Efficient Building Blocks For Secure Computation Based on Secret Sharing

Marina Blanton
Department of Computer Science and Engineering
University at Buffalo

Theory and Practice of Multi-Party Computation
June 17, 2019
• There are a variety of general mechanisms for securely computing on private data

• The function f being evaluated can commonly be represented as a
 – Boolean circuit
 – arithmetic circuit
 • a great number of results with various tradeoffs are available

• A fundamental question is how we build a circuit for evaluating a desired function or program f efficiently
• In many instantiations the cost of addition gates is negligible compared to the cost of multiplication gates
 – thus, the number of multiplication gates is an important cost metric
 – the circuit depth is just as important to minimize

• So what is a good circuit design for simple operations such as (integer) division, shift, less-than and equality comparisons?

• With drastically different techniques such as garbled circuits, the exploration space is not as broad
Secure computation using arithmetic circuits can be realized using different techniques, but we’ll talk about **linear secret sharing**

- with *(n, t)* **threshold secret sharing** a secret is shared among *n* parties
- access to at most *t* shares reveals no information about the secret
- any **linear combination** of secret shared values can be carried by each share holder directly on its shares
- **multiplication** is used as the basic building block
- minimizing the **number of rounds** is important
 - linear round complexity for simple operations is too costly
• [DFK+06] “Unconditionally Secure Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and Exponentiation”

 – assumes linear secret sharing over field \mathbb{Z}_p with prime p
 – provides perfect information-theoretic secrecy
 – key component: unbounded fan-in multiplication
 – comparing bit-decomposed k-bit a and b costs $22k$ invocations in 19 rounds
 – additional $100k \log_2 k + 118k$ invocations in 114 rounds are needed for each bit decomposition
 – the total is $\approx 40,000$ invocations in 133 rounds when $k = 32$
Less-Than Comparisons

- [NO07] “Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol”
 - uses the same setting as in [DFK+06]
 - key component: open $c = a + r$ for secret a and random r
 - integrates bit decomposition with comparison
 - computed [DFK+05]’s comparison cost as $188k\log_2k + 205k$ invocations in 44 rounds
 - developed a solution with cost $279k + 5$ invocations in 15 rounds
• [CdH10] “Improved Primitives for Secure Multiparty Integer Computation”
 – provides statistical instead of perfect secrecy
 – key component: opening $c = a + r$ with known bit decomposition of r
 – in addition to opening and random element generation, uses new building blocks such as generating a random integer of certain bitlength
 – achieves solutions of cost $4k - 2$ invocations in 4 rounds or $3k - 2$ invocations in 6 rounds
 – has the ability to switch between different fields for performance reasons
 – the above complexities assume non-interactive pseudo-random element generation
• **Less-than-zero comparison** is specified as:

\[
[b] \leftarrow \text{LTZ}([a], k)
\]

1. for \(i = 0, \ldots, k - 2 \) do \([r_i] \leftarrow \text{RandBit}(p)\);
2. \([r] \leftarrow \sum_{i=0}^{k-2} 2^i [r_i]\);
3. \([r'] \leftarrow \text{RandInt}(\kappa + 1)\);
4. \(c \leftarrow \text{Open}(2^{k-1} + [a] + 2^{k-1} [r'] + [r])\);
5. \(c' \leftarrow c \mod 2^{k-1}\);
6. \([u] \leftarrow \text{BitLT}(c', ([r_{k-2}], \ldots, [r_0]))\);
7. \([a'] = [c'] - [r] + 2^{k-1} [u]\);
8. \([b] \leftarrow ([a'] - [a]) (2^{-(k-1)} \mod p)\);
9. return \([b]\);

– outputs the complement of the most significant bit of \(a\)

– compare \(x\) and \(y\) by calling LTZ on \(x - y\)
Where This Takes Us

- At this point we have efficient protocols for virtually all common integer and fixed-point operations
 - different types of comparisons, truncation, division, etc.

- Can privacy-preserving evaluation of general-purpose programs be a reality?
 - we built a suite of protocols for floating-point arithmetic (NDSS’13)
 - proper evaluation of complex operations such as square root, logarithm, and exponentiation is available
 - we built a compiler, PICCO, for transforming a general-purpose C program into its secure distributed implementation (CCS’13)
 - support for dynamic memory management and pointers to private data was consequently added (TOPS’18)
The goal of the compiler was to permit programmers without extensive cryptography background create secure programs of their choice.

Experimenting with PICCO has taught us that everything is not that simple—knowledge of the underlying techniques is still needed for writing programs that run efficiently.

Offering built-in libraries for higher-level functions and data structures would greatly aid programmers in writing efficient code.

At a lower level, improvements can be made in two directions:

- improving speed by using computationally secure protocols
- exploiting computation structure to optimize more complex algorithms
• Take multiplication $a \cdot b$ as an example

 – consider (n, t) Shamir secret sharing

 • a secret s is represented by a random polynomial f of degree t with $f(0) = s$

 • each party holds evaluation of f on a unique point

 – conventional simple multiplication protocol from [GRR98] communicates $n(n - 1)$ field elements local

 • locally multiply shares of a and b

 • re-share the product ($n - 1$ messages per party)

 • combine the shares and reduce the polynomial degree from $2t$ to t
Computationally Secure Multiplication

- Suppose that we use pseudorandom values for shared randomness
 - to reshare its secret, each party no longer generates a random polynomial
 - instead, each party uses PRGs to generate t shares
 - these shares together with the secret itself define the polynomial
 - now we need to communicate only $n - t - 1$ evaluations of the polynomial
 - when $n = 2t + 1$ this instantly reduces communication in half
 - with $n = 3$ and $t = 1$, this is a reduction from 6 to 3 elements per multiplication
We might also want to use multiplication of linear communication complexity

- communication becomes asymmetric and uses a king
- consider construction from [DN07]

\[
[c] \leftarrow \text{Mult}([a], [b])
\]

1. \(([r], \langle R \rangle) \leftarrow \text{DRand}();
2. Each \(p \in [1, n]\) computes \(\langle D \rangle_p = [a]_p \cdot [b]_p + \langle R \rangle_p\) and sends \(\langle D \rangle_p\) to the king;
3. The king reconstructs \(D \leftarrow \text{Open2}(\langle D \rangle)\) and sends \(D\) to each party;
4. \([c] = D - [r];\)
5. return \([c];\)

- this uses \(2(n - 1)\) messages plus the cost of DRand
By using computationally secure tools, we obtain non-interactive RandFld [CDI05]

- this can generate $[r]$, but $\langle R \rangle$ needs to use independent randomness
- randomization is possible using a fresh pseudo-random sharing of 0
 - pseudo-random 2t-sharing $\langle 0 \rangle$ of 0 is available from [CDI05]
- we obtain DRand implementation with no communication
 - generate $[r]$
 - multiply shares of r with shares of 1
 - rerandomize the product shares by adding $\langle 0 \rangle$

- The total multiplication communication cost with n parties is $2(n - 1)$
• Take **array access at private location** \([j]\) as an example

 – there are two common implementations

 • **multiplexer-based approach** bit decomposes the index \([j]\) and selects the right element using its bits

 • **comparison-based approach** compares \([j]\) to each array index and chooses the one that matched

 – both have complexity \(m \log m\) for an \(m\)-element array

 – PICCO implements the former, but we later determined the latter to be slightly faster
Consider **comparison-based array read** at private location \([j]\)

\[
[b] \leftarrow \text{ArrayRead}(\langle [a_0], \ldots, [a_{m-1}] \rangle, [j])
\]

1. for \(i = 0\) to \(m - 1\) in parallel \([c_i] \leftarrow \text{EQ}([j], i)\);
2. \([b] \leftarrow \sum_{i=0}^{m-1} [c_i] \cdot [a_i]\);
3. return \([b]\);

- because \(j\) is compared to all indices, the **computation may be redundant**
- we need to see the way equality tests are realized
Equality Testing Protocol

Consider the following equality protocol from [ChH10]:

\[b \leftarrow \text{EQZ}([a], k) \]

1. \(([r'], [r], [r_{k-1}], \ldots, [r_0]) \leftarrow \text{RandM}(k, k);\)
2. \(c \leftarrow \text{Open}([a] + 2^k [r'] + [r]);\)
3. \((c_{k-1}, \ldots, c_0) \leftarrow \text{Bits}(c, k);\)
4. for \(i = 0, \ldots, k - 1\) do \([d_i] \leftarrow c_i + [r_i] - 2c_i [r_i];\)
5. \([b] \leftarrow 1 - \text{KOr}([d_{k-1}], \ldots, [d_0]);\)
6. return \([b];\)

- the cost is dominated by \text{RandM}
- \text{KOr} has logarithmic (in \(k\)) cost
The first observation is that we execute EQZ on \(j - i \) for fixed \(j \) and adjacent \(i \)

- random pad is generated to protect \(j \) for \(i = 0 \) and open the sum as \(c \)
- instead of generating new randomness for \(i = 1 \) we could simply compute it from \(c \) as \(c - 1 \)
- we thus open protected \(j \) and compute the values for all indices as \(c - i \)
- each \(c - i \) is used in consecutive computation as before
- this reduces complexity from \(O(m \log m) \) to \(O(m \log \log m) \) without affecting the number of rounds
The resulting operation still appears to be sub-optimal

- related values are used in a large number of KOr operations
- the values also span most or all of possible combinations of $\log m$ bits
- we can compute OR of all possible combinations of $\log m$ bits more efficiently than one at a time

our solution uses a divide-and-conquer approach:

- divide the size into two halves, recurse on each half, then assemble the result
- merging two sets of size 2^a and 2^b uses 2^{a+b} invocations (OR operations) in 1 round
The final solution requires some tweaks to the construction and we obtain

\[[b] \leftarrow \text{ArrayRead}(\langle [a_0], \ldots, [a_{m-1}] \rangle, [j]) \]

1. \(([r'], [r], [r_{\log m-1}], \ldots, [r_0]) \leftarrow \text{PRandM}(\log m, \log m); \)
2. \(\langle [b_0], \ldots, [b_{2\log m-1}] \rangle \leftarrow \text{AllOr}([r_{\log m-1}], \ldots, [r_0]); \)
3. for \(i = 0, \ldots, 2\log m - 1, [b_i] = 1 - [b_i]; \)
4. \(c \leftarrow \text{Open}([j] + 2^{\log m}[r'] + [r]); \)
5. \(c' \leftarrow c \mod 2^{\log m}; \)
6. \([b] \leftarrow \sum_{i=0}^{m-1} [b_{c' - i \mod 2^{\log m}}] \cdot [a_i]; \)
7. return \([b]; \)

- the overall complexity is \(O(m) \) with a very low constant.
The impact of changes is significant in both LAN and WAN settings.
• The design of common operations has a profound impact on program execution time

• Relaxing security from perfect to statistical or computational typically leads to significant performance improvements

• Working with standard secret sharing types allows for collective progress with performance of general functionalities