Efficient Building Blocks For Secure Computation Based on Secret Sharing

Marina Blanton

Department of Computer Science and Engineering University at Buffalo

Theory and Practice of Multi-Party Computation June 17, 2019

Secure Multi-Party Computation

- There are a variety of general mechanisms for securely computing on private data
- The function f being evaluated can commonly be represented as a
 - Boolean circuit
 - arithmetic circuit
 - a great number of results with various tradeoffs are available
- A fundamental question is how we build a circuit for evaluating a desired function or program f efficiently

Arithmetic Circuits

- In many instantiations the cost of addition gates is negligible compared to the cost of multiplication gates
 - thus, the number of multiplication gates is an important cost metric
 - the circuit depth is just as important to minimize
- So what is a good circuit design for simple operations such as (integer) division, shift, less-than and equality comparisons?
- With drastically different techniques such as garbled circuits, the exploration space is not as broad

Linear Secret Sharing

- Secure computation using arithmetic circuits can be realized using different techniques, but we'll talk about linear secret sharing
 - with (n, t) threshold secret sharing a secret is shared among n parties
 - access to at most t shares reveals no information about the secret
 - any linear combination of secret shared values can be carried by each share holder directly on its shares
 - multiplication is used as the basic building block
 - minimizing the number of rounds is important
 - linear round complexity for simple operations is too costly

Less-Than Comparisons

- [DFK+06] "Unconditionally Secure Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and Exponentiation"
 - assumes linear secret sharing over field \mathbb{Z}_p with prime p
 - provides perfect information-theoretic secrecy
 - key component: unbounded fan-in multiplication
 - comparing bit-decomposed k-bit a and b costs 22k invocations in 19 rounds
 - additional $100k \log_2 k + 118k$ invocations in 114 rounds are needed for each bit decomposition
 - the total is $\approx 40,000$ invocations in 133 rounds when k = 32

Less-Than Comparisons

- [NO07] "Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol"
 - uses the same setting as in [DFK+06]
 - key component: open c = a + r for secret a and random r
 - integrates bit decomposition with comparison
 - computed [DFK+05]'s comparison cost as $188k\log_2 k + 205k$ invocations in 44 rounds
 - developed a solution with cost 279k + 5 invocations in 15 rounds

Less-Than Comparisons

- [CdH10] "Improved Primitives for Secure Multiparty Integer Computation"
 - provides statistical instead of perfect secrecy
 - key component: opening c = a + r with known bit decomposition of r
 - in addition to opening and random element generation, uses new
 building blocks such as generating a random integer of certain bitlength
 - achieves solutions of cost 4k-2 invocations in 4 rounds or 3k-2 invocations in 6 rounds
 - has the ability to switch between different fields for performance reasons
 - the above complexities assume non-interactive pseudo-random element generation

Catrina-de Hoogh Comparisons

• Less-than-zero comparison is specified as:

$$[b] \leftarrow \mathsf{LTZ}([a], k)$$

- 1. for $i = 0, \ldots, k 2$ do $[r_i] \leftarrow \mathsf{RandBit}(p)$;
- 2. $[r] \leftarrow \sum_{i=0}^{k-2} 2^{i} [r_{i}];$
- 3. $[r'] \leftarrow \mathsf{RandInt}(\kappa + 1);$
- 4. $c \leftarrow \text{Open}(2^{k-1} + [a] + 2^{k-1}[r'] + [r]);$
- 5. $c' \leftarrow c \mod 2^{k-1}$;
- 6. $[u] \leftarrow \mathsf{BitLT}(c', ([r_{k-2}], \dots, [r_0]));$
- 7. $[a'] = [c'] [r] + 2^{k-1}[u];$
- 8. $[b] \leftarrow ([a'] [a])(2^{-(k-1)} \mod p);$
- 9. return [*b*];
- outputs the complement of the most significant bit of a
- compare x and y by calling LTZ on x y

Where This Takes Us

- At this point we have efficient protocols for virtually all common integer and fixed-point operations
 - different types of comparisons, truncation, division, etc.
- Can privacy-preserving evaluation of general-purpose programs be a reality?
 - we built a suite of protocols for floating-point arithmetic (NDSS'13)
 - proper evaluation of complex operations such as square root, logarithm, and exponentiation is available
 - we built a compiler, PICCO, for transforming a general-purpose C
 program into its secure distributed implementation (CCS'13)
 - support for dynamic memory management and pointers to private data was consequently added (TOPS'18)

Everything is Not That Simple

- The goal of the compiler was to permit programmers without extensive cryptography background create secure programs of their choice
- Experimenting with PICCO has taught us that everything is not that simple
 - knowledge of the underlying techniques is still needed for writing programs that run efficiently
- Offering built-in libraries for higher-level functions and data structures would greatly aid programmers in writing efficient code
- At a lower level, improvements can be made in two directions:
 - improving speed by using computationally secure protocols
 - exploiting computation structure to optimize more complex algorithms

Computationally Secure Protocols

- Take multiplication $a \cdot b$ as an example
 - consider (n, t) Shamir secret sharing
 - a secret s is represented by a random polynomial f of degree t with f(0) = s
 - each party holds evaluation of f on a unique point
 - conventional simple multiplication protocol from [GRR98] communicates n(n-1) field elements local
 - locally multiply shares of a and b
 - re-share the product (n-1 messages per party)
 - ullet combine the shares and reduce the polynomial degree from 2t to t

Computationally Secure Multiplication

- Suppose that we use pseudorandom values for shared randomness
 - to reshare its secret, each party no longer generates a random polynomial
 - instead, each party uses PRGs to generate t shares
 - these shares together with the secret itself define the polynomial
 - now we need to communicate only n-t-1 evaluations of the polynomial
 - when n = 2t + 1 this instantly reduces communication in half
 - with n=3 and t=1, this is a reduction from 6 to 3 elements per multiplication

Computationally Secure Multiplication

- We might also want to use multiplication of linear communication complexity
 - communication becomes asymmetric and uses a king
 - consider construction from [DN07]

$$[c] \leftarrow \mathsf{Mult}([a], [b])$$

- 1. $([r], \langle R \rangle) \leftarrow \mathsf{DRand}();$
- 2. Each $p \in [1, n]$ computes $\langle D \rangle_p = [a]_p \cdot [b]_p + \langle R \rangle_p$ and sends $\langle D \rangle_p$ to the king;
- 3. The king reconstructs $D \leftarrow \mathsf{Open2}(\langle D \rangle)$ and sends D to each party;
- 4. [c] = D [r];
- 5. return [c];
- this uses 2(n-1) messages plus the cost of DRand

Computationally Secure Multiplication

- By using computationally secure tools, we obtain non-interactive RandFld [CDI05]
 - this can generate [r], but $\langle R \rangle$ needs to use independent randomness
 - randomization is possible using a fresh pseudo-random sharing of 0
 - pseudo-random 2t-sharing $\langle 0 \rangle$ of 0 is available from [CDI05]
 - we obtain DRand implementation with no communication
 - generate [r]
 - multiply shares of r with shares of 1
 - rerandomize the product shares by adding $\langle 0 \rangle$
- The total multiplication communication cost with n parties is 2(n-1)

TPMPC

June 2019

Optimizing Algorithm's Structure

- Take array access at private location [j] as an example
 - there are two common implementations
 - multiplexer-based approach bit decomposes the index [j] and selects the right element using its bits
 - comparison-based approach compares [j] to each array index and chooses the one that matched
 - both have complexity $m \log m$ for an m-element array
 - PICCO implements the former, but we later determined the latter to be slightly faster

Comparison-Based Array Read

• Consider comparison-based array read at private location [j]

$$[b] \leftarrow \mathsf{ArrayRead}(\langle [a_0], \ldots, [a_{m-1}] \rangle, [j])$$

- 1. for i = 0 to m 1 in parallel $[c_i] \leftarrow \mathsf{EQ}([j], i)$;
- 2. $[b] \leftarrow \sum_{i=0}^{m-1} [c_i] \cdot [a_i];$
- 3. return [*b*];
- because j is compared to all indices, the computation may be redundant
- we need to see the way equality tests are realized

Equality Testing Protocol

• Consider the following equality protocol from [ChH10]:

$$[b] \leftarrow \mathsf{EQZ}([a], k)$$

- 1. $([r'], [r], [r_{k-1}], \dots, [r_0]) \leftarrow \mathsf{RandM}(k, k);$
- 2. $c \leftarrow \mathsf{Open}([a] + 2^k[r'] + [r]);$
- 3. $(c_{k-1},...,c_0) \leftarrow Bits(c,k);$
- 4. for i = 0, ..., k 1 do $[d_i] \leftarrow c_i + [r_i] 2c_i[r_i]$;
- 5. $[b] \leftarrow 1 \mathsf{KOr}([d_{k-1}], ..., [d_0]);$
- 6. return [*b*];
- the cost is dominated by RandM
- KOr has logarithmic (in k) cost

Optimizing Comparison-Based Array Access

- The first observation is that we execute EQZ on j-i for fixed j and adjacent i
 - random pad is generated to protect j for i = 0 and open the sum as c
 - instead of generating new randomness for i=1 we could simply compute it from c as c-1
 - we thus open protected j and compute the values for all indices as c-i
 - each c-i is used in consecutive computation as before
 - this reduces complexity from $O(m \log m)$ to $O(m \log \log m)$ without affecting the number of rounds

Optimizing Comparison-Based Array Access

- The resulting operation still appears to be sub-optimal
 - related values are used in a large number of KOr operations
 - the values also span most or all of possible combinations of $\log m$ bits
 - we can compute OR of all possible combinations of log m bits more efficiently than one at a time
 - our solution uses a divide-and-conquer approach:
 - divide the size into two halves, recurse on each half, then assemble the result
 - merging two sets of size 2^a and 2^b uses 2^{a+b} invocations (OR operations) in 1 round

Optimizing Comparison-Based Array Access

• The final solution requires some tweaks to the construction and we obtain

$$[b] \leftarrow \mathsf{ArrayRead}(\langle [a_0], \ldots, [a_{m-1}] \rangle, [j])$$

- 1. $([r'], [r], [r_{\log m 1}], ..., [r_0]) \leftarrow \mathsf{PRandM}(\log m, \log m);$
- 2. $\langle [b_0], ..., [b_{2^{\log m}-1}] \rangle \leftarrow \mathsf{AllOr}([r_{\log m-1}], ..., [r_0]);$
- 3. for $i = 0, ..., 2^{\log m} 1$, $[b_i] = 1 [b_i]$;
- 4. $c \leftarrow \text{Open}([j] + 2^{\log m}[r'] + [r]);$
- 5. $c' \leftarrow c \mod 2^{\log m}$;
- 6. $[b] \leftarrow \sum_{i=0}^{m-1} [b_{c'-i \mod 2^{\log m}}] \cdot [a_i];$
- 7. return [*b*];
- the overall complexity is O(m) with a very low constant

Performance

• The impact of changes is significant in both LAN and WAN settings

Summary

- The design of common operations has a profound impact on program execution time
- Relaxing security from perfect to statistical or computational typically leads to significant performance improvements
- Working with standard secret sharing types allows for collective progress with performance of general functionalities