Contents

Preface to the Second Edition xv

I Introduction and Classical Cryptography

1 Introduction 3
 1.1 Cryptography and Modern Cryptography 3
 1.2 The Setting of Private-Key Encryption 4
 1.3 Historical Ciphers and Their Cryptanalysis 8
 1.4 Principles of Modern Cryptography 16
 1.4.1 Principle 1 – Formal Definitions 17
 1.4.2 Principle 2 – Precise Assumptions 20
 1.4.3 Principle 3 – Proofs of Security 22
 1.4.4 Provable Security and Real-World Security 22
 References and Additional Reading 23
 Exercises 24

2 Perfectly Secret Encryption 25
 2.1 Definitions 26
 2.2 The One-Time Pad 32
 2.3 Limitations of Perfect Secrecy 35
 2.4 * Shannon’s Theorem 36
 References and Additional Reading 37
 Exercises 38

II Private-Key (Symmetric) Cryptography

3 Private-Key Encryption 43
 3.1 Computational Security 43
 3.1.1 The Concrete Approach 44
 3.1.2 The Asymptotic Approach 45
 3.2 Defining Computationally Secure Encryption 52
 3.2.1 The Basic Definition of Security 53
 3.2.2 * Semantic Security 56
 3.3 Constructing Secure Encryption Schemes 60
 3.3.1 Pseudorandom Generators and Stream Ciphers 60
 3.3.2 Proofs by Reduction 65
 3.3.3 A Secure Fixed-Length Encryption Scheme 66
3.4 Stronger Security Notions
- 3.4.1 Security for Multiple Encryptions
- 3.4.2 Chosen-Plaintext Attacks and CPA-Security

3.5 Constructing CPA-Secure Encryption Schemes
- 3.5.1 Pseudorandom Functions and Block Ciphers
- 3.5.2 CPA-Secure Encryption from Pseudorandom Functions

3.6 Modes of Operation
- 3.6.1 Stream-Cipher Modes of Operation
- 3.6.2 Block-Cipher Modes of Operation

3.7 Security Against Chosen-Ciphertext Attacks
- 3.7.1 Defining CCA-Security
- 3.7.2 Padding-Oracle Attacks

Exercises

4 Message Authentication Codes
4.1 Message Integrity
- 4.1.1 Secrecy vs. Integrity
- 4.1.2 Encryption vs. Message Authentication

4.2 Message Authentication Codes – Definitions

4.3 Constructing Secure Message Authentication Codes
- 4.3.1 A Fixed-Length MAC
- 4.3.2 Domain Extension for MACs

4.4 CBC-MAC
- 4.4.1 The Basic Construction
- 4.4.2 * Proof of Security

4.5 Joint Secrecy and Integrity – Authenticated Encryption
- 4.5.1 Definitions
- 4.5.2 Generic Constructions
- 4.5.3 Secure Communication Sessions
- 4.5.4 CCA-Secure Encryption

4.6 * Information-Theoretic Message Authentication Codes
- 4.6.1 Constructing Information-Theoretic MACs
- 4.6.2 Limitations on Information-Theoretic MACs

References and Additional Reading

Exercises

5 Hash Functions and Applications
5.1 Definitions
- 5.1.1 Collision Resistance
- 5.1.2 Weaker Notions of Security

5.2 Domain Extension: The Merkle–Damgård Transform

5.3 Message Authentication Using Hash Functions
- 5.3.1 Hash-and-MAC
- 5.3.2 HMAC
Table of Contents

5.4 Generic Attacks .. 164
5.4.1 Birthday Attacks for Finding Collisions 164
5.4.2 Small-Space Birthday Attacks 166
5.4.3 * Time/Space Tradeoffs for Inverting Functions 168
5.5 The Random-Oracle Model ... 174
5.5.1 The Random-Oracle Model in Detail 175
5.5.2 Is the Random-Oracle Methodology Sound? 179
5.6 Additional Applications of Hash Functions 182
5.6.1 Fingerprinting and Deduplication 182
5.6.2 Merkle Trees ... 183
5.6.3 Password Hashing ... 184
5.6.4 Key Derivation .. 186
5.6.5 Commitment Schemes ... 187
References and Additional Reading 189
Exercises .. 189

6 Practical Constructions of Symmetric-Key Primitives 193
6.1 Stream Ciphers .. 194
6.1.1 Linear-Feedback Shift Registers 195
6.1.2 Adding Nonlinearity .. 197
6.1.3 Trivium ... 198
6.1.4 RC4 ... 199
6.2 Block Ciphers ... 202
6.2.1 Substitution-Permutation Networks 204
6.2.2 Feistel Networks .. 211
6.2.3 DES – The Data Encryption Standard 212
6.2.4 3DES: Increasing the Key Length of a Block Cipher .. 220
6.2.5 AES – The Advanced Encryption Standard 223
6.2.6 * Differential and Linear Cryptanalysis 225
6.3 Hash Functions .. 231
6.3.1 Hash Functions from Block Ciphers 232
6.3.2 MD5 ... 234
6.3.3 SHA-0, SHA-1, and SHA-2 234
6.3.4 SHA-3 (Keccak) ... 235
References and Additional Reading 236
Exercises .. 237

7 * Theoretical Constructions of Symmetric-Key Primitives ... 241
7.1 One-Way Functions .. 242
7.1.1 Definitions .. 242
7.1.2 Candidate One-Way Functions 245
7.1.3 Hard-Core Predicates ... 246
7.2 Overview: From One-Way Functions to Pseudorandomness . 248
7.3 Hard-Core Predicates from One-Way Functions 250
7.3.1 A Simple Case .. 250
III Public-Key (Asymmetric) Cryptography

8 Number Theory and Cryptographic Hardness Assumptions 285
 8.1 Preliminaries and Basic Group Theory 287
 8.1.1 Primes and Divisibility 287
 8.1.2 Modular Arithmetic 289
 8.1.3 Groups 291
 8.1.4 The Group \mathbb{Z}_N^* 295
 8.1.5 * Isomorphisms and the Chinese Remainder Theorem 297
 8.2 Primes, Factoring, and RSA 302
 8.2.1 Generating Random Primes 303
 8.2.2 * Primality Testing 306
 8.2.3 The Factoring Assumption 311
 8.2.4 The RSA Assumption 312
 8.2.5 * Relating the RSA and Factoring Assumptions 314
 8.3 Cryptographic Assumptions in Cyclic Groups 316
 8.3.1 Cyclic Groups and Generators 316
 8.3.2 The Discrete-Logarithm/Diffie–Hellman Assumptions 319
 8.3.3 Working in (Subgroups of) \mathbb{Z}_p^* 322
 8.3.4 Elliptic Curves 325
 8.4 * Cryptographic Applications 332
 8.4.1 One-Way Functions and Permutations 332
 8.4.2 Constructing Collision-Resistant Hash Functions 335
 References and Additional Reading 337
 Exercises 338

9 * Factoring and Computing Discrete Logarithms 341
 9.1 Algorithms for Factoring 342
 9.1.1 Pollard's $p-1$ Algorithm 343
 9.1.2 Pollard's Rho Algorithm 344
 9.1.3 The Quadratic Sieve Algorithm 345
 9.2 Algorithms for Computing Discrete Logarithms 348
 9.2.1 The Pohlig–Hellman Algorithm 350
Preface to the Second Edition

The goal of our book remains the same as in the first edition: to present the basic paradigms and principles of modern cryptography for a general audience with a basic mathematics background. We have designed this book to serve as a textbook for undergraduate- or graduate-level courses in cryptography (in computer science, electrical engineering, or mathematics departments), as a general introduction suitable for self-study (especially for beginning graduate students), and as a reference for students, researchers, and practitioners.

There are numerous other cryptography textbooks available today, and the reader may rightly ask whether another book on the subject is needed. We would not have written this book—nor worked on revising it for the second edition—if the answer to that question were anything other than an unequivocal yes. What, in our opinion, distinguishes our book from all other books available is that it provides a rigorous treatment of modern cryptography in an accessible manner appropriate for an introduction to the topic.

Our focus is on modern (post-1980s) cryptography, which is distinguished from classical cryptography by its emphasis on definitions, precise assumptions, and rigorous proofs of security. We briefly discuss each of these in turn (these principles are explored in greater detail in Chapter 1):

- **The central role of definitions:** A key intellectual contribution of modern cryptography has been the recognition that *formal definitions of security are an essential first step in the design of any cryptographic primitive or protocol*. The reason, in retrospect, is simple: if you don’t know what it is you are trying to achieve, how can you hope to know when you have achieved it? As we will see in this book, cryptographic definitions of security are quite strong and—at first glance—may appear impossible to achieve. One of the most amazing aspects of cryptography is that efficient constructions satisfying such strong definitions can be proven to exist (under rather mild assumptions).

- **The importance of precise assumptions:** As will be explained in Chapters 2 and 3, many cryptographic constructions cannot currently be proven secure in an unconditional sense. Security often relies, instead, on some widely believed (though unproven) assumption. The modern cryptographic approach dictates that *any such assumption must be clearly stated and unambiguously defined*. This not only allows for objective evaluation of the assumption but, more importantly, enables rigorous proofs of security as described next.
• **The possibility of proofs of security:** The previous two principles serve as the basis for the idea that cryptographic constructions can be proven secure with respect to clearly stated definitions of security and relative to well-defined cryptographic assumptions. This concept is the essence of modern cryptography, and is what has transformed the field from an art to a science.

The importance of this idea cannot be overemphasized. Historically, cryptographic schemes were designed in a largely ad hoc fashion, and were deemed to be secure if the designers themselves could not find any attacks. In contrast, modern cryptography advocates the design of schemes with formal, mathematical proofs of security in well-defined models. Such schemes are guaranteed to be secure unless the underlying assumption is false (or the security definition did not appropriately model the real-world security concerns). By relying on long-standing assumptions (e.g., the assumption that “factoring is hard”), it is thus possible to obtain schemes that are extremely unlikely to be broken.

A unified approach. The above principles of modern cryptography are relevant not only to the “theory of cryptography” community. The importance of precise definitions is, by now, widely understood and appreciated by developers and security engineers who use cryptographic tools to build secure systems, and rigorous proofs of security have become one of the requirements for cryptographic schemes to be standardized.

Changes in the Second Edition

In preparing the second edition, we have made a conscious effort to integrate a more practical perspective (without sacrificing a rigorous approach). This is reflected in a number of changes and additions we have made:

- We have increased our coverage of stream ciphers, introducing them as a variant of pseudorandom generators in Section 3.3.1, discussing stream-cipher modes of operation in Section 3.6.1, and describing modern stream-cipher design principles and examples in Section 6.1.

- We have emphasized the importance of authenticated encryption (see Section 4.5) and have added a section on secure communication sessions.

- We have moved our treatment of hash functions into its own chapter (Chapter 5), have included some standard applications of cryptographic hash functions (Section 5.6), and have added a section on hash-function design principles and widely used constructions (Section 6.3). We have also improved our treatment of birthday attacks (covering small-space birthday attacks in Section 5.4.2) and have added a discussion of rainbow tables and time/space tradeoffs (Section 5.4.3).
• We have included several important attacks on implementations of cryptography that arise in practice, including chosen-plaintext attacks on chained-CBC encryption (Section 3.6.2), padding-oracle attacks on CBC-mode encryption (Section 3.7.2), and timing attacks on MAC verification (Section 4.2).

• After much deliberation, we have decided to introduce the random-oracle model much earlier in the book (Section 5.5). This allows us to give a proper, integrated treatment of standardized, widely used public-key encryption and signature schemes in later chapters, instead of relegating them to second-class status in a chapter at the end of the book.

• We have strengthened our coverage of elliptic-curve cryptography (Section 8.3.4) and have added a discussion of its impact on recommended key lengths (Section 9.3).

• In the chapter on public-key encryption, we introduce the KEM/DEM paradigm as a form of hybrid encryption (see Section 11.3). We also cover DHIES/ECIES in addition to the RSA PKCS #1 standards.

• In the chapter on digital signatures, we now describe the construction of signatures from identification schemes using the Fiat–Shamir transform, with the Schnorr signature scheme as a prototypical example. We have also improved our coverage of DSA/ECDSA. We include brief discussions of SSL/TLS and signcryption, both of which serve as culminations of everything covered up to that point.

• In the “advanced topics” chapter, we have amplified our treatment of homomorphic encryption, and have included sections on secret sharing and threshold encryption.

Beyond the above, we have also edited the entire book to make extensive corrections as well as smaller adjustments, including more worked examples, to improve the exposition. Several additional exercises have also been added.

Guide to Using This Book

This section is intended primarily for instructors seeking to adopt this book for their course, though the student picking up this book on his or her own may also find it a useful overview.

Required background. We have structured the book so that the only formal prerequisite is a course on discrete mathematics. Even here we rely on very little material: we assume familiarity with basic (discrete) probability and modular arithmetic. Students reading this book are also expected to have had some exposure to algorithms, mainly to be comfortable reading pseudocode and to be familiar with big-O notation. Many of these concepts are reviewed in Appendix A and/or when first used in the book.
Notwithstanding the above, the book does use definitions, proofs, and abstract mathematical concepts, and therefore requires some mathematical maturity. In particular, the reader is assumed to have had some exposure to proofs at the college level, whether in an upper-level mathematics course or a course on discrete mathematics, algorithms, or computability theory.

Suggestions for course organization. The core material of this book, which we recommend should be covered in any introductory course on cryptography, consists of the following (in all cases, starred sections are excluded; more on this below):

- **Introduction and Classical Cryptography:** Chapters 1 and 2 discuss classical cryptography and set the stage for modern cryptography.

- **Private-Key (Symmetric) Cryptography:** Chapter 3 on private-key encryption, Chapter 4 on message authentication, and Chapter 5 on hash functions provide a thorough treatment of these topics.

 We also highly recommend covering Section 6.2, which deals with block-cipher design; in our experience students really enjoy this material, and it makes the abstract ideas they have learned in previous chapters more concrete. Although we do consider this core material, it is not used in the rest of the book and so can be safely skipped if desired.

- **Public-Key (Asymmetric) Cryptography:** Chapter 8 gives a self-contained introduction to all the number theory needed for the remainder of the book. The material in Chapter 9 is not used subsequently; however, we do recommend at least covering Section 9.3 on recommended key lengths. The public-key revolution is described in Chapter 10. Ideally, all of Chapters 11 and 12 should be covered; those pressed for time can pick and choose appropriately.

We are typically able to cover most of the above in a one-semester (35-hour) undergraduate course (omitting some proofs and skipping some topics, as needed) or, with some changes to add more material on theoretical foundations, in the first three-quarters of a one-semester graduate course. Instructors with more time available can proceed at a more leisurely pace or incorporate additional topics, as discussed below.

Those wishing to cover additional material, in either a longer course or a faster-paced graduate course, will find that the book is structured to allow flexible incorporation of other topics as time permits (and depending on the interests of the instructor). Specifically, the starred (*) sections and chapters may be covered in any order, or skipped entirely, without affecting the overall flow of the book. We have taken care to ensure that none of the core material depends on any of the starred material and, for the most part, the starred sections do not depend on each other. (When they do, this dependence is explicitly noted.)
We suggest the following from among the starred topics for those wishing to give their course a particular flavor:

- **Theory:** A more theoretically inclined course could include material from Section 3.2.2 (semantic security); Chapter 7 (one-way functions and hard-core predicates, and constructing pseudorandom generators, functions, and permutations from one-way permutations); Section 8.4 (one-way functions and collision-resistant hash functions from number-theoretic assumptions); Section 11.5.3 (RSA encryption without random oracles); and Section 12.6 (signatures without random oracles).

- **Mathematics:** A course directed at students with a strong mathematics background—or being taught by someone who enjoys this aspect of cryptography—could incorporate Section 4.6 (information-theoretic MACs in finite fields); some of the more advanced number theory from Chapter 8 (e.g., the Chinese remainder theorem and the Miller–Rabin primality test); and all of Chapter 9.

In either case, a selection of advanced topics from Chapter 13 could also be included.

Feedback and Errata

Our goal in writing this book was to make modern cryptography accessible to a wide audience beyond the “theoretical computer science” community. We hope you will let us know if we have succeeded. The many enthusiastic emails we have received in response to our first edition have made the whole process of writing this book worthwhile.

We are always happy to receive feedback. We hope there are no errors or typos in the book; if you do find any, however, we would greatly appreciate it if you let us know. (A list of known errata will be maintained at http://www.cs.umd.edu/~jkatz/imc.html.) You can email your comments and errata to jkatz@cs.umd.edu and lindell@biu.ac.il; please put “Introduction to Modern Cryptography” in the subject line.

Acknowledgments

For the second edition: We are grateful to the many readers of the first edition who have sent us comments, suggestions, and corrections that helped to greatly improve the book. Discussions with Claude Crépeau, Bill Gasarch, Gene Itkis, Leonid Reyzin, Tom Shrimpton, and Salil Vadhan regarding the content and overall “philosophy” of the book were especially fruitful. We would also like to thank Bar Alon, Gilad Asharov, Giuseppe Ateniese, Amir Azodi, Omer Berkman, Sergio de Biasi, Aurora Bristor, Richard Chang, Qingfeng Cheng, Kwan Tae Cho, Kyliiah Clarkson, Ran Cohen, Nikolas Coukouma, Dana Dachman-Soled, Michael Fang, Michael Farcasin, Pooya Farshim,

For the first edition: We thank Zoe Bermant for producing the figures; David Wagner for answering questions related to block ciphers and their cryptanalysis; and Salil Vadhan and Alon Rosen for experimenting with an early version of our text in an introductory course at Harvard University and for providing us with valuable feedback. We would also like to extend our gratitude to those who read and commented on earlier drafts of this book and to those who sent us corrections: Adam Bender, Chiu-Yuen Koo, Yair Dombb, Michael Fuhr, William Glenn, S. Dov Gordon, Carmit Hazay, Eyal Kushilevitz, Avivit Levy, Matthew Mah, Ryan Murphy, Steve Myers, Martin Paraskevov, Eli Quiroz, Jason Rogers, Rui Xue, Dicky Yan, Arkady Yerukhimovich, and Hila Zarosim. We are extremely grateful to all those who encouraged us to write this book and agreed with us that a book of this sort is badly needed.

Finally, we thank our wives and children for all their support and understanding during the many hours, days, months, and now years we have spent on this project.