Characterizations of multiparameter Cox and Poisson processes by the renewal property

Ely Merzbach
Department of Mathematics
Bar-Ilan University
52900 Ramat Gan
ISRAEL
merzbach@macs.biu.ac.il

Yair Y. Shaki
Department of Mathematics
Bar-Ilan University
52900 Ramat Gan
ISRAEL
yair_sh@shoresh.org.il

June 3, 2007

Abstract

In the first part of this paper, we give two characterizations of the multiparameter Poisson process: one characterization of poisson process using the renewal property in the space \mathbb{R}^d_{+}, and the other one using the exponential distributions of random areas of rectangles. Finally, we generalize partly a characterization of the random measure associated with a renewal Cox process in \mathbb{R}^d_{+}.

Keywords: Multi-parameter renewal process, Poisson process, Cox process.

AMS 2000 Subject Classifications : 60K05, 60G55, 60G57.
1 Introduction

In recent years, there have been many new results on the dynamical properties of random processes indexed by a multidimensional time parameter or by a class of sets. In particular, Ivanoff and Merzbach [5] provide a definition of the renewal property for general point processes on \(\mathbb{R}_+^d \) in a manner that includes the Poisson process.

In the first part of this paper, we give two characterizations of the spatial Poisson process: one characterization using the renewal property in \(\mathbb{R}_+^d \), and the other one using the exponential distributions of random areas of rectangles. In the second part, we generalize partly a characterization of the random measure associated with a renewal Cox process in \(\mathbb{R}_+^d \).

2 Basic notation and definitions

The definitions and results in this section are taken from [5]. Points in \(T = \mathbb{R}_+^d \) will be denoted by lower case letters such as \(s \) or \(t \), and sets in \(T \) will be denoted by upper case letters. Families of sets in \(T \) will be denoted by script letters.

\(A \) is the collection of rectangles \(A_t := [0, t) \). For \(t \in T \), \(E_t \) denotes the “future” of \(t \): \(E_t = \{ s \in T : t \leq s \} = \{ s \in T : A_t \subseteq s \} \). \(A(u) \) is the collection of finite union of sets from \(A \). More generally, for any subset \(B \) of \(T \), its past is defined to be \(A(B) = \bigcup_{t \in B} A_t \). Finally, let \(C \) be the class of sets of the form \(C = A \setminus \bigcup_{i=1}^k A_i \) where \(A, A_i \in A \) and \(k \) is finite.

We assume the existence of a sufficiently rich probability space \((\Omega, \mathcal{F}, P) \) on which we define our processes (i.e., the probability space is assumed to be large enough so that each of the random elements defined subsequently is measurable).

Our processes will be indexed by \(A \), and more generally, when an \(A \)-indexed process induces a random measure on \(T \), it may be parameterized by the collection \(B \) of Borel sets of \(T \). Moreover, since a set in \(A \) is characterized by its upper right corner, we can identify any \(A \)-indexed process \(X \) with its \(T \)-indexed counterpart \(X_t = X_{[0,t]} = X_{A_t} \). For notational convenience, occasionally we shall use \(X(A) \) or \(X(t) \) instead of \(X_A \), respectively \(X_t \).

Let \(N = \{ N_{A_t} = N_t; t \in T \} \) be a point process (i.e., an integer-valued random measure; cf. [2]). We will always assume that \(N \) is locally finite (i.e., \(N_B < \infty \forall B, B \in B \) and \(B \) compact) and that \(N_t = 0 \) if one or more of the coordinates of \(t \) is 0.

Definition 2.1 Let \(N = \{ N_{A_t} = N_t; t \in T \} \) be a point process on \(T = \mathbb{R}_+^d \).

- \(N \) is simple if each realization of \(N \) satisfies \(N_{(t)} = 0 \) or \(1 \forall t \in T \). (Note the distinction between \(N_t = N_{A_t} \) and \(N_{(t)} \), the mass of \(N \) on the singleton \(\{t\} \).) If \(N_{(t)} = 1 \), then \(t \) is a jump point of \(N \).
- \(N \) is strictly simple if whenever \(t \) is a jump point of a realization of \(N \) \((N_{(t)} = 1) \), then \(N(\partial A_t) = 1 \) (i.e., there are no other jump points on \(\partial A_t \)).
Definition 2.2 For an arbitrary set $B \in B$,
$$\min(B) = \{t \in B : s \not\leq t, \forall s \in B \text{ such that } s \neq t\}.$$

Definition 2.3 For $B \in B$, we say that t is an exposed point of B if
- $t \in B,$
- $(E_t)^c \cap B = \emptyset$, and
- There exists $\epsilon > 0$ such that for each coordinate $t^{(i)}$ of $t = (t^{(1)}, \ldots, t^{(d)})$,
 $$A_{(t^{(1)}, \ldots, t^{(i-1)}, t^{(i)} + \delta, t^{(i+1)}, \ldots, t^{(d)})} \subseteq B \forall \delta \leq \epsilon.$$

The set of exposed points of B is denoted by $\varepsilon(B)$.

Definition 2.4 Let N be a point process.
- $\xi_n = \{t \in T : N_{[0,t)} < n\}, n = 1, 2, \ldots$
- $\xi^+ = \left(\bigcup_{k \neq j} (E_{\tau_k}^c \cap E_{\tau_j}^c)^c \right)^c$. ($\cdot^c$ denote the closure) If ξ_n has only one exposed point, then $\xi^+_n = T$.
- $\Delta_N := \{\tau : N(\tau) = 1\}$ is the set of jump points of the process N.

Definition 2.5 $\xi : \Omega \rightarrow A(u)$ is called a random set if for every $t \in T$,
$$\{\omega : t \in \xi(\omega)\} \in \mathcal{F}; \ i.e., \ \xi \text{ is a measurable mapping from } (\Omega, \mathcal{F}) \text{ into } (A(u), \sigma \{D \in A(u) : t \in D\}, t \in T).$$

The class of sets of the form $\{D \in A(u) : t_1, t_2, \ldots, t_n \in D\}$ for $t_1, t_2, \ldots, t_n \in T$ is a π-system generating $\mathcal{F}_{A(u)}$, so that $P\xi^{-1}$ is determined by
$$P\xi^{-1}\{D : t_1, \ldots, t_n \in D\} = P\{\omega : t_1, \ldots, t_n \in \xi(\omega)\}.$$

In other words, the distribution of a random set is characterized by these probabilities. We can define independence between random sets as usual (cf. [9],[10]): two random sets ξ and ξ' are said to be independent if
$$P\{t_1, \ldots, t_n \in \xi \cap \xi'\} = P\{t_1, \ldots, t_n \in \xi\}P\{t_1, \ldots, t_n \in \xi'\}$$
for all $t_1, \ldots, t_n \in T$.

We restrict our attention to bounded sets in order to ensure that we are able to number the jump points of a point process lexicographically.

We now come to the definition of a multi-parameter renewal process, as introduced in Ivanof and Merzbach [5].

We introduce the following notation: for an arbitrary Borel set B and $t \in T$,
$$B \ominus t = \{x - t : x \in B\}.$$

Definition 2.6 Let N be a strictly simple point process on R_+^d with associated ξ_i. N is a renewal point process if for every $i \geq 1$ and every $A \in A_i$,
1. For $i \geq 1$, given ξ_i, the random set $\left(E_{j_1} \cap \xi_{i+1} \cap A \right) \cup \tau_j(i)$ are independent, $\forall j$, where $\tau_1(i), \tau_2(i), \ldots$ are the exposed points of $\xi_i \cap A$, numbered lexicographically.

2. For $i, j \geq 1$, given ξ_i,

\[
\left(E_{j_1} \cap \xi_{i+1} \cap A \right) \cup \tau_j(i) = \mathcal{D} \xi \cap \left[\left(E_{j_1} \cap \xi_{i}^{+} \cap A \right) \cup \tau_j(i) \right]
\]

where “\equiv” denotes equality in distribution, ξ is a copy of ξ_1 independent of ξ_i, and $\tau_1(i), \tau_2(i), \ldots$ are the exposed points of $\xi_i \cap A$, numbered lexicographically.

Theorem 2.7 A Poisson process N on T is renewal if and only if it is homogeneous.

3 Characterizations of the Poisson process in \mathbb{R}^d_+

In this section, we give some new characterizations of the spatial Poisson process by the renewal property. These characterizations are very similar to classical characterizations of the one parameter Poisson process.

3.1 First Characterization

Let $A \in \mathcal{A}$ be given. The stochastic processes that we consider in this section are indexed by sets included in A.

Definition 3.1 Let ξ be a random set, $F_{\xi}(B) = P(B \subseteq \xi)$ for $B \in \mathcal{A}(u)$ is called the distribution function of ξ.

Proposition 3.2 Let $D = \bigcap_{i=1}^n E_{z_i}$, $D' = \bigcap_{i=1}^m E_{z_i'}$, where the points z_1, \ldots, z_n are incomparable and the points z_1', \ldots, z_m' are incomparable in \mathbb{R}^d_+. Then, the probability $P(\xi \in [D, D'])$ is determined by F_{ξ}.

Proof: Notice first that

- $P(\xi \subseteq D') = 1 - P(\xi \cap \{z'_1, \ldots, z'_m\} \neq \emptyset) = 1 - \sum_{i=1}^m F_{\xi}(A\{z'_i\}) - \sum_{i \neq j} F_{\xi}(A\{z'_i, z'_j\}) + \cdots + (-1)^{m+1} F_{\xi}(A\{z'_1, \ldots, z'_m\})).$

- $P(D' \subseteq \xi | D \subseteq \xi) = \frac{P(D')}{P_{\xi}(D)}$

- $P(\xi \in [D, D']) = P(\xi \subseteq D'| D \subseteq \xi) F_{\xi}(D) = \left[1 - \sum_{i=1}^m \frac{F_{\xi}(A\{z'_i\})}{P_{\xi}(A\{z'_i\}) | D} \right] + \sum_{i \neq j} \frac{F_{\xi}(A\{z'_i, z'_j\})}{P_{\xi}(A\{z'_i, z'_j\}) | D} + \cdots + (-1)^m \frac{F_{\xi}(A\{z'_1, \ldots, z'_m\})}{P_{\xi}(A\{z'_1, \ldots, z'_m\}) | D} \right] F_{\xi}(D).$
Hence $P(\xi \in [D, D'])$ is determined by F_ξ.

Corollary 3.3 The distribution of ξ is entirely determined by F_ξ.

Example 3.4 If $F_\xi(D) = e^{-\lambda \mu(D)}$, where μ is a measure on (\mathbb{R}^d, B), then:

$$P(\xi \in [D, D']) = e^{-\lambda \mu(D)} \prod_{i=1}^{m} \left(1 - e^{-\lambda \mu(A_i \setminus D)}\right).$$

Comment 3.5 Let us note that $F_{\xi_1|\xi_i}(D'|D) = P(D' \subseteq \xi_1|\xi_i = D)$, D, D' defined as in Proposition 3.2.

Proposition 3.6 Let N be a renewal process, with associated ξ_i. Then

$$F_{\xi_1|\xi_i}(D'|D) = \prod_j F_{\xi_1}(D'_j \ominus z_j) \quad D \subseteq D' \subseteq D^+$$

where z_j are the exposed points of D and $D'_j = D' \cap E_{z_j}$ and D^+ is defined as in Definition 2.4.

Proof: From the renewal property, we obtain that ξ_1 is identical distributed to ξ on the random set $(E_{z_j} \cap D^+) \ominus z_j$.

Example 3.7 Let N be a homogeneous Poisson process, with parameter λ and with associated random sets ξ_i, then:

$$F_{\xi_1|\xi_i}(D'|D) = \begin{cases} e^{-\lambda \mu(D'|D)} & D \subseteq D' \subseteq D^+ \\ 0 & \text{otherwise} \end{cases}$$

where μ is the Lebesgue measure.

Theorem 3.8 Let F_ξ be the distribution function of ξ, then there exists one and only one renewal point process N with $\xi_1 \sim_D \xi$.

Proof: (see [5]) Let F_ξ be defined by ξ as in Proposition 3.6. Denote the set $\epsilon(\xi_1) = \min(\Delta_N)$ by ϵ_1, given ξ_{i-1}, let $\epsilon_i = \min(\Delta_N \cap (\xi_{i-1} \setminus \xi_{i-1}))$. We observe that $\bigcup_i \epsilon_n = \Delta_N$.

Hence, if $\forall A \in B$,

$$N_A = \sum_{\tau \in \Delta_N} I(\tau \in A) = \sum_{n=1}^{\infty} \sum_{\tau \in \epsilon_n} I(\tau \in A).$$

The process N is renewal and is entirely determined by the distribution function of ξ.

Theorem 3.9 The following statements are equivalent:

(a) N is a homogeneous Poisson process with parameter λ.

(b) N is a renewal process and ξ_1 is exponentially distributed.

Proof: (a) \Rightarrow (b): By Theorem 2.7, the Poisson process is a renewal process. Since $F_{\xi_1}(B) = P(N(B) = 0) = e^{-\lambda \mu(B)}$, ξ_1 is exponential distributed.

(b) \Rightarrow (a) Immediate by theorem 3.8.
3.2 Second Characterization

Another characterization of the Poisson process can be presented by the distributions of its inter arrival areas.

Let \(t = (t_1, \ldots, t_d) \in \mathbb{R}^d_+ \). For any \(a \geq 0 \) and \(i = 1, \ldots, d \), denote \(t(a^{(i)}) \) to be the point \((t_1, \ldots, t_{i-1}, a, t_{i+1}, \ldots, t_d)\). Also, the product of the components of a point \(t \) will be denoted by \(|t| = \prod_{j=1}^d t_j \), therefore \(|t(1^{(i)})| = \prod_{j=1, j \neq i}^d t_j \).

Definition 3.10 Let \(N \) be a homogeneous Poisson process on \(\mathbb{R}^d_+ \) with associated sets \(\xi_i \). A level of \(\xi_n(\omega) \) from \(t(0^{(i)}) \) is
\[
Y^{(n)}_{t(0^{(i)})}(\omega) = \sup \{ a | A_{t(a^{(i)})} \subseteq \xi_n \},
\]
where \(t = t(t_i^{(i)}) \).

Proposition 3.11 \(Y^{(n)}_{t(0^{(i)})} \sim \Gamma(n, \lambda|t(1^{(i)})) \ \forall n \geq 1 \).

Proof: Let \(0 < x, P(Y^{(n)}_{t(0^{(i)})} \leq x) = P(N_{t(0^{(i)})} \geq n) = \Gamma(n, \lambda|t(1^{(i)})) \).

Corollary 3.12 If \(N \) is a homogeneous Poisson process, then the random area of the rectangle \(|t(1^{(i)})|Y^{(n)}_{t(0^{(i)})} \sim \Gamma(n, \lambda), \ \forall n \geq 1 \).

Proof: Calculation immediate from the distribution.

Proposition 3.13 \(Y^{(n)}_{t(0^{(i)})} - Y^{(n-1)}_{t(0^{(i)})} \sim \exp(\lambda|t(1^{(i)})) \) \(\forall n \geq 1 \) and the family \(\{Y^{(n)}_{t(0^{(i)})} - Y^{(n-1)}_{t(0^{(i)})}\}_{n=1}^\infty \) is independent. \(Y^{(0)}_{t(0^{(i)})} = 0 \).

Proof: Let \(I \) be the segment obtained by the intersection between the point \(t(0^{(i)}) \) and the point \(t(t_i^{(i)}) \). Let \(N_{t(0^{(i)})}(t_i) = N_{t(t_i^{(i)})} \) where \(t(0^{(i)}) \) is fixed. Hence \(N_{t(0^{(i)})}(t_i) \sim \text{poi}(\lambda|t(1^{(i)})) \) on \(I \) where \(Y^{(i)}_{t(0^{(i)})} \) are jump points. □

Corollary 3.14 Let \(M_n'(t) = |t(1^{(i)})|Y^{(n)}_{t(0^{(i)})} - Y^{(n-1)}_{t(0^{(i)})} \) be called the inter arrival rectangles of the process, then \(\forall n, \forall i, \forall t, M_n'(t) \sim \exp(\lambda) \) and the family \(\{M_n'(t)\}_{n=1}^\infty \) is independent.

Definition 3.15 \([4] \) Let \((\Omega, \mathcal{F}, P) \) be a probability space and let \((\mathcal{F}_A, A \in \mathcal{A}) \) be a family of sub σ fields of \(\mathcal{F} \). We say that this family satisfies (CI) if \(\mathcal{F}_A \) and \(\mathcal{F}_B \) are conditionally independent given \(\mathcal{F}_{A \cap B} \), for all \(A, B \in \mathcal{A} \).

Comment 3.16 \([4] \) (CI) corresponds to the (F4) condition introduced in \([1] \).

Theorem 3.17 \([4] \) Let \(N \) be a simple point process in \(\mathbb{R}^d_+ \), \((F_A, t \in \mathbb{R}^d_+) \) be the minimal filtration generated by \(N \), and \(M_n'(t) \) its associated inter arrival rectangles. Then \(N \) is a homogeneous Poisson process with parameter \(\lambda \) if and only if (CI) holds, \(\forall n, \forall i, \forall t, M_n'(t) \sim \exp(\lambda) \) and the family \(\{M_n'(t)\}_{n=1}^\infty \) is independent.
Proof: ⇒ Proved above.
← Let $i, i = 1, \ldots, d$. Since the process $N_{t(i)}(t_i)$ is generated by $\{M^i_n(t)\}$, then it is a one parameter Poisson process and therefore $N_{t(i)}(t_i) - \lambda t_i$ is martingale $\forall i$, where $t(0^{(i)})$ is fixed. By hypothesis (CI) (see [1]), $N_t - \lambda_1 \cdots t_d$ is a multiparameter martingale.

Hence N is a homogeneous Poisson process with parameter λ (see [4]). □

4 The random measure associated with a renewal Cox process in \mathbb{R}^d_+

In the one parameter classical case, Kingman (see [6], [7], [8]) proved that a Cox process with rate Λ is a renewal process if and only if there exists $\lambda > 0$ so that Λ takes two values λ or 0 only, and the event $\Lambda(t) = \lambda$ is an equilibrium regenerative event. Here we extend a part of this result to the multiparameter case answering an open question from [5].

Definition 4.1 Let $\Lambda = \{\Lambda(t), t \in T\}$ be a nonnegative integrable stochastic process. We say that the point process $N = \{N_A, A \in \mathcal{A}\}$ is a Cox process with intensity Λ if N conditionally on Λ is a non-homogeneous Poisson process with mean measure $\Lambda_*(A) = \int_A \Lambda(t)dt$.

Comment 4.2 (see [3]) Let N be a Cox process then

$$P(N(B_1) = k_1, \ldots, N(B_n) = k_n) = E_{\Lambda_*}(\prod_{i=1}^n e^{-\Lambda_*(B_i)}(\frac{\Lambda_*(B_i)^{k_i}}{k_i!}))$$

$$= \int_{M} \prod_{i=1}^n e^{-\nu(B_i)}(\frac{\nu(B_i)^{k_i}}{k_i!})d\Pi$$

where B_1, \ldots, B_n are disjoint Borel sets, ν is a measure on \mathbb{R}^d_+, M is the collection of all the absolutely continuous measures on \mathbb{R}^d_+, Π is a probability measure on M.

Any map $f : \mathbb{R}^+_+ \rightarrow \mathcal{A}(u)$ which is increasing with respect to the partial order induced by the set-inclusion is called a flow.

Definition 4.3 A flow $f : \mathbb{R}^+_+ \rightarrow \mathcal{A}(u)$ is stationary if for any $t, s \in \mathbb{R}^+_+$, $s \leq t$, we have $\mu(f(t) \setminus f(s)) = t - s$, where μ is Lebesgue measure.

Example 4.4 Let f be a flow such that $f : t \rightarrow A(\bigcup \psi_i \cdots \psi_i)$ then f is a stationary flow because $\mu(f(t) \setminus f(s)) = t - s$. 7
Example 4.5 Given \(t \in \mathbb{R}^d_+ \), \(t = (t_1, \ldots, t_d) \). We denote \(\forall t \in \mathbb{R}^d_+ \), \(B_t = A_{2t} - (t, 2t] \), therefore \(|B_t| = (2^d - 1)|t| \).

Let \(f \) be a flow such that:

\[
x \mapsto I_{\{x \leq (2^d-1)|t|\}} \cdot B_t \frac{1}{\sqrt{|2^d-1||t|}} + I_{\{(2^d-1)|t| < x \leq |t|\}} \cdot B_t \cup A_{1 + \sqrt{|2^d-1||t|}} x
\]

then \(f \) is a stationary flow.

Theorem 4.6 Let \(N \) be a renewal Cox process on \(\mathbb{R}^d_+ \) with intensity \(\Lambda^{(d)} \), then \(\Lambda^{(d)}(t) = \lambda, 0 \) where \(\lambda \) is a positive constant.

Proof: Let \(f : \mathbb{R}^+ \rightarrow A(u) \) be a stationary flow as example 4.5. Define \(g(N) \) to be the point process on \(\mathbb{R}^+ \) with jump points \(\{\tau_1, \tau_2, \ldots\} \) by the following definition:

\[
P(x \leq \tau_1) = F_{\xi_1}(D)
\]

where \(D = f(x) \). The distribution of the other jump points are defined similarly:

\[
P(x + s \leq \tau_{i+1}|\tau_i = s) = F_{\xi_i+1|\xi_i}(D|D)
\]

for any \(D, D' \) such that \(D \subseteq D' \subseteq D^+ \) and \(D\setminus D = z_k + f(x) \) and \(z_k \) is an exposed point of \(D \). Then we obtain (see Proposition 3.6)

\[
F_{\xi_i+1|\xi_i}(D|D) = \prod F_{\xi_i}(D_j' \cap z_j) \text{ where } D_j' \cap z_j = \phi, \forall j \neq k
\]

and \(F_{\xi_i+1|\xi_i}(D) \) doesn’t depend of \(i \) and therefore \(g(N) \) is a renewal process on \(\mathbb{R}^+ \).

Let \(M^{(1)} \) be a collection of measures on \(\mathbb{R}^d_+ \) such that \(M^{(1)} = \{\nu^{(1)}([0, x]) = \nu^{(d)}(f(x)), \nu^{(d)} \in M\} \) and \(\forall k \) denote \(F(B) = P(g(N)(B) = k) \). We compute the distribution of \(g(N) \) in \(B \) by its interarrival times:

\[
F(B) = \int_{M^{(1)} \times B} dF(\nu, t) = \int_{M^{(1)}} F(\nu, t)
\]

(see [7], \(\mu \) is the Lebesgue measure, denote \(s = \nu(t) \))

\[
= \int_{M^{(1)}} \int dF(\nu, \nu^{-1}(s)) = \int_{M^{(1)}} dF(\mu, s) = \int_{M^{(1)}} e^{-\nu(B)} \frac{(\nu(B))^k}{k!} d\Pi
\]

and hence we obtain that \(g(N) \) is a Cox process in \(\mathbb{R}^d_+ \), too.

From Kingman (see [7]) we obtain that \(\Lambda^{(1)}(t) = \lambda, 0 \) (\(\Lambda^{(1)}(t) \) is the intensity of \(g(N) \)). From the definition of \(g(N) \) we obtain \(\Lambda^{(d)}((t, (1+\sqrt{\theta/\beta})|t|]) = \Lambda^{(1)}((2^d-1)|t|, (2^d-1)|t| + h^d]) \), hence

\[
\Lambda^{(d)}(t) = \lim_{h \to 0} \frac{1}{h^d} \int_{(t, (1+\sqrt{\theta/\beta})|t|]} \Lambda^{(d)}(s) ds = \lim_{h \to 0} \frac{1}{h^d} \int_{((2^d-1)|t|, (2^d-1)|t| + h^d]} \Lambda^{(1)}(s) ds
\]

\[
= \Lambda^{(1)}((2^d-1)|t|) = \lambda, 0.
\]
References

