
Efficient Building Blocks For Secure
Computation Based on Secret Sharing

Marina Blanton
Department of Computer Science and Engineering

University at Buffalo

Theory and Practice of Multi-Party Computation
June 17, 2019

'

&

$

%
1



Secure Multi-Party ComputationSecure Multi-Party Computation

• There are a variety of general mechanisms for securely computing on private
data

• The function f being evaluated can commonly be represented as a

– Boolean circuit

– arithmetic circuit

• a great number of results with various tradeoffs are available

• A fundamental question is how we build a circuit for evaluating a desired
function or program f efficiently

'

&

$

%TPMPC June 2019

2Marina Blanton



Arithmetic CircuitsArithmetic Circuits

• In many instantiations the cost of addition gates is negligible compared to
the cost of multiplication gates

– thus, the number of multiplication gates is an important cost metric

– the circuit depth is just as important to minimize

• So what is a good circuit design for simple operations such as (integer)
division, shift, less-than and equality comparisons?

• With drastically different techniques such as garbled circuits, the exploration
space is not as broad

'

&

$

%TPMPC June 2019

3Marina Blanton



Linear Secret SharingLinear Secret Sharing

• Secure computation using arithmetic circuits can be realized using different
techniques, but we’ll talk about linear secret sharing

– with (n, t) threshold secret sharing a secret is shared among n parties

– access to at most t shares reveals no information about the secret

– any linear combination of secret shared values can be carried by each
share holder directly on its shares

– multiplication is used as the basic building block

– minimizing the number of rounds is important

• linear round complexity for simple operations is too costly

'

&

$

%TPMPC June 2019

4Marina Blanton



Less-Than ComparisonsLess-Than Comparisons

• [DFK+06] “Unconditionally Secure Constant-Rounds Multi-Party
Computation for Equality, Comparison, Bits and Exponentiation”

– assumes linear secret sharing over field Zp with prime p

– provides perfect information-theoretic secrecy

– key component: unbounded fan-in multiplication

– comparing bit-decomposed k-bit a and b costs 22k invocations in 19
rounds

– additional 100k log2k+ 118k invocations in 114 rounds are needed for
each bit decomposition

– the total is ≈ 40,000 invocations in 133 rounds when k = 32

'

&

$

%TPMPC June 2019

5Marina Blanton



Less-Than ComparisonsLess-Than Comparisons

• [NO07] “Multiparty Computation for Interval, Equality, and Comparison
Without Bit-Decomposition Protocol”

– uses the same setting as in [DFK+06]

– key component: open c = a+ r for secret a and random r

– integrates bit decomposition with comparison

– computed [DFK+05]’s comparison cost as 188klog2k+ 205k
invocations in 44 rounds

– developed a solution with cost 279k+ 5 invocations in 15 rounds

'

&

$

%TPMPC June 2019

6Marina Blanton



Less-Than ComparisonsLess-Than Comparisons

• [CdH10] “Improved Primitives for Secure Multiparty Integer Computation”

– provides statistical instead of perfect secrecy

– key component: opening c = a+ r with known bit decomposition of r

– in addition to opening and random element generation, uses new
building blocks such as generating a random integer of certain bitlength

– achieves solutions of cost 4k− 2 invocations in 4 rounds or 3k− 2
invocations in 6 rounds

– has the ability to switch between different fields for performance reasons

– the above complexities assume non-interactive pseudo-random element
generation

'

&

$

%TPMPC June 2019

7Marina Blanton



Catrina-de Hoogh ComparisonsCatrina-de Hoogh Comparisons

• Less-than-zero comparison is specified as:

[b]← LTZ([a], k)

1. for i = 0, . . . , k − 2 do [ri]← RandBit(p);
2. [r]←

∑k−2
i=0 2i[ri];

3. [r′]← RandInt(κ+ 1);
4. c← Open(2k−1 + [a] + 2k−1[r′] + [r]);
5. c′ ← c mod 2k−1;
6. [u]← BitLT(c′, ([rk−2], . . . , [r0]));
7. [a′] = [c′]− [r] + 2k−1[u];
8. [b]← ([a′]− [a])(2−(k−1) mod p);
9. return [b];

– outputs the complement of the most significant bit of a

– compare x and y by calling LTZ on x− y

'

&

$

%TPMPC June 2019

8Marina Blanton



Where This Takes UsWhere This Takes Us

• At this point we have efficient protocols for virtually all common integer and
fixed-point operations

– different types of comparisons, truncation, division, etc.

• Can privacy-preserving evaluation of general-purpose programs be a reality?

– we built a suite of protocols for floating-point arithmetic (NDSS’13)

• proper evaluation of complex operations such as square root,
logarithm, and exponentiation is available

– we built a compiler, PICCO, for transforming a general-purpose C
program into its secure distributed implementation (CCS’13)

• support for dynamic memory management and pointers to private data
was consequently added (TOPS’18)

'

&

$

%TPMPC June 2019

9Marina Blanton



Everything is Not That SimpleEverything is Not That Simple

• The goal of the compiler was to permit programmers without extensive
cryptography background create secure programs of their choice

• Experimenting with PICCO has taught us that everything is not that simple

– knowledge of the underlying techniques is still needed for writing
programs that run efficiently

• Offering built-in libraries for higher-level functions and data structures
would greatly aid programmers in writing efficient code

• At a lower level, improvements can be made in two directions:

– improving speed by using computationally secure protocols

– exploiting computation structure to optimize more complex algorithms

'

&

$

%TPMPC June 2019

10Marina Blanton



Computationally Secure ProtocolsComputationally Secure Protocols

• Take multiplication a · b as an example

– consider (n, t) Shamir secret sharing

• a secret s is represented by a random polynomial f of degree t with
f(0) = s

• each party holds evaluation of f on a unique point

– conventional simple multiplication protocol from [GRR98]
communicates n(n− 1) field elements local

• locally multiply shares of a and b

• re-share the product (n− 1 messages per party)

• combine the shares and reduce the polynomial degree from 2t to t

'

&

$

%TPMPC June 2019

11Marina Blanton



Computationally Secure MultiplicationComputationally Secure Multiplication

• Suppose that we use pseudorandom values for shared randomness

– to reshare its secret, each party no longer generates a random polynomial

– instead, each party uses PRGs to generate t shares

– these shares together with the secret itself define the polynomial

– now we need to communicate only n− t− 1 evaluations of the
polynomial

– when n = 2t+1 this instantly reduces communication in half

• with n = 3 and t = 1, this is a reduction from 6 to 3 elements per
multiplication

'

&

$

%TPMPC June 2019

12Marina Blanton



Computationally Secure MultiplicationComputationally Secure Multiplication

• We might also want to use multiplication of linear communication
complexity

– communication becomes asymmetric and uses a king

– consider construction from [DN07]

[c]← Mult([a], [b])

1. ([r], 〈R〉)← DRand();
2. Each p ∈ [1, n] computes 〈D〉p = [a]p · [b]p+ 〈R〉p and sends
〈D〉p to the king;

3. The king reconstructs D ← Open2(〈D〉) and sends D to each party;
4. [c] = D − [r];
5. return [c];

– this uses 2(n− 1) messages plus the cost of DRand

'

&

$

%TPMPC June 2019

13Marina Blanton



Computationally Secure MultiplicationComputationally Secure Multiplication

• By using computationally secure tools, we obtain non-interactive RandFld
[CDI05]

– this can generate [r], but 〈R〉 needs to use independent randomness

– randomization is possible using a fresh pseudo-random sharing of 0

• pseudo-random 2t-sharing 〈0〉 of 0 is available from [CDI05]

– we obtain DRand implementation with no communication

• generate [r]

• multiply shares of r with shares of 1

• rerandomize the product shares by adding 〈0〉

• The total multiplication communication cost with n parties is 2(n− 1)

'

&

$

%TPMPC June 2019

14Marina Blanton



Optimizing Algorithm’s StructureOptimizing Algorithm’s Structure

• Take array access at private location [j] as an example

– there are two common implementations

• multiplexer-based approach bit decomposes the index [j] and selects
the right element using its bits

• comparison-based approach compares [j] to each array index and
chooses the one that matched

– both have complexity m logm for an m-element array

– PICCO implements the former, but we later determined the latter to be
slightly faster

'

&

$

%TPMPC June 2019

15Marina Blanton



Comparison-Based Array ReadComparison-Based Array Read

• Consider comparison-based array read at private location [j]

[b]← ArrayRead(〈[a0], . . ., [am−1]〉, [j])

1. for i = 0 to m− 1 in parallel [ci]← EQ([j], i);
2. [b]←

∑m−1
i=0 [ci] · [ai];

3. return [b];

– because j is compared to all indices, the computation may be redundant

– we need to see the way equality tests are realized

'

&

$

%TPMPC June 2019

16Marina Blanton



Equality Testing ProtocolEquality Testing Protocol

• Consider the following equality protocol from [ChH10]:

[b]← EQZ([a], k)

1. ([r′], [r], [rk−1], . . ., [r0])← RandM(k, k);
2. c← Open([a] + 2k[r′] + [r]);
3. (ck−1, . . ., c0)← Bits(c, k);
4. for i = 0, . . ., k − 1 do [di]← ci+ [ri]− 2ci[ri];
5. [b]← 1− KOr([dk−1], . . ., [d0]);
6. return [b];

– the cost is dominated by RandM

– KOr has logarithmic (in k) cost

'

&

$

%TPMPC June 2019

17Marina Blanton



Optimizing Comparison-Based Array AccessOptimizing Comparison-Based Array Access

• The first observation is that we execute EQZ on j − i for fixed j and
adjacent i

– random pad is generated to protect j for i = 0 and open the sum as c

– instead of generating new randomness for i = 1 we could simply
compute it from c as c− 1

– we thus open protected j and compute the values for all indices as c− i

– each c− i is used in consecutive computation as before

– this reduces complexity from O(m logm) to O(m log logm)

without affecting the number of rounds

'

&

$

%TPMPC June 2019

18Marina Blanton



Optimizing Comparison-Based Array AccessOptimizing Comparison-Based Array Access

• The resulting operation still appears to be sub-optimal

– related values are used in a large number of KOr operations

– the values also span most or all of possible combinations of logm bits

– we can compute OR of all possible combinations of logm bits more
efficiently than one at a time

– our solution uses a divide-and-conquer approach:

• divide the size into two halves, recurse on each half, then assemble the
result

• merging two sets of size 2a and 2b uses 2a+b invocations (OR
operations) in 1 round

'

&

$

%TPMPC June 2019

19Marina Blanton



Optimizing Comparison-Based Array AccessOptimizing Comparison-Based Array Access

• The final solution requires some tweaks to the construction and we obtain

[b]← ArrayRead(〈[a0], . . ., [am−1]〉, [j])

1. ([r′], [r], [rlogm−1], . . ., [r0])← PRandM(logm, logm);
2. 〈[b0], . . ., [b2logm−1]〉 ← AllOr([rlogm−1], . . ., [r0]);

3. for i = 0, . . . , 2logm − 1, [bi] = 1− [bi];
4. c← Open([j] + 2logm[r′] + [r]);
5. c′ ← c mod 2logm;
6. [b]←

∑m−1
i=0 [b

c′−i mod 2logm] · [ai];
7. return [b];

– the overall complexity is O(m) with a very low constant

'

&

$

%TPMPC June 2019

20Marina Blanton



PerformancePerformance

• The impact of changes is significant in both LAN and WAN settings

25 210 215 220

10−3

10−2

10−1

Array size

R
un

tim
e

(s
ec

)

25 210 215 220

10−1

100

Array size

3-party array read Array read Original array read
Floram CPRG Array read+new mult

'

&

$

%TPMPC June 2019

21Marina Blanton



SummarySummary

• The design of common operations has a profound impact on program
execution time

• Relaxing security from perfect to statistical or computational typically leads
to significant performance improvements

• Working with standard secret sharing types allows for collective progress
with performance of general functionalities

'

&

$

%TPMPC June 2019

22Marina Blanton


