq i \leq s$) denote the eigenvalues of a matrix A. For the case of $|\lambda_i| > 1$, $i = 1, \ldots, s$ normal vectors were constructed by Postnikov ($s = 2$) and by Polosuev ($s \geq 2$) (see [Po]). Normal vectors were constructed for the general

2000 Mathematics Subject Classification: 11K31, 11K38.
Keywords: Ergodic matrix, normal vector, discrepancy.
case of an ergodic matrix in [Le1]. The author [Le1] obtained also the following discrepancy estimate
\[D \left(\{ \alpha A^n \}_{n=1}^N \right) = O \left(N^{-\frac{1}{2}} (\log N)^{s+3} \right). \]

In [Ko1], Korobov posed the problem of finding a function \(\psi(N) \) with maximum decay, such that there exists \(\alpha \) with
\[D \left(\{ \alpha A^n \}_{n=1}^N \right) = O \left(\psi(N) \right), \quad \text{for} \quad N \to \infty. \]

The author [Le2] proved that \(\psi(N) = N^{-1} (\log N)^{2s+3} \) for the case of a diagonal ergodic matrix. In this paper we extend this result to the general case of an integer matrix with \(|\lambda_i| > 1, \quad i = 1, \ldots, s \). By (2) this result can be improved no more than on the logarithmic factor.

2. Construction and Auxiliary results

Let \(s \geq 2, \ p \geq 3 \) be a prime number, \(A \) an \(s \times s \) invertible matrix with integer entries, \(\lambda_1, \ldots, \lambda_s \) eigenvalues of the matrix \(A \), where \(|\lambda_i| > 1, \quad i = 1, \ldots, s \), \(q = \det A \). Let \(F_m \subset \mathbb{Z}^s \) be any complete set of coset representatives for the group \(\mathbb{Z}^s/A^{2k_0m}\mathbb{Z}^s, \ m = 1, 2, \ldots \). It is easy to see that \(\#F_m = q^{2k_0m} \). Let us take \(k_0 \) such that
\[\min_{1 \leq i \leq s} \left(\frac{1 + |\lambda_i|}{2} \right)^{k_0} > p^{2s}. \]

(3)

Now let
\[n_1 = 0, \quad n_m = n_{m-1} + 3k_0(m-1)p^{m-1}, \quad m = 2, 3, \ldots, \]

(4)

\[\alpha = \sum_{m=1}^{\infty} \sum_{n=0}^{p^m-1} \sum_{\nu=0}^{2} \left\{ nb_{\nu,m} A^{-2k_0m} \right\} A^{-(n_{m} + k_0 m (3n+\nu))}, \]

(5)

where \(b_{\nu,m} \in F_m \).

Theorem. There exists \(b_{\nu,m} \in F_m \) \((m = 1, 2, \ldots \nu = 0, 1, 2) \) such that
\[D \left(\{ \alpha A^n \}_{n=1}^N \right) = O \left(\log^{2s+3} N \right), \quad \text{for} \quad N \to \infty. \]

We prove this result in Section 3.

Remark. We will prove a similar result for the case of a hyperbolic matrix \((|\lambda_i| \neq 1, \ i = 1, \ldots, s) \) in a forthcoming paper.
DISCREPANCY ESTIMATE OF NORMAL VECTORS

Let \(f(x) = x^s - b_1x^{s-1} - \ldots - b_{s-1}x - b_s \) be a polynomial with roots \(\lambda_i, \lambda_i > 1, 1 \leq i \leq s \). Consider the following recurrence sequence

\[
\psi(n) = b_1\psi(n-1) + b_2\psi(n-2) + \ldots + b_s\psi(n-s),
\]

where \(\psi(i) = \alpha_i \) \((i = 1, \ldots, s) \) and \(b_1, \ldots, b_s \) are integers.

Corollary. There exists \(\alpha = (\alpha_1, \ldots, \alpha_s) \) such that

\[
D\left(\left(\psi(n), \ldots, \psi(n + s - 1)\right)_{n=1}^N\right) = O\left(N^{-1}(\log N)^{2s+3}\right).
\]

Proof. Using the Theorem it follows instantly, if we will denote

\[
(\psi(n), \ldots, \psi(n + s - 1)) = \alpha A^{n-1},
\]

where \(A \) is the companion matrix of \(f(x) \).

We will need the following inequalities:

The Erdős-Turán-Koksma inequality (see [DrTi], p. 15):

\[
D\left(\{x_n\}_{n=0}^{N-1}\right) \leq \left(\frac{3}{2}\right)^s \left(\frac{2}{M+1} + \frac{1}{N} \sum_{0 < \max|m_i| \leq M} \frac{\left|\sum_{n=0}^{N-1} e(\langle m, x_n \rangle)\right|}{m_1 \ldots m_s}\right), \quad (6)
\]

where \(e(y) = \exp(2\pi iy) \), \(x_n = (x_{n,1}, \ldots, x_{n,s}) \), \(m = (m_1, \ldots, m_s) \), \(\overline{m} = \max(1,|m_i|) \), and \(< (a_1, \ldots, a_s), (b_1, \ldots, b_s) >= a_1b_1 + \ldots + a_sb_s \).

Lemma A (see [Ko2, p. 1]). Let \(\beta \) be a real number, \(M \) and \(N \) natural, then

\[
\left|\sum_{n=M}^{M+N-1} e(n\beta)\right| \leq \min\left(N, \frac{1}{2\|\beta\|}\right),
\]

where \(\|\beta\| = \min(\{\beta\}, 1 - \{\beta\}) \) and \(\{\beta\} \) is the fractional part of \(\beta \).

Lemma B (see [Ko2, p. 72]). Let \(P \geq 2, (a, P) = 1 \), then for any real \(\varphi \)

\[
\sum_{n=1}^{P} \min\left(P, \frac{1}{an/P + \varphi}\right) \leq 8P(1 + \log P).
\]

Lemma C (see [Ko2, p. 2]). Let

\[
\delta_q(a) = \begin{cases}
1, & \text{if } a \equiv 0 \pmod{q} \\
0, & \text{else}
\end{cases}
\]

where \(q \geq 1, a \in \mathbb{Z} \). Then

\[
\delta_q(a) = \frac{1}{q} \sum_{x=1}^{q} e\left(\frac{ax}{q}\right).
\]
3. Proof of the Theorem

Lemma 1. Let $0 < |m| \leq p^j$, $0 \leq l < k_0j$. Then there exists $j_0 > 0$, such that for all $j \geq j_0$, we have

\[
\langle m, b_0A^{l-2k_0j} \rangle > \max_{1 \leq i \leq s} \frac{|b_{0i}|}{p^j},
\]

where $b_0 = (b_{01}, \ldots, b_{0s})$, $m = (m_1, \ldots, m_s)$.

Proof. Let us denote

\[
\lambda_{\min} = \min_{1 \leq i \leq s} |\lambda_i|, \quad \lambda_0 = \frac{\lambda_{\min} + 1}{2}, \quad a_{ik} = a_{ik}(t) = (A^{-t})_{ik}, \quad 1 \leq i, k \leq s.
\]

Using Jordan’s form of the matrix A, we obtain

\[
a_{ik}(t) = o \left(\lambda_0^{-t} \right),
\]

(7)

Bearing in mind (3), we obtain

\[
\lambda_0^{-j_0} < p^{-2j}, \quad a_{ik}(-l + 2k_0j) = o(p^{-2j}), \quad i, k = 1, \ldots, s.
\]

(8)

Hence

\[
\langle m, b_0A^{l-2k_0j} \rangle = \left| \sum_{i,k=1}^{s} m_i b_{0k} (A^{l-2k_0j})_{ki} \right| = o \left(p^{-j} \max_{1 \leq k \leq s} |b_{0k}| \right).
\]

Lemma 1 is proved. □

Lemma 2. Let $0 < |m| \leq p^j$, $m = (m_1, \ldots, m_s)$, $j \geq j_0$, $0 \leq l < k_0j$.

\[G(m, j) = \{ \langle m, bA^{l-2k_0j} \rangle \mid b \in F_j \} \]

and $v_0 = \#G(m, j)$.

Then

\[G(m, j) = \left\{ \frac{\mu}{v_0}, \quad 0 \leq \mu < v_0 \right\}
\]

with

\[\#G(m, j) > p^j,
\]

where $\#G(m, j)$ is the number of elements of $G(m, j)$.

Proof. Bearing in mind that A is an integer matrix, we get

\[
\{ \langle m, bA^{l-2k_0j} \rangle \} = \frac{\mu}{v_1(b)},
\]

where $\mu = \mu(b) \geq 0$, $v_1(b)$ are integer numbers. Let $v_2 = \max_{b \in F_j} v_1(b)$ and let

\[
\{ \langle m, b_0A^{l-2k_0j} \rangle \} = \frac{\mu}{v_2}, \quad (\mu, v_2) = 1
\]

22
DISCREPANCY ESTIMATE OF NORMAL VECTORS

for some \(b_0 \in F_j \). Taking into account that \(G(m,j) \) is the group, we obtain

\[
\{ (nm, b_0 A^{l-2k\sigma_j}) \} = \left\{ \frac{n\mu}{v_2} \right\} \in G(m,j), \quad 0 \leq n \leq v_2 - 1.
\]

Hence, there exists an integer \(n_0 \) with \(\{ n_0 m, b_0 A^{l-2k\sigma_j} \} = 1/v_2 \) and also \(\{ n/v_2 \} \in G(m,j) \) for all \(n \in [0, v_2) \). Suppose that there exists \(b \in F_j \) with \(\mu(b)/v_1(b) \notin \{ 0, 1/v_2, \ldots, (v_2 - 1)/v_2 \} \). This means that \(v_1(b) \nmid v_2 \) and \(v_1(b) < v_2 \).

Therefore there exists \(d \geq 1 \) such that \(d/v_1(b) \) and \((d, v_2) = 1 \). Bearing in mind that \(\{ h\mu/v_1(b) \} \in G(m,j) \) \((0 \leq h < v_1(b)) \), we have \(\{ h/d \} \in G(m,j) \) for \(h \in [0, v_1(b)) \).

Hence

\[
\left\{ \frac{n}{v_2} + \frac{h}{d} \right\} \in G(m,j) \quad (0 \leq n < v_2, \ 0 \leq h < d) \quad \text{and} \quad \left\{ \frac{l}{v_2d} \right\} \in G(m,j)
\]

for \(l \in [0, v_2d - 1] \). But \(v_2 = \max_{b \in F_j} v_1(b) \). We have the contradiction. Then, \(\gamma = (\gamma_1, \ldots, \gamma_s) = mA^{l-2k\sigma_j} \).

We have that there exist integers \(c_1, \ldots, c_s \geq 0 \) with

\[
|\langle m, b_0, A^{l-2k\sigma_j} \rangle| = |\langle \gamma, b_0, i \rangle| = |\gamma_i| = \frac{c_i}{v_2}.
\]

According to Lemma 1, \(c_i/v_2 < 1/p^j \), \(i = 1, \ldots, s \). Taking into account that \(|m| > 0 \), we obtain \(\gamma \neq 0 \). Therefore there exists \(i_0 \) with \(c_{i_0} > 0 \). Thus \(v_2 > p^j \).

Lemma 2 is proved.

Lemma 3. Let \(\varphi \) be a real number, \(0 < |m| \leq p^j \), \(m = (m_1, \ldots, m_s) \), \(j \geq j_0 \). Then

\[
\sigma_1(j) := \frac{1}{q^{2k\sigma_j}} \sum_{b \in F_j} \min \left(p^j \frac{1}{2 \| (m, bA^{l-2k\sigma_j}) + \varphi \|} \right) = O(j),
\]

where the \(O \)-constant does not depend on \(\varphi, m, \) and \(l \).

Proof. Bearing in mind that \(b \rightarrow \{ (m, b A^{l-2k\sigma_j}) \} \), where \(b \in F_j \), is a group homomorphism, we get

\[
\# \{ b \in F_j \mid \{ (m, b A^{l-2k\sigma_j}) \} = g \} = \# \{ b \in F_j \mid \{ (m, b A^{l-2k\sigma_j}) \} = 0 \}
\]

for all \(g \in G(m,j) \). Hence, using Lemma 2, we obtain

\[
\frac{1}{q^{2k\sigma_j}} \sum_{b \in F_j} \min \left(p^j, \frac{1}{2 \| (m, b A^{l-2k\sigma_j}) + \varphi \|} \right) = \frac{1}{v_0} \sum_{\mu=1}^{v_0} \min \left(p^j, \frac{1}{2 \| \mu/v_0 + \varphi \|} \right),
\]

23
Applying Lemma B, we have
\[
\sigma_1(j) \leq \frac{1}{v_0} \sum_{\mu=1}^{m_0} \min \left\{ v_0, \frac{1}{2\|\mu/v_0 + \varphi\|} \right\} \leq 8(1 + \log v_0).
\]

Taking into account that \(v_0 = \#G(m, j) \leq \#F_j = q^{2k_0j} \), we obtain the assertion of the lemma.

Let us denote
\[
S_0(m, l, R, b_{0,j}, b_{1,j}, b_{2,j}) = \sum_{n=0}^{R-1} e \left(\langle m, b_{2,j}(n-1)A^{l-k_0j} + b_{0,j}nA^{l-2k_0j} + \{b_{1,j}nA^{-2k_0j}\}A^{l-k_0j}\rangle \right),
\]

\[
S_1(m, l, R, b_{0,j}, b_{1,j}, b_{2,j}) = \sum_{n=0}^{R-1} e \left(\langle m, b_{0,j}nA^{l-k_0j} + b_{1,j}nA^{l-2k_0j} + \{b_{2,j}nA^{-2k_0j}\}A^{l-k_0j}\rangle \right),
\]

\[
S_2(m, l, R, b_{0,j}, b_{1,j}, b_{2,j}) = \sum_{n=0}^{R-1} e \left(\langle m, b_{1,j}nA^{l-k_0j} + b_{2,j}nA^{l-2k_0j} + \{b_{0,j}(n+1)A^{-2k_0j}\}A^{l-k_0j}\rangle \right),
\]

\[
\beta_0 = \langle m, b_{2,j}A^{l-k_0j}\rangle + \langle m, b_{0,j}A^{l-2k_0j}\rangle - \frac{1}{q^{2k_0j}}(z, b_{1,j}q^{2k_0j}A^{-2k_0j}),
\]

\[
\beta_1 = \langle m, b_{0,j}A^{l-k_0j}\rangle + \langle m, b_{1,j}A^{l-2k_0j}\rangle - \frac{1}{q^{2k_0j}}(z, b_{2,j}q^{2k_0j}A^{-2k_0j}),
\]

\[
\beta_2 = \langle m, b_{1,j}A^{l-k_0j}\rangle + \langle m, b_{2,j}A^{l-2k_0j}\rangle - \frac{1}{q^{2k_0j}}(z, b_{0,j}q^{2k_0j}A^{-2k_0j}).
\]

Lemma 4. For \(\nu = 0, 1, 2 \), we have
\[
|S_{\nu}(m, l, p^j - 1, b_{0,j}, b_{1,j}, b_{2,j})| \leq \sum_{z_1, \ldots, z_{\nu}=0}^{q^{2k_0j}-1} \min \left(\frac{1}{2\|\beta\|}, \frac{1}{2\|\beta\|} \right) \prod_{i=1}^{s} \min \left(1, \frac{1}{2q^{2k_0j}\|m_1a_{i1} + \ldots + m_s a_{is} + z_i\|} \right),
\]

where \((a_{ij})_{i,j=1}^{s} = A^{l-2k_0j} \).

Proof. It is easy to see that \(A^{-1} = B_0/\det A \), where \(B_0 \) is an integer matrix, so \(A^{-2k_0j} = B_1/q^{2k_0j} \), where \(B_1 \) is an integer matrix. Let \(b_1 \in F_j, n \in \mathbb{Z} \) and
$k \equiv nq^{2k_0j}b_1A^{-2k_0j} \ (mod q^{2k_0j}Z^*)$ with $k = (k_1, \ldots, k_s) \in Z^* \cap [0, q^{2k_0j})^s$. Hence
\[\{nb_1A^{-2k_0j} \} = k/q^{2k_0j}. \]

Let $\nu = 0$. Removing a fractional part, we get
\[
S_0(m, l, p^j - 1, b_{0,j}, b_{1,j}, b_{2,j}) = \sum_{k_1, \ldots, k_s = 0}^{q^{2k_0j} - 1} \sum_{n=0}^{p^j - 1} \sum_{z_1, \ldots, z_s = 0} \nu(m, b_{2,j}(n-1)A^{l-k_0j} + b_{0,j}nA^{l-2k_0j} + \frac{k}{q^{2k_0j}}A^{l-k_0j})
\]
\[\times \prod_{i=1}^s \delta_{q^{2k_0j}}(k_i - (b_{1,j}q^{2k_0j}A^{-2k_0j})n). \]

By Lemma C, we have
\[
|S_0(m, l, p^j - 1, b_{0,j}, b_{1,j}, b_{2,j})| = \frac{1}{q^{2k_0j}s} \sum_{k_1, \ldots, k_s = 0}^{q^{2k_0j} - 1} e \left(\nu(m, b_{2,j}(n-1)A^{l-k_0j}) \right)
\]
\[
+ b_{0,j}nA^{l-2k_0j} + \frac{k}{q^{2k_0j}}A^{l-k_0j})e((z, \frac{k - b_{1,j}q^{2k_0j}A^{-2k_0j}n}{q^{2k_0j}}))
\]
\[\times \prod_{n=0}^{p^j - 1} \nu \left(m, b_{2,j}A^{l-k_0j} + m, b_{0,j}A^{l-2k_0j} - \frac{1}{q^{2k_0j}}(z, b_{1,j}q^{2k_0j}A^{-2k_0j}) \right) \]
\[= \frac{1}{q^{2k_0j}s} \sum_{k_1, \ldots, k_s = 0}^{q^{2k_0j} - 1} \sum_{z_1, \ldots, z_s = 0} \nu \left(\nu(n, b_{2,j}A^{l-k_0j}) + \nu(m, b_{0,j}A^{l-2k_0j}) - \frac{1}{q^{2k_0j}}(z, b_{1,j}q^{2k_0j}A^{-2k_0j}) \right) \]
\[\leq \frac{1}{q^{2k_0j}s} \sum_{z_1, \ldots, z_s = 0} \nu(\nu(n, b_{0,j})) \sum_{n=0}^{p^j - 1} \nu(\nu(n, b_{2,j})), \quad (12) \]

where
\[\nu = \nu(m, kA^{l-k_0j}) - \frac{1}{q^{2k_0j}}(z, b_{2,j}A^{l-k_0j}) + \frac{1}{q^{2k_0j}}(z, k) \]
and β_0 defined in (10).

Let us approximate the following

$$\sigma := \left| \frac{1}{q^{2k_0}j} \sum_{k_1, \ldots, k_s = 0}^{q^{2k_0j} - 1} e(\varphi_0) \right| = \left| \frac{1}{q^{2k_0}j} \sum_{k_1, \ldots, k_s = 0}^{q^{2k_0j} - 1} e \left(\frac{1}{q^{2k_0}j} \left(\langle m, kA^{l-k_0} \rangle + \langle z, k \rangle \right) \right) \right|.$$

We have for $(a_{ij})_{1 \leq i, j \leq s}$ that

$$\sigma = \left| \frac{1}{q^{2k_0}j} \sum_{k_1, \ldots, k_s = 0}^{q^{2k_0j} - 1} e \left(\frac{1}{q^{2k_0}j} \sum_{i=1}^{s} \left(k_i(m_1a_{i1} + \ldots + m_sa_{is} + z_i) \right) \right) \right|.$$

Using Lemma A, we get

$$\sigma \leq \prod_{i=1}^{s} \min \left(1, \frac{1}{2q^{2k_0}j \| \frac{m_1a_{i1} + \ldots + m_sa_{is} + z_i} {q^{2k_0}j} \|} \right)$$

and

$$\left| p^{l-1} \sum_{n=0}^{p^l} e(n\beta_0) \right| \leq \min \left(p^l, \frac{1}{2 \| \beta_0 \|} \right).$$

By (12) we obtain

$$|S_0(m, l, p^l - 1, b_0, j, b_1, j, b_2, j)| \leq \sum_{z_1, \ldots, z_s = 0}^{q^{2k_0j} - 1} \min \left(p^l, \frac{1}{2 \| \beta_0 \|} \right) \prod_{i=1}^{s} \min \left(1, \frac{1}{2q^{2k_0}j \| \frac{m_1a_{i1} + \ldots + m_sa_{is} + z_i} {q^{2k_0}j} \|} \right).$$

So, (11) is proved. In the same way we will get the inequalities for $\nu = 1$ and $\nu = 2$. Lemma 4 is proved.

Lemma 5. For $\nu = 0, 1, 2$ and $R \in [0, p^l)$, we have

$$|S_\nu(m, l, R, b_0, j, b_1, j, b_2, j)| \leq \sum_{m_{s+1} = -[p^l/2]}^{[p^l/2]} \frac{1}{m_{s+1}} \times \sum_{z_1, \ldots, z_s = 0}^{q^{2k_0j} - 1} \min \left(p^l, \frac{1}{\| \beta_0 \|} \right) \prod_{i=1}^{s} \min \left(1, \frac{1}{2q^{2k_0}j \| \frac{m_1a_{i1} + \ldots + m_sa_{is} + z_i} {q^{2k_0}j} \|} \right).$$

(15)
DISCREPANCY ESTIMATE OF NORMAL VECTORS

Proof. By the same way, as in Lemma 4 we get

\[|S_0(m, l, R, b_{0,j}, b_{1,j}, b_{2,j})| = \frac{1}{q^{2k_0j}} \left| \sum_{k_1, \ldots, k_s=0}^{q^{2k_0j} - 1} \sum_{z_1, \ldots, z_s=0}^{q^{2k_0j} - 1} e(\varphi_0) \sum_{n=0}^{R-1} e(n\beta_0) \right| , \]

where \(\varphi_0 \) defined in (13) and \(\beta_0 \) defined in (10).

Applying Lemma C, we have

\[R - \sum_{n=0}^{R-1} e(pj) = \frac{1}{p^j} \sum_{m_{s+1}=[p^j/2]}^{[p^j/2]} R - \sum_{n=0}^{R-1} e(n\beta_0 + \varphi_0) \frac{m_{s+1}n}{p^j} \]

According to [Ni, p. 35]

\[\frac{1}{p^j} \sum_{n=0}^{R-1} e \left(\frac{m_{s+1}n}{p^j} \right) \leq \frac{1}{m_{s+1}}, \quad 1 \leq R \leq p^j. \]

Now the proof of the following inequality is the same as that of [Ko2, p. 13].

\[R - \sum_{n=0}^{R-1} e \left(n\beta_0 + \varphi_0 \right) \frac{m_{s+1}n}{p^j} \]

Therefore

\[|S_0(m, l, R, b_{0,j}, b_{1,j}, b_{2,j})| \leq \frac{1}{q^{2k_0j}} \times \frac{1}{m_{s+1}} \left| \sum_{k_1, \ldots, k_s=0}^{q^{2k_0j} - 1} \sum_{z_1, \ldots, z_s=0}^{q^{2k_0j} - 1} e(\varphi_0) \sum_{n=0}^{R-1} e(n\beta_0 + \varphi_0) \frac{m_{s+1}n}{p^j} \right| . \]

Using Lemma A, (13), and (14), we get
\[|S_0(m, l, R, b_{0,j}, b_{1,j}, b_{2,j})| \leq \sum_{m+s = -\lfloor \frac{p^j}{2} \rfloor}^{\lfloor \frac{p^j}{2} \rfloor} \frac{1}{m+s+1} \]

\[\times \sum_{z_1, \ldots, z_s=0}^{q^{2k_0j}-1} \min \left(\frac{p^j}{2} \left\| \hat{\beta}_0 + \frac{m_{s+1}}{m_s} \right\| \right) \prod_{i=1}^{s} \min \left(1, \frac{1}{2q^{2k_0j} \left\| m_{s+1} + \ldots + m_1 + z_i \right\|} \right). \]

Hence (15) is proved for \(\nu = 0 \). In the same way, we will get (15) for \(\nu = 1 \) and \(\nu = 2 \). Lemma 5 is proved.

Let

\[S^{(1)}(m, j) = \sum_{m=0}^{2} \frac{1}{m_1 \ldots m_{s}} \]

\[\times \sum_{z_1, \ldots, z_s=0}^{q^{2k_0j}-1} \min \left(\frac{p^j}{2} \left\| \hat{\beta}_0 + \frac{m_{s+1}}{m_s} \right\| \right) \prod_{i=1}^{s} \min \left(1, \frac{1}{2q^{2k_0j} \left\| m_{s+1} + \ldots + m_1 + z_i \right\|} \right), \]

\[S^{(2)}(m, j) = \sum_{m+s = -\lfloor \frac{p^j}{2} \rfloor}^{\lfloor \frac{p^j}{2} \rfloor} \frac{1}{m_1 \ldots m_{s+1}} \]

\[\times \sum_{z_1, \ldots, z_s=0}^{q^{2k_0j}-1} \min \left(\frac{p^j}{2} \left\| \hat{\beta}_0 + \frac{m_{s+1}}{m_s} \right\| \right) \prod_{i=1}^{s} \min \left(1, \frac{1}{2q^{2k_0j} \left\| m_{s+1} + \ldots + m_1 + z_i \right\|} \right), \]

\[T_i(b_{0,j}, b_{1,j}, b_{2,j}) = \sum_{l=0}^{k_0j-1} S^{(i)}(m, j), \]

where \(M = \lfloor \frac{p^j}{2} \rfloor, i = 1, 2. \)

Lemma 6. Let us take \(b_{0,j}, b_{1,j}, b_{2,j} \) so that

\[T_1(b_{0,j}, b_{1,j}, b_{2,j}) + T_2(b_{0,j}, b_{1,j}, b_{2,j})/j \]

will be minimal. Then

\[T_1(b_{0,j}, b_{1,j}, b_{2,j}) = O(j^{2s+2}) \]

and

\[T_2(b_{0,j}, b_{1,j}, b_{2,j}) = O(j^{2s+3}). \]

28
DISCREPANCY ESTIMATE OF NORMAL VECTORS

Proof. Consider the mean values
\[
\tilde{T}_i = \frac{1}{q^{k_{0,j}} b_0, b_1, b_2 \in F_j} T_i(b_0, b_1, b_2), \quad i = 1, 2. \tag{18}
\]

It is easy to see that Lemma 6 goes after from the following assertion
\[
\tilde{T}_1 + \tilde{T}_2/j = O(j^{2s+2}). \tag{19}
\]

Let
\[
\sigma_1 = \frac{1}{q^{k_{0,j}} b_0, b_1, b_2 \in F_j} \sum \min \left(p', \frac{1}{2\|\beta\|} \right).
\]

According to (10) and Lemma 3, we have
\[
\sigma_1 = \frac{1}{q^{k_{0,j}} b_0, b_1, b_2 \in F_j} \sum \min \left(p', \frac{1}{2\|m, b_0 A l - 2k_{0,j}^2 + \varphi(z, b_0, b_2) \|} \right) = O(j),
\]
where the \(O\)-constant does not depend on \(z, l\).

By (16) and (17) we obtain
\[
\tilde{T}_1 = O \left(\sum_{0 < \max |m_i| \leq M} \frac{j^2}{m_1 \ldots m_s} \sum_{z_1, \ldots, z_s = 0} q^{2k_{0,j}} \prod_{i=1}^s \min \left(1, \frac{j^2}{q^{2k_{0,j}}} \| \frac{1}{q^{2k_{0,j}}} m_1 a_1 + \ldots + m_s a_s + z_i \| \right) \right).
\]

Using Lemma B, we get:
\[
\sum_{z_1, \ldots, z_s = 0} q^{2k_{0,j}} \prod_{i=1}^s \min \left(1, \frac{j^2}{q^{2k_{0,j}}} \| \frac{1}{q^{2k_{0,j}}} m_1 a_1 + \ldots + m_s a_s + z_i \| \right) \leq (8(1 + 2 \log(q^{2k_{0,j}}))^s = O \left((\log q^{2k_{0,j}})^s \right) = O(j^s),
\]

and we have
\[
\sum_{0 < \max |m_i| \leq p'/2} \frac{1}{m_1 \ldots m_s} \leq (3 + 2 \log p')^s = O(j^s).
\]

Thus
\[
\tilde{T}_1 = O(j^{2s+2}). \tag{20}
\]

Approximation for \(\tilde{T}_2\) is the same as for \(\tilde{T}_1\). So we get
\[
\tilde{T}_2 = O(j^{2s+3}). \tag{21}
\]

Now from (18), (20) and (21), we get (19) and the assertion of the lemma. \(\square\)

We will use vectors \(b_{0,j}, b_{1,j}, b_{2,j} (j = 1, 2, \ldots)\) in (5).
Completion of the proof of the Theorem

Let us decompose our interval \([1, N]\) into subintervals:

\[[1, n_2), [n_2, n_3), \ldots, [n_{r-1}, n_r), [n_r, N],\]

where \(n_{r+1} > N \geq n_r\) (see (4)). Hence by (4)

\[4k_0rp^r > N \geq (r - 1)p^{r-1}.\] \hspace{1cm} (22)

Let us take a full interval, i.e., \(k \in [n_j, n_{j+1})\), where \(j = 2, \ldots, r - 1,\)
\[k = n_j + k_0j(3n^* + \nu^*) + l^*, \hspace{0.5cm} 0 \leq l^* < k_0j, \hspace{0.5cm} 0 \leq n^* \leq p^j - 1, \hspace{0.5cm} 0 \leq \nu^* \leq 2.\] \hspace{1cm} (23)

By (5) we have:
\[
\alpha A^k = \sum_{m=1}^{\infty} \sum_{n=0}^{p^m-1} \sum_{\nu=0}^{2} \{nb_{v,m}A^{-2k_0m}\} A^{k-(n_m+k_m(3n+\nu))} \\
= \sum_{m=1}^{\infty} \sum_{n=0}^{p^m-1} \sum_{\nu=0}^{2} \{nb_{v,m}A^{-2k_0m}\} A^{n_j+k_0j(3n^*+\nu^*)+l^*-(n_m+k_m(3n+\nu))}.
\]

Let
\[R_{\nu^*, n^*} = \sum_{m=j}^{\infty} \sum_{n=0}^{p^m-1} \sum_{\nu=0}^{2} \{nb_{v,m}A^{-2k_0m}\} A^{n_j+k_0j(3n^*+\nu^*)+l^*-(n_m+k_m(3n+\nu))}.
\]

We have, for example, for \(\nu^* = 0\)
\[
R_{0, n^*} = \sum_{n=n^*+1}^{p^j-1} \{nb_{0,j}A^{-2k_0j}\} A^{3k_0jn^*+l^*-3k_0jn} \\
+ \{nb_{1,j}A^{-2k_0j}\} A^{3k_0jn^*+l^*-(3k_0jn+k_0j)} \\
+ \sum_{n=n^*}^{p^j-1} \{nb_{2,j}A^{-2k_0j}\} A^{3k_0jn^*+l^*-(3k_0jn+2k_0j)} \\
+ \sum_{m=j+1}^{\infty} \sum_{n=0}^{p^m-1} \sum_{\nu=0}^{2} \{nb_{v,m}A^{-2k_0m}\} A^{n_j+3k_0jn^*+l^*-(n_m+k_m(3n+\nu))}.
\]

Bearing in mind that
\[
\{nb_{v,m}A^{-2k_0m}\} A^{n_j+k_0j(3n^*+\nu^*)+l^*-(n_m+k_m(3n+\nu))} = 0
\]
DISCREPANCY ESTIMATE OF NORMAL VECTORS

for \(n_j + k_0j(3n^* + \nu^*) + l^* - (n_m + k_0m(3n + \nu)) \geq 2k_0m\), we obtain

\[
\{\alpha A^k\} = \{f_{\nu^*,n^*} + R_{\nu^*,n^*}\},
\]

(24)

for \(n^* \neq 0\) and \(n^* \neq p^j - 1\), where

\[
f_{0,n^*} = \{b_2(n^* - 1)A^{-2k_0j}\}A^{l^*+k_0j} + \{b_0n^*A^{-2k_0j}\}A^{l^*-k_0j},
\]

\[
f_{1,n^*} = \{b_0n^*A^{-2k_0j}\}A^{l^*+k_0j} + \{b_1n^*A^{-2k_0j}\}A^{l^*-k_0j},
\]

\[
f_{2,n^*} = \{b_1(n^* - 1)A^{-2k_0j}\}A^{l^*+k_0j} + \{b_2n^*A^{-2k_0j}\}A^{l^*-k_0j}.
\]

Let us approximate \(R_{0,n^*}\). By (7) and (23) we have

\[
R_{0,n^*} = O\left(\sum_{n=n^*+1}^{p^j-1} \lambda^j_0 n^{j+2l} - 3k_0n\right)
\]

\[+
\sum_{n=n^*}^{p^j-1} \lambda^j_0 n^{j+2l} - 3k_0n + \sum_{m=j+1}^{\infty} \sum_{n=0}^{p^m-1} \sum_{\nu=0}^2 \lambda_a n_j + 3k_0n^{j+2l} - (n_m + k_0m(3n + \nu))\right).
\]

According to (4) and (8), we obtain

\[
R_{\nu^*,n^*} = O(\lambda_0^{-k_0j} + \sum_{n \geq 0} \lambda_0^{-k_0j-n}) = O(\lambda_0^{-k_0j}) = O(p^{-2j})
\]

for \(\nu^* = 0\). We have the same estimate for \(\nu^* = 1, 2\).

Using the inequality

\[
|e(x) - 1| = |2\sin(\pi x)| \leq 2\pi|x|,
\]

we get

\[
|e(< m, f_{\nu^*,n^*} + R_{\nu^*,n^*} >) - e(< m, f_{\nu^*,n^*} >)| = |e(< m, R_{\nu^*,n^*} > - 1)|
\]

\[\leq 2\pi |< m, R_{\nu^*,n^*} >| \leq 2\pi |m||R_{\nu^*,n^*}| \leq 2\pi sp^j |R_{\nu^*,n^*}| = O(p^{-j}).
\]

By (1) we have the trivial estimate

\[
LD\left(\left(\frac{x_n}{h_n}\right)^{j+L-1}\right) \leq L, \quad L = 1, 2, \ldots
\]

Hence by (23), (24) and (6), we get

\[
(n_j + 1 - n_j)D(\{\alpha A^k\})^{n_j+1-1}_{k=n_j}
\]

\[\leq \sum_{l^*=0}^{k_0j-1} \sum_{\nu^*=0}^2 \left(p^j - 2\right)D((f_{\nu^*,n^*} + R_{\nu^*,n^*}))^{p^j-2}_{n^*=1 + 2}\]

31
\[
\leq \sum_{l^* = 0}^{k_0 j - 1} \sum_{\nu^* = 0}^{2} \left(p^j D((f_{\nu^* n^*} + R_{\nu^* n^*})|_{n^* = 0}^{n^* - 1} + 4) \right) \leq \left(\frac{3}{2} \right)^s
\]

\[
\times \left(\frac{p^j}{M} + 12k_0 j + \sum_{\nu^* = 0}^{k_0 j - 1} \sum_{l^* = 0}^{2} \sum_{0 < \max|m_i| \leq M} \left| \sum_{n^* = 0}^{p^j - 1} e(< m, (f_{\nu^* n^*} + R_{\nu^* n^*})>) \right| \right)
\]

\[
= O \left(j + \sum_{0 < \max|m_i| \leq M} \sum_{l^* = 0}^{k_0 j - 1} \sum_{\nu^* = 0}^{2} \left| \sum_{n^* = 0}^{p^j - 1} e(< m, f_{\nu^* n^*}>) \right| + 1 \right)
\]

with \(M = \lfloor p^j/2 \rfloor \). According to (9), we obtain

\[
(n_{j+1} - n_j) D({\alpha A^k}_{k = n_j}^{n_{j+1} - 1}) = O(j^{2s+2})
\]

Applying Lemma 4, (16), (17) and Lemma 6, we get

\[
(n_{j+1} - n_j) D({\alpha A^k}_{k = n_j}^{n_{j+1} - 1}) = O(j^{2s+2})
\]

for any full interval \([n_j, n_{j+1}], 2 \leq j \leq r - 1\).

Consider the not full interval \([n_r, N]\). Using Lemma 5 and Lemma 6 we get, similarly, that

\[
(N - n_r + 1) D({\alpha A^k}_{k = n_r}^{N}) = O(r^{2s+3}).
\]

So, finally, we have the following:

\[
ND \left({\alpha A^k}_{k = 1}^{N} \right) \leq (n_2 - 1) D({\alpha A^k}_{k = 1}^{n_2}) + \sum_{j=2}^{r-1} (n_{j+1} - n_j) D({\alpha A^k}_{k = n_j}^{n_{j+1}}) + (N - n_r + 1) D({\alpha A^k}_{k = n_r}^{N})
\]

\[
= O(1) + \sum_{j=2}^{r-1} O(j^{2s+2}) + O(r^{2s+3}) = O(r^{2s+3}).
\]

Now by (22), we obtain

\[
D({\alpha A^k}_{k = 1}^{N}) = O \left(N^{-1} (\log N)^{2s+3} \right).
\]

The Theorem is proved. \(\square\)
ACKNOWLEDGMENT. We are very grateful to the referee for his corrections and suggestions.

REFERENCES

Received February 26, 2008
Accepted June 22, 2008

Mordechay B. Levin
Department of Mathematics
Bar–Ilan University
Ramat-Gan, 52900, ISRAEL
E-mail: mlevin@math.biu.ac.il

Irina L. Volinsky
Department of Mathematics
Bar–Ilan University
Ramat-Gan, 52900, ISRAEL
E-mail: volinskaya.j@yahoo.com

33