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Abstract. We present an implementation of the protocol of Lindell and
Pinkas for secure two-party computation which is secure against mali-
cious adversaries [13]. This is the first running system which provides
security against malicious adversaries according to rigorous security def-
inition and without using the random oracle model. We ran experiments
showing that the protocol is practical. In addition we show that there is
little benefit in replacing subcomponents secure in the standard model
with those which are only secure in the random oracle model. Throughout
we pay particular attention to using the most efficient subcomponents in
the protocol, and we select parameters for the encryption schemes, com-
mitments and oblivious transfers which are consistent with a security
level equivalent to AES-128.

1 Introduction

Secure multi-party computation is a process which allows multiple participants to
implement a joint computation that, in real life, may only be implemented using
a trusted party. The participants, each with its own private input, communicate
without the help of any trusted party, and can compute any function without
revealing information about the inputs (except for the value of the function). A
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classic example of such a computation is the Millionaires’ problem, in which two
millionaires want to know who is richer, without revealing their actual worth.

Multi-party computation has been considered by the theoretical cryptogra-
phy community for a long time, starting with the pioneering work of Yao [24]
in 1986. Yao’s garbled circuit construction is relatively simple, and runs in a
constant number of rounds. Yao’s construction still remains the most attractive
choice for generic secure two-party computation.

In recent years attention has focused on whether the theoretical work has any
practical significance. In the two-party case the main contribution has been the
FairPlay compiler [15], which is a generic tool translating functions written in
a special high-level language to Java programs which execute a secure protocol
implementing them. There are two major drawbacks with the current FairPlay
implementation. Firstly it only provides weak security against malicious adver-
saries (where reducing the cheating probability to 1/k requires increasing the
overhead by a factor of k), and has no proof of security (in particular, it is clear
that it cannot be proven secure under simulation-based definitions). As such, its
usage can only be fully justified for providing security against honest but curious
(aka semi-honest) adversaries.1 Secondly it does not make use of the latest and
most efficient constructions of its various component parts.

In recent years the theoretical community has considered a number of ways
of providing a variant of Yao’s protocol which is secure against malicious ad-
versaries. In the current paper we examine one of the more recent and efficient
protocols for providing security for Yao’s protocol against malicious adversaries,
namely the protocol of Lindell and Pinkas [13] which is proved to be secure ac-
cording to a standard simulation based definition, and as such can be securely
used as a primitive in more complex protocols (see [8, Chapter 7], which in turn
follows [6]).

Our work presents the following contributions:

– We provide an efficient implementation of the protocol of [13], which is se-
cure against malicious adversaries. This is, to our best knowledge, the first
implementation of a generic two-party protocol that is secure against mali-
cious adversaries according to a standard simulation based definition. The
implementation demonstrates the feasibility of the use of such protocols.

– We derive a number of optimizations and extensions to the protocol and to
the different primitives that it uses. Unlike prior implementations we pay
particular attention to using the most efficient constructions for the vari-
ous components. For example we use elliptic curve based oblivious transfer
protocols instead of finite field discrete logarithm based protocols.

1 The cryptographic community denotes adversaries which can operate arbitrarily as
“malicious”. Semi-honest (or honest but curious) adversaries are supposed to follow
the protocol that normal users are running, but they might try to gain information
from the messages they receive in the protocol. It is, of course, easier to provide
security against semi-honest adversaries.



– We also examine the difference between using protocols which are secure in
the random oracle model (ROM) and protocols in the standard model.2 Of
particular interest is that our results show that there appears to be very
little benefit in using schemes which are secure in the ROM as opposed to
the standard model.3

1.1 Related Work

Research on security against malicious adversaries for computationally secure
protocols started with the seminal GMW compiler [9]. As we have mentioned,
we base our work on the protocol of [13], and we refer the reader to that work
for a discussion of other approaches for providing security against malicious
adversaries (e.g., [14, 11, 23]). We note that a simulation based proof of security
(as in [13]) is essential in order to enable the use of a protocol as a building
block in more complex protocols, while proving the security of the latter using
general composition theorems like those of [6, 8]. This is a major motivation
for the work we present in this paper, which enables efficient construction of
secure function evaluation primitives that can be used by other protocols. (For
example, the secure protocol of [2] for finding the kth ranked element is based on
invoking several secure computations of comparisons, and provides simulation
based security against malicious adversaries if the invoked computations have a
simulation based proof. Our work enables to efficiently implement that protocol.)

The first generic system implementing secure two-party computation was
FairPlay [15], which provided security against semi-honest adversaries and lim-
ited security against malicious adversaries (see discussion above). FairPlayMP
is a generic system for secure multi-party computation, which only provides se-
curity against semi-honest adversaries [3]. Another system in the multi-party
scenario is SIMAP, developing a secure evaluation of an auction using general
techniques for secure computation [5, 4]. It, too, supports only security against
semi-honest adversaries.

1.2 Paper Structure

Section 2 introduces Yao’s protocol for secure two-party computation, while Sec-
tion 3 presents the protocol of [13] which is secure against malicious adversaries.
2 A random oracle is a function which is modeled as providing truly random answers.

This abstraction is very useful for proving the security of cryptographic primitives.
However, given any specific implementation of a function (known to the users who
use it), this assumption no longer holds. Therefore it is preferable to prove security
in the standard model, namely without using any random oracle.

3 This is surprising since for more traditional cryptographic constructions, such as
encryption schemes or signature schemes, the random oracle constructions are almost
always twice as efficient in practice compared to the most efficient standard model
schemes known. Part of the reason for the extreme efficiency of our standard model
constructions is our use of a highly efficient oblivious transfer protocol which reduces
the amortized number of zero-knowledge proofs which are required to be performed.



Section 4 presents the different efficient sub-protocols that we used. Finally,
Section 5 presents the results of our experiments.

2 Yao’s Garbled Circuit

Two-party secure function evaluation makes use of the famous garbled circuit
construction of Yao [24]. In this section we briefly overview the idea. Note, how-
ever, that the following basic protocol is not secure against malicious adversaries,
which is why the advanced protocol in the next section is to be preferred. The
basic idea is to encode the function to be computed via a Binary circuit and
then to securely evaluate the circuit on the players’ inputs.

We consider two parties, denoted as P1 and P2, who wish to compute a
function securely. Suppose we have a simple Binary circuit consisting of a single
gate, the extension to many gates given what follows is immediate. The gate has
two input wires, denoted w1 and w2, and an output wire w3. Assume that P1

knows the input to wire w1, which is denoted b1, and that P2 knows the input to
wire w2, which is denoted b2. We assume that each gate has a unique identifier
Gid (this is to enable circuit fan out of greater than one, i.e. to enable for the
output wire of a gate to be used in more than one other gate). We want P2 to
determine the value of the gate on the two inputs without P1 learning anything,
and without P2 determining the input of P1 (bar what it can determine from
the output of the gate and its own input). We suppose that the output of the
gate is given by the function G(b1, b2) ∈ {0, 1}

Yao’s construction works as follows. P1 encodes, or garbles, each wire wi

by selecting two different cryptographic keys k0
i and k1

i of length t, where t is a
computational security parameter which suffices for the length of a symmetric
encryption scheme. In addition to each wire it associates a random permutation
πi of {0, 1}. The garbled value of the wire wi is then represented by the pair
(kbi

i , ci), where ci = πi(bi).
An encryption function Es

k1,k2
(m) is selected which has as input two keys

of length t, a message m, and some additional information s. The additional
information s must be unique per invocation of the encryption function (i.e.,
used only once for any choice of keys). The precise encryption functions used are
described in Section 4.1. The gate itself is then replaced by a four entry table
indexed by the values of c1 and c2, and given by

c1, c2 : EGid‖c1‖c2

k
b1
1 ,k

b2
2

(
k

G(b1,b2)
3 ‖c3

)
,

where b1 = π−1
1 (c1), b2 = π−1

2 (c2), and c3 = π3(G(b1, b2)). Note that each entry
in the table corresponds to a combination of the values of the input wires, and
contains the encryption of the garbled value corresponding to these values of the
input wires, and the corresponding c value. The resulting look up table (or set
of look up tables in general) is called the Garbled Circuit.

P1 then sends to P2 the garbled circuit, its input value kb1
1 , the value c1 =

π1(b1), and the mapping from the set {k0
3, k

1
3} to {0, 1} (i.e. the permutation



π3). P1 and P2 engage in an oblivious transfer (OT) protocol so that P2 learns
the value of kb2

2 , c2 where c2 = π2(b2). P2 can then decrypt the entry in the
look up table indexed by (c1, c2) using kb1

1 and kb2
2 ; this will reveal the value of

k
G(b1,b2)
3 ‖c3 and P2 can determine the value of G(b1, b2) by using the mapping
π−1

3 from the set c3 to {0, 1}.
In the general case the circuit consists of multiple gates. P1 chooses random

garbled values for all wires and uses them for constructing tables for all gates.
It sends these tables (i.e., the garbled circuit) to P2, and in addition provides P2

with the garbled values and the c values of P1’s inputs, and with the permutations
π used to encode the output wires of the circuit. P2 uses invocations of oblivious
transfer to learn the garbled values and c values of its own inputs to the circuits.
Given these values P2 can evaluate the gates in the first level of the circuit, and
compute the garbled values and the c values of the values of their output wires.
It can then continue with this process and compute the garbled values of all
wires in the circuit. Finally, it uses the π permutations of the output wires of
the circuit to compute the real output values of the circuit.

Traditionally, for example in hardware design, one uses circuits which are
constructed of simple gates which take at most two inputs and produce as most
one output. In a Yao circuit a gate which takes n inputs and produces m outputs
is encoded as a look up table which has 2n rows, each consisting of a string of
O(m · t) bits (where t is the security parameter which denotes the length of a
key). Hence, it is often more efficient to use non-standard gates in a Yao circuit
construction. For example a traditional circuit component consisting of k 2-to-1
gates, with n input and m output wires can be more efficiently encoded as a
single n-to-m gate if 4k > 2n. In what follows we therefore assume the more
suitable n-to-m gate construction. The extension of the above gate description
to this more general case is immediate.

3 The Lindell-Pinkas Protocol

The protocol was presented in [13] and was proved there to be secure according
to the real/ideal-model simulation paradigm [6, 8]. The proof is in the standard
model, with no random oracle model or common random string assumptions. We
describe below the protocol in some detail, for full details see [13]. We remark
that this description is not essential in order to understand the results of our
paper. The important things to note are the basic structure of the protocol,
as described in the next paragraph, and the fact that the protocol is based
on the use of different types of commitments (statistically binding, statistically
hiding, and computational), and of an oblivious transfer protocol. We describe
the implementation of these primitives in Section 4.

The basic structure of the protocol: The protocol proceeds in the following
steps. It has statistical security parameters s1 and s2. We replace P2’s input wires
with a new set of O(s2) input wires, and change the original circuit by adding
to it a new part which translates the values of the new input wires to those of



the original wires. Then P1 generates s1 copies of Yao circuits and passes them
to P2, along with O(s21) commitments to the inputs. The input decommitments
for P1’s inputs are transferred to P2 via a batched oblivious transfer. Finally,
after executing a number of cut-and-choose checks on the transferred circuits and
commitments, P2 evaluates half of the circuits and determines the output value
as the majority value of the outputs of these circuits. One of the contributions
of this paper is to examine each of the above operations in turn and optimize
the parameters and components used in the Lindell-Pinkas description.

3.1 The Protocol in Detail

As explained in [13] it suffices to present a protocol for the case where the output
is learnt by P2 and P1 learns nothing. We consider the computation of f(x, y)
where P1’s input is x ∈ {0, 1}n and P2’s input is y ∈ {0, 1}n.

The protocol is parameterized by two statistical security parameters s1 and
s2. (In [13] these are a single statistical security parameter but we shall see
later that in order to optimize performance these parameters really need to be
treated separately.) The protocol takes as input a circuit description C0(x, y)
which describes the function f(x, y). We use the notation comb to refer to a
statistically binding commitment scheme, comh to refer to a statistically hiding
commitment scheme, and comc to refer to a commitment scheme which is only
computationally binding and hiding. See Section 4 for our precise choice of these
protocols.

The protocol itself is quite elaborate, but, as demonstrated in Section 5, it
can be implemented quite efficiently.

0. Circuit construction: The parties replace C0, in which P2 has n input
wires, with a circuit C in which P2 has ` input wires, where ` = max(4n, 8s2).
The only difference between the circuits is that each original input wire of P2

in C0 is replaced with an internal value which is computed as the exclusive-
or of a random subset of the ` input wires of C. (Given an input to the
original circuit, P2 should therefore choose a random input to the new circuit,
subject to the constraint that the internal values are equal to the original
input values.) The exact construction is presented in Section 5.2 of [13]. (In
order to avoid unnecessary extra gates in the circuit segment that computes
the original input wires as a function of the new input wires, we designed
the exact wiring using a variant of structured Gaussian elimination.)
We let the new input wires of P2 be given by ŷ ← ŷ1, . . . , ŷ`

1. Commitment construction: P1 constructs the circuits and commits to
them, as follows:4

(a) P1 constructs s1 independent copies of a garbled circuit of C, denoted
GC1, . . . , GCs1 .

4 In [13] this commitment is done with a perfectly binding commitment scheme, how-
ever one which is computationally binding will suffice to guarantee security.



(b) P1 commits to the garbled values of the wires corresponding to P2’s input
to each circuit. That is, for every input wire i corresponding to an input
bit of P2, and for every circuit GCr, P1 computes the ordered pair

(c0i,r, c
1
i,r)← (comc(k0

i,r), comc(k1
i,r)),

where kb
i,r is the garbled value associated with b on input wire i in circuit

GCr. We let (dc0i,r, dc
1
i,r) denote the associated decommitment values.

(c) P1 computes commitment-sets for the garbled values that correspond
to its own inputs to the circuits. That is, for every wire i that corre-
sponds to an input bit of P1, it generates s1 pairs of commitment sets
{Wi,j ,W

′
i,j}

s1
j=1, in the following way:

Denote by kb
i,r the garbled value that was assigned by P1 to the value

b ∈ {0, 1} of wire i in GCr. Then, P1 chooses b← {0, 1} and computes
Wi,j ← 〈comc(b), comc(kb

i,1), . . . , comc(kb
i,s1

)〉,
W ′i,j ← 〈comc(1−b), comc(k1−b

i,1 ), . . . , comc(k1−b
i,s1

)〉.

There are a total of n · s1 commitment-sets (s1 per input wire). We
divide them into s1 supersets, where superset Sj is defined to be the set
containing the jth commitment set for all wires. Namely, it is defined as
Sj = {(Wk,j ,W

′
k,j)}nk=1.

2. Oblivious transfers: For every input bit of P2, parties P1 and P2 run a
1-out-of-2 oblivious transfer protocol in which P2 receives the garbled values
for the wires that correspond to its input bit (in every circuit).
Let i1, . . . , iw be the input wires that correspond to P2’s input, then, for
every j = 1, . . . , w, parties P1 and P2 run a 1-out-of-2 OT protocol in
which:
(a) P1’s input is the pair of vectors [dc0ij ,1, . . . , dc

0
ij ,s1

], and [dc1ij ,1, . . . , dc
1
ij ,s1

].
(b) P2’s input are the bits ŷj , and its output should be [dcŷj

ij ,1, . . . , dc
ŷj

ij ,s1
].

3. Send circuits and commitments: P1 sends to P2 the garbled circuits, as
well as all of the commitments that it prepared above.

4. Prepare challenge strings:5

(a) P2 chooses a random string ρ2 ← {0, 1}s1 and sends comh(ρ2) to P1.
(b) P1 chooses a random string ρ1 ∈ {0, 1}s1 and sends comb(ρ1) to P2.
(c) P2 decommits, revealing ρ2.
(d) P1 decommits, revealing ρ1.
(e) P1 andP2 set ρ← ρ1 ⊕ ρ2.
The above steps are run a second time, defining an additional string ρ′.

5. Decommitment phase for check-circuits: We refer to the circuits for
which the corresponding bit in ρ is 1 as check-circuits, and we refer to the
other circuits as evaluation-circuits. Likewise, if the jth bit of ρ′ equals 1,
then all commitments sets in superset Sj = {(Wi,j ,W

′
i,j)}ni=1 are referred to

as check-sets; otherwise, they are referred to as evaluation-sets.
For every check-circuit GCr, party P1 operates in the following way:

5 In [13] it is proposed to use perfectly binding and computationally hiding com-
mitments here, but statistically binding and computationally hiding commitments
actually suffice.



(a) For every input wire i corresponding to an input bit of P2, party P1 de-
commits to the pair (c0i,r, c

1
i,r).

(b) For every input wire i corresponding to an input bit of P1, party P1 de-
commits to the appropriate values in the check-sets {Wi,j ,W

′
i,j}.

For every pair of check-sets (Wi,j ,W
′
i,j), party P1 decommits to the first

value in each set i.e., to the value that is supposed to be a commitment to
the indicator bit, com(0) or com(1)).

6. Decommitment phase for P1’s input in evaluation-circuits: P1 de-
commits to the garbled values that correspond to its inputs in the evaluation-
circuits.

7. Correctness and consistency checks: Player P2 performs the following
checks; if any of them fails it aborts.
(a) Checking correctness of the check-circuits: P2 verifies that each check-

circuit GCi is a garbled version of C.
(b) Verifying P2’s input in the check-circuits: P2 verifies that P1’s decom-

mitments to the wires corresponding to P2’s input values in the check-
circuits are correct, and agree with the logical values of these wires (the
indicator bits). P2 also checks that the inputs it learned in the oblivious
transfer stage for the check-circuits correspond to its actual input.

(c) Checking P1’s input to evaluation-circuits: Finally, P2 verifies that for
every input wire i of P1 the following two properties hold:

i. In every evaluation-set, P1 chooses one of the two sets and decom-
mitted to all the commitments in it which correspond to evaluation-
circuits.

ii. For every evaluation-circuit, all of the commitments that P1 opened
in evaluation-sets commit to the same garbled value.

8. Circuit evaluation: If any of the above checks fails, P2 aborts and outputs
⊥. Otherwise, P2 evaluates the evaluation circuits (in the same way as for the
semi-honest protocol of Yao). It might be that in certain circuits the garbled
values provided for P1’s inputs, or the garbled values learned by P2 in the
OT stage, do not match the tables and so decryption of the circuit fails. In
this case P2 also aborts and outputs ⊥. Otherwise, P2 takes the output that
appears in most circuits, and outputs it.

3.2 The Statistical Security Parameters

The protocol uses two statistical security parameters, s1 and s2. The parame-
ter s1 is mainly used to prevent P1 from changing the circuit that is evaluated,
or providing inconsistent inputs to different copies of the circuit. The protocol
requires P1 to provide s1 copies of the garbled circuit, and provide (s1)2 commit-
ments for each of its input bits. The security proof in [13] shows that a corrupt
P1 can cheat with a success probability that is exponentially small in s1. The
original proof in [13] bounds the cheating probability at 2−s1/17, which would
require a large value of s1 in order to provide a meaningful security guarantee.
We conjecture that a finer analysis can provide a bound of 2−s1/4, and in the
full version of this paper we intend to prove this; this conjecture is based on an



analysis of a similar problem that was shown in [10]. A bound of 2−s1/4 would
mean that a relatively moderate value of s1 can be used.6

The parameter s2 is used to prevent a different attack by P1, in which it
provides corrupt values to certain inputs of the oblivious transfer protocol and
then uses P2’s reaction to these values to deduce information about P2’s inputs
(see [13] for details). It was shown that setting the number of new inputs to be
` = max(4n, 8s2) bounds the success probability of this type of attack by 2−s2 .
The values of s1 and s2 should therefore be chosen subject to the constraint
that the total success probability of a cheating attempt, max(2−s1/4, 2−s2), is
acceptable. Therefore, one should set s1 = 4s2.

3.3 Optimizing the Protocol Components

The protocol uses many components, which affect its overall overhead. These
include the encryption scheme, the commitment schemes, and oblivious transfer.
Much of our work was concerned with optimizing these components, in order to
improve the performance of the entire protocol. We describe in the next section
the different optimizations that we applied to the different components.

4 Subprotocols

To implement the above protocol requires us to define a number of sub-protocols:
various commitment schemes, OT protocols and encryption schemes. In what fol-
lows we select the most efficient schemes we know of, in both the random oracle
model (ROM) and the standard model. We assume that the concrete compu-
tational security parameter (as opposed to the statistical security parameter)
is given by t. By this we mean that we select primitives which have security
equivalent to t bits of block cipher security. Thus we first select an elliptic curve
E of prime order q ≈ 22t, and a symmetric cryptographic function with a t-bit
key.

Elliptic curve. We let 〈P 〉 = 〈Q〉 = E, an elliptic curve of prime order q ≈ 22t,
where no party knows the discrete logarithm of Q with respect to P .

Symmetric cryptographic function. The function that will be used for sym-
metric key cryptography is defined as a key derivation function KDF(m, l), which
takes an input string m and outputs a bit string of length l. We use the KDF
defined in ANSI X9.63, which is the standard KDF to use in the elliptic curve
community [19]. It is essentially implemented as encryption in CTR mode where
the encryption function is replaced by the SHA-1 hash function.

6 The experiments in Section 5 assume a bound of 2−s1/4. The overhead of different
parts of the protocol is either linear or quadratic in s1. If we end up using a worse
bound of 2−s1/c, where 4 < c ≤ 17, the timings in the experiments will be increased
by factor in the range c/4 to (c/4)2.



4.1 Encryption Scheme for Garbled Circuits

The encryption scheme Es
k1,k2

(m) used to encrypt the values in the Yao circuit
is defined by the algorithms in Figure 1. We assume that ki ∈ {0, 1}t. The ROM
version is secure on the assumption that the function KDF is modelled as a
random oracle, whilst the standard model scheme is secure on the assumption
that KDF(k‖s, l) is a pseudo-random function, when considered as a function
on s keyed by the key k. We remark that the encryption is secure as long as
the string s is used only once for any choice of key k. Note that the non-ROM
version requires two invocations of the KDF, since we do not know how to
analyze the security of a pseudo-random function if part of its key is known to
an adversary (namely, if we use KDF(k1‖k2‖s, |m|), where KDF is modeled as a
pseudo-random function, k2 is secret and k1 is known to an adversary, we cannot
argue that the output is pseudo-random).

Figure 1 ROM and non-ROM encryption algorithms for the Yao circuits

Input: Keys k1, k2 of length t, and a string s. For encryption an l-bit message m in
also given. For decryption, an l-bit ciphertext c is given.

ROM Version

Encryption Es
k1,k2(m)

1. k ← KDF(k1‖k2‖s, |m|).
2. c← k ⊕m.

Decryption

1. k ← KDF(k1‖k2‖s, |m|).
2. m← k ⊕ c.
3. Return m.

Non-ROM Version

Encryption Es
k1,k2(m)

1. k ← KDF(k1‖s, |m|).
2. k′ ← KDF(k2‖s, |m|).
3. c← m⊕ k ⊕ k′

Decryption

1. k ← KDF(k1‖s, |c|).
2. k′ ← KDF(k2‖s, |c|).
3. m← c⊕ k ⊕ k′.
4. Return m.

4.2 Commitment Schemes

Recall we have three types of commitment schemes; statistically binding, statis-
tically hiding and computationally binding/hiding, to commit to a value m ∈
{0, 1}t. (Note that the elliptic curve E is of order q ≈ 22t and so we can view m
as a number in Zq if desired.)

A Statistically Binding Commitment : comb(m)
We define the statistically binding commitment scheme as in Figure 2. The ran-
dom oracle model based scheme is statistically binding, since to break the binding



property we need to find collisions in the hash function H. Since H is modelled
as a random oracle, the probability of any adversary finding a collision given
a polynomial number of points of H is negligible, even if it is computationally
unbounded. The scheme is also computationally hiding by the fact that H is
modelled as a random oracle (in fact, it’s even statistically hiding if the adver-
sary is limited to a polynomial number of points of H). The non-ROM scheme
is statistically binding because P and c1 fully determine r, which together with
Q and c2 in turn fully determine m. The fact that it is computationally hiding
follows directly from the DDH assumption over the elliptic curve used.

Figure 2 ROM and non-ROM statistically binding commitment schemes

ROM Version
H is a hash function modeled as a random
oracle.
Commitment comb(m)

1. r ← {0, 1}t.
2. c← H(m‖r).
3. Return c.

Decommitment

1. Reveal m and r.
2. Check if c = H(m‖r).
3. Return m.

Non-ROM Version
P and Q are elements on an elliptic
curve, as described above.
Commitment comb(m)

1. r ← Zq.
2. c1 ← [r]P .
3. c2 ← [r][m]Q.
4. Return (c1, c2).

Decommitment

1. Reveal m and r.
2. Check if c1 = [r]P .
3. Check if c2 = [r][m]Q.
4. Return m.

The Statistically Hiding Commitment : comh(m)
For the statistically hiding commitment scheme we use the Pederson commit-
ment [18]:

comh(m)← [r]P + [m]Q

where r is a random number of size q and we treat m as an integer modulo q.
Note that 0 ≤ m < 2t < q < 22t. Decommitment is performed by revealing r
and m, and then verifying the commitment is valid. This is actually a perfectly
hiding commitment (since given comh(m) there exists, for any possible value
of m′, a corresponding value r′ for which comh(m) = [r′]P + [m′]Q) and so in
particular the commitment is also statistically hiding. That the commitment is
computationally binding follows from the fact that any adversary who can break
the binding property can determine the discrete logarithm ofQ with respect to P .

A Computational Commitment Scheme : comc(m)
We use the ROM version of the statistically binding commitment scheme in



Figure 2 for both the ROM and non-ROM commitments here. This is clearly
suitable in the ROM. Regarding the non-ROM case, this scheme is computation-
ally binding on the assumption that H is collision-resistant. Furthermore, it is
computationally hiding when H(m‖r) is modelled as a PRF with key r and mes-
sage m. We remark that when m is large, this latter assumption clearly does not
hold for typical hash functions based on the Merkle-Damg̊ard paradigm (where
given H(k‖m) one can easily compute H(k‖m‖m′) for some m′). However, it
is reasonable when m fits into a single iteration of the underlying compression
function (as is the case here where m ∈ {0, 1}t and t is a computational security
parameter which we set to the value t = 128.).

4.3 Oblivious Transfer

Recall in our main protocol we need to perform w = max(4n, 8s2) 1-out-of-
2 oblivious transfers in Stage 2. We batch these up so as to perform all the
OT’s in a single batch. The OT’s need to be performed in a manner which has a
simulation based proof of security against malicious adversaries, hence the simple
protocols of [17, 1, 12] are not suitable for our purposes (the simulation based
proof is needed in order to be able to use a composition of the OT protocol in our
protocol, see [6]). We therefore use a modification of the batched version of the
protocol of Hazay and Lindell [10], which we now describe in the elliptic curve
setting. (We note that this protocol has a simulation based proof of security in
the standard model, without any usage of a random oracle.)

We assume that P1’s input is two vectors of values

[x0
1, . . . , x

0
w] and [x1

1, . . . , x
1
w],

where |x0
j | = |x1

j |. Party P2 has as input the bits i1, . . . , iw and wishes to obtain
the vector [xi1

1 , . . . , x
iw
w ].

We assume two zero-knowledge proofs-of-knowledge protocols which we shall
describe in Appendix A. The first,DL([x]P ;x), proves, in zero-knowledge, knowl-
edge of the discrete logarithm x of [x]P ; the second, DH(P, [a]P, [b]P, [ab]P ),
proves that the tuple P ,[a]P ,[b]P ,[ab]P is a Diffie–Hellman tuple.

The protocol follows. The main things to notice are that the zero-knowledge
proofs of knowledge are performed only once, regardless of the number of items
to be transfered, and that protocol is composed of only two rounds (in addition
to the rounds needed by the zero-knowledge proofs).

1. P2 chooses α0, α1 ∈ Zq and computes Q0 ← [α0]P and Q1 ← [α1]P , it then
executes the protocol DL(Q0;α0) with party P1.

2. For j = 1, . . . , w party P2 chooses rj ∈ Zq and computes Uj ← [rj ]P ,
V0,j ← [rj ]Q0 + [ij ]P , V1,j ← [rj ]Q1 + [ij ]P . These values are then sent to
P1.

3. P1 chooses ρj ∈ Zq, for j = 1, . . . , w and sends them to P2.



4. Both parties then locally compute

U ←
w∑

j=1

[ρj ]Uj , V ←
w∑

j=1

[ρj ](V0,j − V1,j).

Party P2 executes the protocol DH(P,Q0 −Q1, U, V ) with party P1.
5. For j = 1, . . . , w P1 then performs the following steps:

(a) Select R0,j , R1,j ∈ 〈P 〉 at random.
(b) Select s0,j , t0,j , s1,j , t1,j ∈ Zq.
(c) Set e0,j ← (W0,j , Z0,j , y0,j) where

W0,j ← [s0,j ]U + [t0,j ]P,
Z0,j ← [s0,j ]V0 + [t0,j ]Q0 +R0,j ,

y0,j ← x0
j ⊕KDF(R0,j , |x0

j |).

(d) Set e1,j ← (W1,j , Z1,j , y1,j) where

W1,j ← [s1,j ]U + [t1,j ]P,
Z1,j ← [s1,j ](V1 − P ) + [t1,j ]Q1 +R1,j ,

y1,j ← x1
j ⊕KDF(R1,j , |x1

j |).

The values (e0,j , e1,j) are then sent to P2 for each value of j.
6. For j = 1, . . . , w, party P2 then computes

R← Zij ,j − [αij
]Wij ,j

and outputs
x

ij

j ← yij ,j ⊕KDF(R, |xij

j |).

For each index in the vector of inputs, the protocol requires P1 to perform 10
multiplications, and P2 to perform 8 multiplications. (This is without consider-
ing the zero-knowledge proofs, which are performed once in the protocol.) The
security of the above scheme is fully proven in [10], with the only exception that
here a KDF is used to derive a random string in order to mask (i.e., encrypt) the
x0

j and x1
j values (in [10] it is assumed that x0

j and x1
j can be mapped into points

in the Diffie-Hellman group). The use of a KDF for this purpose was proven
secure in the context of hashed ElGamal in [22], on the assumption that KDF
is chosen from a family of hash functions which are entropy smoothing.

5 Timings

In our implementation we selected t = 128 as the security parameter. As a result,
we chose the KDF to be implemented by SHA-256, and as the elliptic curve E
we selected the curve secp256r1 from the SECG standard [20].

We performed a set of experiments which examined the system using a circuit
which evaluates the function x > y for inputs x and y of n = 16 bits in length.



The standard circuit (using simple 2-to-1 gates) for this problem consists of 61
2-to-1 gates and 93 internal wires. We optimized this circuit by replacing it with
a circuit consisting of 48 internal wires and fifteen 3-to-1 gates and one 2-to-1
gate. We only looked at the case of P2 obtaining the result, the extension to
the first party obtaining the result is standard and requires an extension to the
circuit to be made, for which similar optimizations can be made.

The size of the modified circuit: Step 0 of the protocol replaces the circuit
with a different one which has max(4n, 8s2) input wires. The statistical security
parameter s2 therefore affects the size of the circuit, both in terms of the number
of wires and the number of gates. When n < 2s2, as in our experiments, we have
8s2 new input wires. Each original input wire is replaced with the exclusive-or of
about 4s2 input wires, which can be computed using 4s2 − 1 gates. The circuit
therefore grows by about 4ns2 gates, which in our case translate to 2560 gates for
s2 = 40, and 3840 gates for s2 = 60. We managed to optimize this construction
by using a variant of structured Gaussian elimination in order to reuse gates.
As a result, for the case of s2 = 40, the augmented circuit produced in Stage 0
has over one thousand gates and over one thousand five hundred internal wires.
If s2 is increased to 60 then the augmented circuit now has over one thousand
five hundred gates and over two thousand internal wires. The exact increase in
size depends on the random choices made in Stage 0, but the above values are
indicative.

Implementation: The program was implemented in C++ using standard li-
braries; the elliptic curve routines made use of specially written assembly func-
tions to perform the arithmetic instructions. On the machine that was used for
the experiments, and the curve we were using, the software needed 3.9 millisec-
onds for a basic multiplication, 1.2 milliseconds to multiply the fixed generator,
and 5.1 milliseconds in order to compute (aP + bQ) (using a variant of the
method described in Algorithm 14.88 of [16]).

The input to the program was a circuit represented by a text file, each line
of the text file represented a gate. For example the line

2 1 0 16 32 0100

represents a 2-to-1 gate which has input wires numbered 0 and 16 and produces
the output wire 32. The value of the gate is given by the string which follows.
The above example implements a two-bit “less than” gate, namely it will output
a 1 on wire 32 only if w0 < w16, i.e. the value of wire 0 is zero and the value of
wire 16 is one.

Experiments: We performed a set of experiments with different values of the
statistical security parameters s1 and s2, and using both the ROM and standard
model versions of the protocol. The run times, in seconds, are presented in Table
1, and are reported for each step of the protocol. Timings are performed using
the standard Linux system timing facilities, and are as such only indicative.
The wall time is measured using the standard time function and the system and
user times are measured using the getrusage function. The wall time represents



the elapsed wall clock time in running the program, the user time represents
the amount of time each party actually performed some computation, whereas
the syst time represents the time spent by each party in system routines (for
example transmitting data, or writing to disk, etc.). All timings were performed
on an Intel Core 2 6420 running at 2.13 GHZ with 4096 KB of cache and 2 GB
of RAM and are given in seconds.

Basic observations: The computation is not instantaneous but overall the run
time is quite reasonable (the overall run time is about 2-3 minutes for a security
parameter s1 = 160). The run time is affected, of course, by the fact that 160
copies of the circuit are being used in the computation (compared to a protocol
secure against semi-honest adversaries, which uses only a single copy of the
circuit), and the fact that each circuit is much larger than its original form (in
the experiment more than 1000 gates are added to the circuit in Step 0, where
the original circuit consisted of less than 20 gates).

Oblivious transfers: It is a little surprising that Step 2, which includes the
oblivious transfers, is not the main bottleneck of the protocol. This is true even
though we implemented an OT protocol which is secure against malicious ad-
versaries according to a full simulation definition.

Preprocessing: About half of the run time is consumed by Step 1, where P1

prepares the circuits and the commitments. This step can be run offline, before
the inputs are known, reducing the online run time by about 50%.

Scaling: Increasing s1 by a factor of c1 increases by a factor of c21 the number
of commitments generated by P1 in Step 1, and increases the number of circuits
by c1. Increasing s2 by a factor of c2 increases the size of the modified part of
the circuit (which is the bulk of the circuit in our experiments) by a factor of
c2, and therefore the total size of the circuits is increased by a factor of c1c2.
In the experiments, we increased both s1 and s2 by a factor of 1.5 (from 40 to
60, and from 160 to 240, respectively). We therefore expected the overhead to
increase by a factor of 2.25. The actual measurements showed an increase by a
factor slightly larger than 2.

We did not conduct experiments with circuits of different sizes. When all
other parameters are fixed, we expect the run time to be linear in the size of
the modified circuit (after the modifications done in Step 0). We can estimate
the size of the modified circuit as follows: If P2 has n input wires in the original
circuit, then the modified circuit is expected to have about n

2 max(4n, 8s2) more
gates. (Applying structured Gaussian elimination can enable us to reuse gates
and minimize the size of the modified circuit.)

Performance in the ROM and in the standard model: What is interesting
about the timings is that there is very little difference between the timings
in the ROM and those in the standard model. In Step 1 the ROM version is
more efficient simply due to the slightly more efficient encryption scheme used.7

7 The KDF is invoked in the standard model protocol about twice as many times
as in the ROM protocol (since the encryption function in the standard model calls



Given the large number of encryptions needed to produce the garbled circuit
this translates into a small advantage for the ROM version compared to the
standard-model implementation. For a similar reason one obtains a performance
improvement in the ROM in Step 7 in which the circuit is evaluated by P2. The
decrease in performance of the ROM compared to the standard model in Step 3
we cannot explain, but it is likely to be caused by experimental error.

In viewing the timings it should be born in mind that the main place that
the random oracle model is used is in the oblivious transfers in Step 2. At this
point we use the ROM to reduce the round complexity of the two required
zero-knowledge proofs (see Appendix A for details of this). However, these two
proofs are only used once in the whole run of the protocol as we have batched
the oblivious transfers, and therefore the run time of Step 2 is about the same
in both the ROM and the standard model protocols.

What is surprising about the fact that the standard model is comparable in
performance to the ROM is that for simpler cryptographic functionalities, such
as encryption or signature schemes, the performance of the best ROM based
scheme is often twice as fast as the best known standard model scheme.

6 Future Work

An obvious task is to develop the current implementation into a complete system
for secure computation. In particular, the system should include a front end that
will enable users to provide a high-level specification of the function that they
want to compute, and specify the different security parameters that shall be used.
A natural approach for this task would be to modify the FairPlay compiler [15]
to support our implementation.

The performance of the system is greatly affected by the circuit modification
in Step 0 of the protocol, which increases the number of inputs and the size of
the circuit. We implemented this step according to the randomized construction
in [13]. Another option is to use a linear error-correction code for defining the
relation between the original and new input wires of the circuit. (A careful
examination of the proof in [13] shows that this is sufficient.) We need an [N, k, d]
linear binary code which encodes k bit words into N bit words with a distance
of d = s2 (say, d = 40). The parameter k corresponds to the number of original
input wires of P2, while N corresponds to the number of new input wires. The
code should satisfy two criteria: (1) the rate k/N should be as high as possible,
to keep the number of new input wires close to the number of original input
wires, and (2) the block length k should be minimized, to enable the code to be
applied (and the rate k/N to be achieved) even if P2’s input is relatively short.

the KDF twice). The increase in the run time of Step 1 when changing the ROM
implementation to the standard-model implementation (for s1 = 160) is from 60sec
to 67sec. We therefore estimate that the circuit construction (Step 1(a)) takes about
7 seconds in the ROM protocol and 14 seconds in the standard model protocol.



Run Times in the Random Oracle
Model

Step
Time 1 2 3 4 5 6 7 8 Total

P1, s1 = 160, s2 = 40

Wall 74 20 24 0 7 10 0 0 135
User 60 17 12 0 3 4 0 0
Syst 16 2 3 0 0 0 0 0

P2, s1 = 160, s2 = 40

Wall 74 20 24 0 8 9 35 1 171
User 0 8 14 0 8 7 29 1
Syst 0 0 10 0 2 4 8 0

P1, s1 = 240, s2 = 60

Wall 159 34 51 0 19 13 0 0 276
User 123 30 24 0 11 6 0 0
Syst 35 2 9 0 1 0 0 0

P2, s1 = 240, s2 = 60

Wall 159 34 51 0 19 13 78 3 358
User 0 12 28 0 17 10 61 2
Syst 0 0 22 0 7 5 18 0

Run Times in the standard Model

Step
Time 1 2 3 4 5 6 7 8 Total

P1, s1 = 160, s2 = 40

Wall 84 20 24 0 7 7 0 0 142
User 67 18 10 0 5 3 0 0
Syst 15 0 5 0 0 0 0 0

P2, s1 = 160, s2 = 40

Wall 84 20 24 0 7 7 40 2 184
User 0 10 13 0 7 5 32 4
Syst 0 0 11 0 1 3 8 2

P1, s1 = 240, s2 = 60

Wall 181 35 45 0 18 12 0 0 291
User 145 30 24 0 8 8 0 0
Syst 35 0 7 0 1 2 0 0

P2, s1 = 240, s2 = 60

Wall 181 35 45 0 18 12 87 5 362
User 0 12 23 0 15 9 70 7
Syst 0 0 21 0 4 3 20 0

Table 1. Run times of our experiments.
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A Zero Knowledge Proofs

We now describe the zero-knowledge proof-of-knowledge protocols required in
the OT protocol. In the ROM we use the standard Fiat-Shamir transform of an
interactive honest-verifier Σ-protocol into a non-interactive protocol via hashing
the commitment with the random oracle so as to produce the random challenge.

In the standard model we need to cope with non-honest verifiers by get-
ting the verifier to commit to his challenge before the prover’s commitment is
issued. We use a highly-efficient transformation described in [10] to transform
an honest-verifier Sigma protocol to a protocol that is a zero-knowledge proof
of knowledge (the transformation is proven secure under the assumption that
the discrete logarithm problem is hard and hence is highly suitable for proofs of
Diffie-Hellman type statements).

A.1 DL(Q; x)

We assume a prover Pro who knows x and a verifier Ver who only knows Q



and P . The two protocols, one in the ROM and one in the standard model, are
presented in Fig. 3. They are based on the HVZK proof of Schnorr [21].

Figure 3 ROM and non-ROM zero-knowledge proof of knowledge of discrete
logarithms

ROM Version

– Pro computes k ← Zq, R← [k]P , s← H(R), z ← xs + k. It sends R and z to Ver.
– Ver computes s← H(R). and accepts if [z]P = [s]Q + R.

Non-ROM Version

– Pro computes a← Zq, A← [a]P . It sends A to Ver.
– Ver computes s, t← Zq, C ← [s]P + [t]A. and sends C to Pro.
– Pro computes k ← Zq, R← [k]P . and sends R to Ver.
– Ver sends s, t to Pro.
– Pro checks whether C = [s]P + [t]A. and sends z ← xs + k and a to Ver.
– Ver accepts if [z]P = [s]Q + R and A = [a]P .

A.2 DDH(P, [a]P, [b]P, [ab]P )

We assume a prover Pro who knows b and a verifier Ver who only knows the
four protocol inputs P , Q = [a]P , U = [b]P and V = [b]Q. The two variants of
the protocol are given in Fig. 4, both are based on the HVZK protocol from [7].

Figure 4 ROM and non-ROM zero-knowledge proof of knowledge of DDH tuple

ROM Version

– Pro computes r ← Zq, A← [r]P , B ← [r]Q, s← H(A‖B), z ← bs + r. and sends
A, B and z to Ver.

– Ver computes s← H(A‖B) and accepts if [z]P = [s]U + A and [z]Q = [s]V + B .

Non-ROM Version

– Pro computes w ← Zq, W ← [w]P and sends V to Ver.
– Ver computes s, t← Zq, C ← [s]P + [t]A and sends C to Pro.
– Pro computes r ← Zq, A← [r]P , B ← [r]Q and sends A and B to Ver.
– Ver sends s, t to Pro.
– Pro checks whether C = [s]P + [t]V . and sends z ← bs + r and w to Ver.
– Ver accepts if [z]P = [s]U + A, [z]Q = [s]V + B and W = [w]P .


