Make Some ROOM for the Zeros
Data Sparsity in Secure Distributed Machine Learning

Phillipp Schooppmann, Adrià Gascón, Mariana Raykova, Benny Pinkas
June 20, 2019
Data Sparsity
Data Sparsity

- Netflix dataset: 480k users, 17k movies, but only 100M out of 8.5B potential ratings. $< 1.2\%$

- Genomics: 3.2B base pairs, but a typical genome differs only at 5M sites. $< 0.2\%$

- 20 Newsgroups dataset: 9k vectors, 10^5 features, but only 100 non-zeros per vector. $< 0.1\%$
Sparse Storage Formats

Let R be an arbitrary ring, $\mathbf{b} \in R^d$ be a vector, $\mathbf{A} \in R^{n \times d}$ a matrix.

- Sparse vector: $\text{SPARSE}(\mathbf{b}) := \{(i, b_i)\}_{b_i \neq 0}$

- Sparse matrix: $\text{SPARSE}(\mathbf{A}) := \left(\text{SPARSE}(\mathbf{a}_i)\right)_{i \in [n]}$

Related to the *Compressed Sparse Row (CSR)* or *Yale format* that is used in scientific computing libraries such as Eigen, SciPy, …
Secure Distributed Machine Learning
Throughout this talk: Two parties, semi-honest security
Two-Party Machine Learning

Throughout this talk: Two parties, semi-honest security
Throughout this talk: Two parties, semi-honest security
Two-Party Machine Learning

Throughout this talk: Two parties, semi-honest security
Building Block: Matrix-Vector Multiplication

Secure Computation

Choose random $[c]^A$, $[c]^B$, such that

Sparse Matrix-Vector Multiplication

😊 We don’t have to multiply elements if one of the factors is zero.
Sparse Matrix-Vector Multiplication

- We don’t have to multiply elements if one of the factors is zero.

- We can’t simply reveal which elements are zero.
Sparse Matrix-Vector Multiplication

😊 We don’t have to multiply elements if one of the factors is zero.

😢 We can’t simply reveal which elements are zero.

😊 In many settings, an upper bound on the number of non-zero elements is public.
Sparse Matrix-Vector Multiplication

- We don’t have to multiply elements if one of the factors is zero.
- We can’t simply reveal which elements are zero.
- In many settings, an upper bound on the number of non-zero elements is public.

Our Approach

1. Encode sparse vector in a Read-Only Oblivious Map (ROOM) data structure.
2. Implement matrix-vector multiplication as a batched oblivious map access.
Basic Primitive: ROOM
Read-Only Oblivious Maps

ROOM Protocol

Compute w as

$$ w = \begin{cases} v & \text{if } (q, v) \in D \\ \bar{v} & \text{otherwise.} \end{cases} $$

Database D

- (k_1, v_1)
- (k_2, v_2)
- \vdots
- (k_l, v_l)

Default value \bar{v}

Query key q

Secret-shared value

$[w]^C$

$[w]^S$
Read-Only Oblivious Maps (2)

Query keys

q_1

q_2

\vdots

q_k

Database D

(k_1, v_1)

(k_2, v_2)

\vdots

(k_l, v_l)

Default values

\bar{v}_1

\bar{v}_2

\vdots

\bar{v}_k

ROOM Protocol

Compute \mathbf{w} s.t. $\forall j \in [k]$:

$$w_j = \begin{cases}
 v & \text{if } (q_j, v) \in D \\
 \bar{v}_j & \text{otherwise.}
\end{cases}$$

Secret-shared values

$[\mathbf{w}]^C$

$[\mathbf{w}]^S$
Related Functionalities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Query privacy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Database privacy</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sparse database</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Batched queries</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Shared Output</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Related Functionalities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Query privacy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Database privacy</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sparse database</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Batched queries</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Shared Output</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

*ROOM is shorter than *batched symmetric keyword PIR with shared output.* 😊
Read-Only Oblivious Maps (2)

Query keys
- \(q_1 \)
- \(q_2 \)
- \(\vdots \)
- \(q_k \)

Database \(D \)
- \((k_1, v_1) \)
- \((k_2, v_2) \)
- \(\vdots \)
- \((k_l, v_l) \)

Default values
- \(\bar{v}_1 \)
- \(\bar{v}_2 \)
- \(\vdots \)
- \(\bar{v}_k \)

ROOM Protocol

Compute \(w \) s.t. \(\forall j \in [k] \):

\[
w_j = \begin{cases}
 v & \text{if } (q_j, v) \in D \\
 \bar{v}_j & \text{otherwise.}
\end{cases}
\]
Building a ROOM

Naive approach: Ignore database sparsity.

1. Server extends database with dummy elements to span entire key domain:

$$\mathbf{x} = (\bot, \ldots, \bot, v_1, \bot, \ldots, \bot, v_2, \ldots)$$

index k_1 \hspace{1cm} index k_2
Building a ROOM

Naive approach: Ignore database sparsity.

1. Server extends database with dummy elements to span entire key domain:

 \[
 \mathbf{x} = (\perp, \ldots, \perp, v_1, \perp, \ldots, \perp, v_2, \ldots)
 \]

 \[\text{index } k_1 \quad \text{index } k_2\]

2. Server encrypts \(\mathbf{x}\) element-wise and sends it to client:

 \[
 \tilde{\mathbf{x}} = (\text{Enc}_K(x_1), \ldots, \text{Enc}_K(x_d))
 \]
Building a ROOM

Naive approach: Ignore database sparsity.

1. Server extends database with dummy elements to span entire key domain:

\[
x = (\bot, \ldots, \bot, v_1, \bot, \ldots, \bot, v_2, \ldots)
\]

\[
\uparrow \quad \text{index } k_1 \quad \uparrow \quad \text{index } k_2
\]

2. Server encrypts \(x\) element-wise and sends it to client:

\[
\tilde{x} = (\text{Enc}_K(x_1), \ldots, \text{Enc}_K(x_d))
\]

3. For each query \(q_i\), Client selects \(\tilde{x}_{q_i}\) and the parties perform an MPC with inputs \(\tilde{x}_{q_i}, K, \overline{v}_i\). The MPC
 a) Decrypts \(x_{q_i} = \text{Dec}_K(\tilde{x}_{q_i})\),
 b) Secret-shares \(x_{q_i}\) if \(x_{q_i} \neq \bot\), otherwise \(\overline{v}_i\).
Building a ROOM

Naive approach: Ignore database sparsity.

1. Server extends database with dummy elements to span entire key domain:

 \[\mathbf{x} = (\bot, \ldots, \bot, v_1, \bot, \ldots, \bot, v_2, \ldots) \]

 \[\text{index } k_1 \quad \text{index } k_2 \]

2. Server encrypts \(\mathbf{x} \) element-wise and sends it to client:

 \[\tilde{\mathbf{x}} = (\text{Enc}_K(x_1), \ldots, \text{Enc}_K(x_d)) \]

3. For each query \(q_i \), Client selects \(\tilde{x}_{q_i} \) and the parties perform an MPC with inputs \(\tilde{x}_{q_i}, K, \tilde{\mathbf{v}}_i \). The MPC
 a) Decrypts \(x_{q_i} = \text{Dec}_K(\tilde{x}_{q_i}) \),
 b) Secret-shares \(x_{q_i} \) if \(x_{q_i} \neq \bot \), otherwise \(\tilde{v}_i \).

Communication linear in the key domain!
Building a ROOM

Naive approach: Ignore database sparsity.

1. Server extends database with dummy elements to span entire key domain:

 \[\mathbf{x} = (\bot, \ldots, \bot, v_1, \bot, \ldots, \bot, v_2, \ldots) \]

 \[\begin{array}{c}
 \text{index } k_1 \\
 \text{index } k_2
 \end{array} \]

2. Server encrypts \(\mathbf{x} \) element-wise and sends it to client:

 \[\tilde{\mathbf{x}} = (\text{Enc}_K(x_1), \ldots, \text{Enc}_K(x_d)) \]

3. For each query \(q_i \), Client selects \(\tilde{x}_{q_i} \) and the parties perform an MPC with inputs \(\tilde{x}_{q_i}, K, \tilde{v}_i \). The MPC

 a) Decrypts \(x_{q_i} = \text{Dec}_K(\tilde{x}_{q_i}) \),

 b) Secret-shares \(x_{q_i} \) if \(x_{q_i} \neq \bot \), otherwise \(\tilde{v}_i \).

Communication linear in the key domain! 😞
Building a ROOM (2)

Idea: We don’t need to have an explicit representation of ⊥!
Building a ROOM (2)

Idea: We don’t need to have an explicit representation of ⊥!
Building a ROOM (2)

Idea: We don’t need to have an explicit representation of \bot!

1. Server pads and encrypts each value in the database:

$$\tilde{\mathbf{v}} = (\text{Enc}_K(v_1||0^s), \ldots, \text{Enc}_K(v_l||0^s))$$
Building a ROOM (2)

Idea: We don’t need to have an explicit representation of ⊥!

1. Server pads and encrypts each value in the database:

\[\tilde{\mathbf{v}} = (\text{Enc}_K(v_1 || 0^s), \ldots, \text{Enc}_K(v_l || 0^s)) \]

2. Server interpolates and sends a polynomial \(P \) s.t. for all \(i \in [l] \)

\[P(k_i) = \tilde{v}_i. \]
Building a ROOM (2)

Idea: We don’t need to have an explicit representation of `⊥`!

1. Server pads and encrypts each value in the database:

 \[\tilde{v} = (\text{Enc}_K(v_1 || 0^s), \ldots, \text{Enc}_K(v_l || 0^s)) \]

2. Server interpolates and sends a polynomial \(P \) s.t. for all \(i \in [l] \)

 \[P(k_i) = \tilde{v}_i. \]

3. For each query key \(q_i \), perform an MPC with inputs \(\tilde{x}_{q_i} = P(q_i), K, \tilde{v}_i \), that
 a) Decrypts \(x_{q_i} = \text{Dec}_K(\tilde{x}_{q_i}) \),
 b) Secret-shares \(v \) if \(x_{q_i} = (v || 0^s) \), otherwise \(\bar{v}_i \).
Sparse Inner Product from ROOM

Let $\text{SPARSE}(\mathbf{a}) := \{(i, a_i)\}_{a_i \neq 0}$, $\text{SPARSE}(\mathbf{b}) := \{(j, b_j)\}_{b_j \neq 0}$.
Sparse Inner Product from ROOM

Let $\text{SPARSE}(a) := ((i, a_i))_{a_i \neq 0}$, $\text{SPARSE}(b) := ((j, b_j))_{b_j \neq 0}$.

Indices in a

\begin{align*}
i_1 \\
i_2 \\
\vdots \\
i_k
\end{align*}

\text{SPARSE}(b)

\begin{align*}
(j_1, b_{j_1}) \\
(j_2, b_{j_2}) \\
\vdots \\
(j_l, b_{j_l})
\end{align*}

Default values

\begin{align*}
0 \\
0 \\
\vdots \\
0
\end{align*}
Sparse Inner Product from ROOM

Let \(\text{SPARSE}(a) := ((i, a_i))_{a_i \neq 0} \), \(\text{SPARSE}(b) := ((j, b_j))_{b_j \neq 0} \).

Indices in \(a \)

\(i_1 \)

\(i_2 \)

\(\vdots \)

\(i_k \)

\([b']^C \)

\(\text{SPARSE}(b) \)

Default values

\((j_1, b_{j_1}) \)

\((j_2, b_{j_2}) \)

\(\vdots \)

\((j_l, b_{j_l}) \)

\([b']^S \)

Now, \(b' = (b_i)_{a_i \neq 0} \). Let \(a' = (a_i)_{a_i \neq 0} \). Then \(ab = a'b' \).
APPLICATIONS
Logistic Regression

Logistic Regression: Time and Communication

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Total Time</th>
<th></th>
<th>Communication</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SecureML</td>
<td>Ours</td>
<td>SecureML</td>
</tr>
<tr>
<td>Movies</td>
<td>6h29m28.37s</td>
<td>2h43m46.09s</td>
<td>4.8 TiB</td>
<td>187.42 GiB</td>
</tr>
<tr>
<td>Newsgroups</td>
<td>1h42m38.14s</td>
<td>42m37.68s</td>
<td>1.26 TiB</td>
<td>47.63 GiB</td>
</tr>
<tr>
<td>Languages, ngrams=1</td>
<td>5.9s</td>
<td></td>
<td>790.9 MiB</td>
<td>500.61 MiB</td>
</tr>
<tr>
<td>Languages, ngrams=2</td>
<td>1h3m7.12s</td>
<td>6m17.51s</td>
<td>797.85 GiB</td>
<td>3.69 GiB</td>
</tr>
</tbody>
</table>
k-Nearest Neighbors

$D = \text{such dataset}$

\[k\text{-NEAREST NEIGHBORS} \]

Find class c_d most common among the k nearest neighbors of d in D.

k-Nearest Neighbors: Time

Running Time

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Movies</th>
<th>Newsgroups</th>
<th>Languages, ngrams=1</th>
<th>Languages, ngrams=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k-NN (LAN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Dense**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Basic-ROOM**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Circuit-ROOM**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Poly-ROOM**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- To scale secure machine learning, we have to exploit characteristics in the *setting* and the *data*.

- We show that for *data sparsity*, using a dedicated data structure helps speed up multiple applications.
Conclusion

- To scale secure machine learning, we have to exploit characteristics in the setting and the data.

- We show that for data sparsity, using a dedicated data structure helps speed up multiple applications.

- Future directions:
 - Improve access times: LowMC, Cuckoo Hashing.
 - Adapt other primitives, e.g. Labeled PSI, flavors of PIR.
References I

References II

All icons made by Freepik from www.flaticon.com, licensed by CC BY 3.0.