Beaver Meets FSS:
Secure Computation with Preprocessing via Function Secret Sharing

Elette Boyle
IDC Herzliya

Niv Gilboa
Ben Gurion University

Yuval Ishai
Technion
Goal: Efficient 2PC with Preprocessing

• Possibly mixed domains (big)

• Useful nonlinear gates
 • Equality, Comparison, Bit Decomp, …
Secure Computation with Preprocessing

[Beaver ’91]

Correlated randomness

Preprocessing

Online phase

\(f(x, y) \)

\(x \)

\(y \)

- Cheap
- Low communication
Semi-Orthogonal Questions

• How to **use** correlations (& which are useful)?
 • Beaver triples, circuit-dependent Beaver [Bea91]
 • One-time truth tables (TinyTables) [IKMOP13, DNNR17]
 • Sublinear IT online comm for layered circuits [Cou19]
 • …

This Talk

• How to **generate** correlations?

 New & cool! “Silent Preprocessing”
 [BCGIKS19, BCGIKRS19]
Our Results (High Level)

• General Framework: MPC w Preprocessing via Function Secret Sharing

- Theoretical: Unifying approach
- Practical: Promising low-online-comm (equality, comparison, bit decomp, …)

• Necessity of FSS?
 - “Shared equality” with optimal online communication ⇒ OWF
 - Barrier to such implication for almost optimal
Today

• Function Secret Sharing (FSS)
• General Transformation
• Examples (Old & New)
Additive Secret Sharing

Elements in Abelian group \mathbb{G}

$s_0 + s_1 = s$ (in \mathbb{G})

- **Secrecy**: s_b hides s
- **Reconstruction**: $s_0 + s_1 = s$ (in \mathbb{G})
Function Secret Sharing (FSS) for \mathcal{F}

- **Security**: f_b hides f (within \mathcal{F})
- **Correctness**: For every input x, $\text{Eval}_x(f_0) + \text{Eval}_x(f_1) = f(x)$
- **Size**: $|f_b| \sim |f|$
Our Preprocessing Framework: 2 Flavors

- Circuit **Dependent**
- Circuit **Independent**
General Framework

- Step 1: Choose circuit

Each gate g:

$F_g : G^\text{in}_g \rightarrow G^\text{out}_g$

Each wire w:

Group G_w

Note: Can also mix & match with other frameworks
General Framework

- **Step 1:** Choose circuit
- **Step 2:** Random mask per wire
 \[r_w \leftarrow \mathcal{G}_w \]
- **Online goal:** Parties progressively learn masked values
 \[\hat{x}_w := x_w + r_w \]
- **Inputs:** \(r_w \in \text{party's CR}. \) He sends \(\hat{x}_w \).
- **Gates:** Need translation
 \[\hat{x}_{\text{out}} = F_g(\hat{x}_{\text{in}} - r_{\text{in}}) + r_{\text{out}} \]
Offset-Function Family

\[\hat{x}_{out} = F_g(\hat{x}_{in} - r_{in}) + r_{out} =: F_g^{r_{in}, r_{out}}(\hat{x}_{in}) \]

Offset \((F_g) := \left\{ F_g^{r_{in}, r_{out}} : r_{in} \in G^\text{in}_g, \quad r_{out} \in G^\text{out}_g \right\} \)
Leveraging FSS for Offset(F_g)

Public: \hat{x}_{in}

Goal: \hat{x}_{out}

\[
\begin{align*}
F_g & = F_{[r_{in}, r_{out}]}(\hat{x}_{in}) \\
& = F_g(\hat{x}_{in} - r_{in}) + r_{out} \\
& = \hat{x}_{out}
\end{align*}
\]
Combining Gates

FSS shares for each gate + Input r_w’s

Inputs: Send masked \hat{x}_w

Gate: Exchange FSS-Eval’ed shares of \hat{x}_{out}
Circuit-Dependent Preprocessing

- **Offline:** Size ~ \{all FSS shares\}

- **Online:**
 - Rounds = 1 per FSS gate
 - Comp = FSS Evals
 - Comm = \(\sum_g |G_g^{out}| \)
Circuit-Independent Preprocessing

• Don’t know how to “match up” r_{in} & r_{out}'s

\[F_1[r_{1in}, r_{1out}] \]
\[F_2[r_{2in}, r_{2out}] \]
Circuit-Independent Preprocessing

- Independently sample r_{in}'s

 \[F_{g[r_{in}, 0]}(\hat{x}) = F_g(\hat{x} - r_{in}) + 0 \]

- Also give additive shares of r_{in}'s

\[\langle r_{2_{in}} \rangle \Rightarrow \text{Shares of unmasked } x \]
Circuit-independent Preprocessing

- **Offline:**

 \[
 \text{Size} \sim \{\text{all FSS shares}\} + \sum_g |G_{g}^{in}|
 \]

- **Online:**

 - Rounds = 1 per FSS gate
 - Comp = FSS Evals
 - Comm = \(\sum_g |G_{g}^{in}| \)

Different (higher) b/c fan-out
So... About that FSS.
Examples: Information-Theoretic FSS

- **Any** function class \(\{ f : \{0,1\}^n \rightarrow \mathbb{G} \} \)
 - Secret share the truth table

- Low-degree **polynomials** \(\{ \sum_i \alpha_i x^i \} \)
 - Secret share the coefficients \(\alpha_i \)

- Function class \(\{ \sum_i \alpha_i f_i(x) \} \) for **public** \(f_i \)
 - Secret share the coefficients \(\alpha_i \)
Corollaries

- **Any** function class \(\{ f : \{0,1\}^n \to \mathbb{G} \} \)
 - Secret share the truth table

- Low-degree **polynomials** \(\{ \sum_i \alpha_i x^i \} \)
 - Secret share the coefficients \(\alpha_i \)

- Function class \(\{ \sum_i \alpha_i f_i(x) \} \) for **public** \(f_i \)
 - Secret share the coefficients \(\alpha_i \)

One-time truth tables [IKMOP13]
TinyTables [DNNR17]
(TT for local functions) [Cou19]

Beaver triples [Bea91]
Circuit-dependent Beaver [DNNR17]

\[(x_1 - r_1)(x_2 - r_2) = x_1x_2 - r_1x_2 - x_1r_2 + r_1r_2\]

Degree-\(d\) gates
Bilinear maps, …
Lightweight FSS Constructions from OWF

- **Point Functions** $f_{\alpha, \beta} : \{0,1\}^n \to \mathbb{G}$
 - Key size $\sim \lambda n + \log |\mathbb{G}|$ bits
 - Gen/Eval $\sim n$ PRG evals

- **“Special” Intervals**
 - Cost \leq Point Function $\times 2$

- **General Intervals**
 - Cost \leq Point Function $\times 4$

General input groups too
Zero Test / Equality Match

- \(F_{zt}(x) = \begin{cases} 1 & x = 0 \\ 0 & \text{else} \end{cases} \)

- \(F_{zt}^{[r_{in}, r_{out}]}(\hat{x}) = r_{out} + \begin{cases} 1 & \hat{x} = r_{in} \\ 0 & \text{else} \end{cases} \)

• Equality Match = ZeroTest(x-y)
Sign / Comparison

- $F_{\text{sign}}(x) = \begin{cases}
1 & x \geq 0 \\
0 & \text{else}
\end{cases}$

- $F_{\text{sign}}^*[r,0](\hat{x}) = \begin{cases}
1 & \hat{x} - r \geq 0 \\
0 & \text{else}
\end{cases}$

- Comparison $= \text{Sign}(x-y)$

sum: 2 Special Intervals
($\sim 4 \times \text{Point Fn}$)
Splines

\[F(x) = (x \in I_1) \cdot 0 + (x \in I_2) \cdot x + (x \in I_3) \cdot \sum \alpha_i x^i \]

\[F_{\text{piece}}(x) = (x \in I) \cdot p(x) \]

\[F^{[r,0]}_{\text{piece}}(\hat{x}) = (\hat{x} \in I_r) \cdot p(\hat{x} - r) \]

- Example: ReLU. Needs single interval of payload = 2 coeffs

Polynomial, secret coefficients \(\beta_i \)

Interval, where “yes” payload is vector of \(\beta_i \)’s
Bit Decomposition: \(\mathbb{Z}_{2^k} \)

- Goal: FSS BitDecomp(\(\hat{x} + r \))

\[\hat{x}_i \oplus r_i \oplus \text{Carry}_i^r(\hat{x}) \]

Linear

\[\equiv [\hat{x}]_{i-i} \geq 2^i - [r]_{i-1} \]

Special Interval!!

- All together: \(k \) Special intervals. Total size/complexity \(\sim \lambda k^2 \)
Bit Decomposition: General \mathbb{Z}_N

Challenge: Wraparound

• Case 1: General N, with small payload guarantee ($|x| \leq \frac{1}{2} \log N$)
 • (Removes issue)

• Case 2: General N (no promise)
 • Compute as 2 conditionals = (wraparound \land carry) + (\neg wraparound \land carry)
 • Each is 2-dim interval (less cheap)
Example Comparison

<table>
<thead>
<tr>
<th>Gate Type</th>
<th>Protocol</th>
<th>Online communication (bits per party)</th>
<th>Online rounds</th>
<th>Offline storage (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero test</td>
<td>[Cou18] ABY [DSZ15] This work</td>
<td>$m + o(m)$ [O(\lambda m)] [m]</td>
<td>≥ 3 [2]</td>
<td>$2m + o(m)$ [O(\lambda m)] [\approx \lambda m]</td>
</tr>
<tr>
<td>Zero test example $m = 64$</td>
<td>[Cou18] This work</td>
<td>77 [64]</td>
<td>3 [1]</td>
<td>152 [8322]</td>
</tr>
<tr>
<td>Integer comparison</td>
<td>[Cou18] SC1 ABY [DSZ15] This work</td>
<td>[O(\lambda m)] [m]</td>
<td>$O(\log \log m)$ [2]</td>
<td>$3m + o(m)$ [O(\lambda m)] [\approx \lambda m]</td>
</tr>
<tr>
<td>Comparison example $m = 64$</td>
<td>[Cou18] This work</td>
<td>1120 [64]</td>
<td>12 [1]</td>
<td>≈ 300 [8450]</td>
</tr>
<tr>
<td>Bit decomposition</td>
<td>ABY [DSZ15] This work</td>
<td>[O(\lambda m)] [m]</td>
<td>2 [1]</td>
<td>$O(\lambda m)$ [\approx \lambda m^2/2]</td>
</tr>
<tr>
<td>Spline over \mathbb{Z}_2^m $k + 1$ deg.-d polynomials</td>
<td>ABY [DSZ15] This work</td>
<td>[O(m(\lambda k + d))] [m]</td>
<td>2 [1]</td>
<td>$O(m(\lambda k + d))$ [\approx 2km(\lambda + d)]</td>
</tr>
</tbody>
</table>
Generating the Correlations

• **2-Party**: Secure 2PC of FSS for Point Functions
 • Via Generic 2PC (~2n AES evals)
 • Via Doerner-shelat [Ds17] for reasonable domains (BB in PRG)

• **3-Party**: One party simply generates & goes offline
Summary of Results

• General Framework: MPC w Preprocessing via Function Secret Sharing

• Theoretical: Unifying approach

• Practical: Promising low-online-comm (equality, comparison, bit decomp,...)

• Necessity of FSS?
 • “Shared equality” with optimal online communication ⇒ OWF
 • Barrier to such implication for almost optimal
Open Directions

- **Supporting further gates**
 - New efficient FSS schemes (e.g., CNF/DNF from OWF?)
 - New tricks for using FSS to attain more gates

- **Efficiency**
 - Eg: improved Bit Decomposition \((\text{better than quadratic: } \lambda \cdot k^2)\)
 - Concrete optimizations & implementation

- **Improved generation of correlations**
 - Targeted 2PC of FSS Share function
 - Silent generation??