THE UNIFORM DISTRIBUTION OF FRACTIONAL PARTS OF RECURRENT SEQUENCES

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1979 Russ. Math. Surv. 34 207
(http://iopscience.iop.org/0036-0279/34/3/A12)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 109.66.149.186
This content was downloaded on 13/07/2017 at 10:07

Please note that terms and conditions apply.

You may also be interested in:

Nikolai Mikhailovich Korobov (on his seventieth birthday)
V A Bykovskii, N I Fel'dman, O V Lokutsievskii et al.

Weighted averages, uniform distribution, and strict ergodicity
Valerii V Kozlov

Some Invariants of the Silk Quasi-lattices
Luan Chang-Fu

Uniform distribution and Vorono convergence
Valerii V Kozlov and T Madsen

Katsuyuki Yamashita, Seiji Maruyama, Akane Yamakawa et al.

Uniform distribution of non-divisible vectors in an integer space
V I Arnold

On finding moment functions for the solution of the Cauchy problem for the diffusion equation with random coefficients
V G Zadorozhnii

Processing and characterization of Al-Al3Nb prepared by mechanical alloying and equal channel angular pressing
P Chandran, A Zafari, E W Lui et al.
THE UNIFORM DISTRIBUTION OF FRACTIONAL PARTS OF RECURRENT SEQUENCES

M. B. Levin and I. E. Shparlinskii

Let \(f(\lambda) = \lambda^n - a_{n-1}\lambda^{n-1} - \ldots - a_0 \) be a polynomial with integer coefficients of degree \(n > 1 \) and reducible over \(\mathbb{Z} \), let \(\lambda_1, \ldots, \lambda_n \) be the roots of \(f(\lambda) \) and \(D \) the discriminant.

We consider the recurrence equation with the characteristic polynomial \(f(\lambda) \):

\[
\Psi(x + n) = a_{n-1}\Psi(x + n - 1) + \ldots + a_0\Psi(x) \quad (x = 1, 2, \ldots).
\]

Let \((\omega(x)) \) (for \(x = 1, 2, \ldots \)) be some sequence of real numbers satisfying (1), with the initial conditions \(\omega(v) = \omega_v \) for \(v = 1, \ldots, n \).

If \(0 < \sigma < 1 \) and \(\rho \geq 1 \) is an integer, let \(N_\sigma(P) \) be the number of solutions of the inequality

\[
\{\omega(x)\} < \sigma, \quad \text{for} \quad x = 1, \ldots, P.
\]

The quantity \(N_\sigma(P) \) has been most extensively studied in the case \(n = 1 \), that is, when \(\omega(x) = \omega_1 \chi^x \) is an exponential function with an integer base. For example, Korobov [1] has constructed, for prime \(\lambda \), a \(\omega_1 \) such that

\[
N_\sigma(P) = aP + O(P^{1/3} \log P^{4/3}).
\]

In [2] this result was extended to any integer \(\lambda_1 > 1 \). For \(n > 1 \) examples of uniformly distributed sequences were given in [3], [4], and [5]. It follows from [6] that for almost all initial conditions

\[
\limsup_{P \to \infty} \max \{ N_\sigma(P) - aP / P^{1/3} \} > 0.
\]

A more detailed survey can be found in [7].

In this note we construct, for any \(n > 1 \) and \(\lambda_1, \ldots, \lambda_n \) (for \(x = 1, 2, \ldots, n \)), initial conditions \(\omega_1, \ldots, \omega_n \) such that the sequence \((\omega(x)) \) (for \(x = 1, 2, \ldots \)) satisfies (2).

We denote by \(\Gamma_k \) the exponent of \(q_k \) modulo \(p_k \) (for \(k = 1, 2, \ldots \)). Because the polynomials \(f(\lambda) \) and \(\lambda^{T_1} - 1 \) are relatively prime, it follows that there is a \(\beta \) such that \(T_1 = \ldots = T_\beta \neq T_{\beta+1} \).

LEMMA 1. For an integer \(k > \beta \), \(\Gamma_k = \Gamma \cdot \chi^{p_k - \beta} \).

The proof follows from Lemma 1 of [8].

Let \(n_0 = 0, n_{k+1} = n_k + [p_k^{k/2} k^2] \cdot \Gamma_k \) (for \(k = 1, 2, \ldots \)), and suppose that only the first \(m \) of the roots \(\lambda_1, \ldots, \lambda_n \) are of modulus greater than 1. For integers \(a_{i, r} \in \{0, p^r\} \) we set

\[
A_{\nu, k} = \sum_{r=1}^{k} \lambda_\nu^{-n_r} \chi^{p_k - r} \sum_{i=1}^{n_r} a_i k^{\lambda_\nu^{-1}} \quad (\nu = 1, \ldots, m; \quad k = 1, 2, \ldots).
\]

LEMMA 2. There exist integers \(a_{i, r} \in \{0, p^r\} \) such that

\[
A_{1, 1} + \ldots + A_{n, 1} \equiv q_1^1 \left(\text{mod } p^r \right) \quad (i = 1, \ldots, n; \quad r = 1, 2, \ldots).
\]

If the integers \(a_{i, j} \) (for \(i = 1, \ldots, n \) and \(j = 1, \ldots, r - 1 \)) are defined, then for the choice of \(a_{i, r} \) (for \(i = 1, \ldots, n \)) we obtain a system of \(n \) linear congruences with the determinant \(a_0 D = 0 \) (mod \(p \)).

Suppose that the \(a_{i, r} \) are chosen as indicated in Lemma 2. We set

\[
\theta_v = \sum_{r=1}^{\infty} \lambda_v^{-n_r} \chi^{p_r - r} \sum_{i=1}^{n_r} a_i k^{\lambda_v^{-1}} \quad (\nu = 1, \ldots, m),
\]

\[
\omega_v = \theta_1 \lambda_1^{-1} + \ldots + \theta_m \lambda_m^{-1} \quad (\nu = 1, \ldots, n).
\]

LEMMA 3. Suppose that \(\lambda_v \neq 1 \) for \(\nu = 1, \ldots, n \); let \(\omega(x) \) (for \(x = 1, 2, \ldots \)) be a sequence satisfying (1) with the initial conditions (4). Then
\{ \omega (n r + x) \} = \{ q r^2 + o (r^2) \},
\quad x = r^2, \ldots, \lceil p^2 r^2 \rceil - r^2 \quad (r = 1, 2, \ldots).

The lemma follows from Lemma 2, from (4), and the relation
\[\theta_v = A_v h^{-n_2} p^{-h} + O (h^{-n_2+1}) \quad (v = 1, \ldots, m). \]

THEOREM. Suppose that \(| \lambda_v | \neq 1 \) for \(v = 1, \ldots, n \); let \(\omega(x) \) for \(x = 1, 2, \ldots \) be a sequence satisfying (1) with initial conditions determined by (4). Then the following asymptotic formula holds:
\[N_\sigma (P) = a P + O (P^{1/3} (\log P)^{1/2}). \]

The proof follows immediately from Lemma 3 and the estimates obtained in [2].

REMARK 1. If \(m = 1 \), that is, if \(\lambda_1 \) is a Pisot number, then the uniform distribution remainder of the sequence \(\{ \theta_1 x^2 \} \) for \(x = 1, \ldots, P \) is \(O (P^{1/3} (\log P)^{1/3}) \).

REMARK 2. It is easy to see that the condition on \(f(\lambda) \) to be irreducible involves no loss of generality.

REMARK 3. A similar method allows us to obtain a generalization of this result to the case of a recurrent sequence of \(\nu \)-dimensional vectors.

References

[5] M. B. Levin, The uniform distribution of the sequence \(\{ \alpha \lambda^x \} \), Mat. Sb. 98 (1975), 207–222. MR 53 #10732.
[6] V. P. Leonov, Nekotorye primeneniya starshikh semiinvariantov k teorii stationarnykh sluchainykh protsessov (Some applications of higher semi-invariants to the theory of stationary random processes), Nauka, Moscow 1964. MR 30 #5371.

Received by the Editors 24 May 1978