Carmit Hazay, Yehuda Lindell

Efficient Secure Two-Party
Protocols

Techniques and Constructions

July 14, 2010

Springer

To our families, for all their support

Preface

In the setting of multiparty computation, sets of two or more parties with pri-
vate inputs wish to jointly compute some (predetermined) function of their
inputs. The computation should be such that the outputs received by the
parties are correctly distributed, and furthermore, that the privacy of each
party’s input is preserved as much as possible, even in the presence of ad-
versarial behavior. This encompasses any distributed computing task and
includes computations as simple as coin-tossing and broadcast, and as com-
plex as electronic voting, electronic auctions, electronic cash schemes and
anonymous transactions. The feasibility (and infeasibility) of multiparty com-
putation has been extensively studied, resulting in a rather comprehensive
understanding of what can and cannot be securely computed, and under what
assumptions.

The theory of cryptography in general, and secure multiparty computation
in particular, is rich and elegant. Indeed, the mere fact that it is possible to
actually achieve the aforementioned task is both surprising and intriguing.
However, the focus of this book is not on the theory of secure computation
(although a number of results with theoretical importance are studied here),
but rather on the question of efficiency. Recently, there has been increasing
interest in the possibility of actually using secure multiparty computation
to solve real-world problems. This poses an exciting challenge to the field
of cryptography: Can we construct secure protocols (with rigorous proofs of
security) that are truly efficient, and thus take the theory of secure computa-
tion to the next step towards practice. We stress that this book is not about
“practical cryptography”. We do not take systems considerations into ac-
count, nor how protocols should be implemented and deployed. Instead, our
aim is to provide an introduction to the field of efficient protocol construction
and design. We hope that this book will make the field of secure computation
in general, and efficient protocol construction in particular, more accessible
and will increase awareness regarding the importance of this vibrant field.

ix

« Preface

Outline. This book is divided into three distinct parts:

e Introduction and definitions: We begin with a general introduction and
survey of secure computation, followed by definitions of security under a
number of different adversary models. This part also includes important
material regarding the properties of these definitions, and the relations
between them.

e General constructions: In this part, we present secure protocols for
general secure computation. That is, we present protocols that can be
applied to any circuit computing any efficient function. Although this does
not enable us to utilize specific properties of the function being computed,
the resulting protocols can be efficient enough if the circuit and input are
not too large.

e Specific constructions: Finally, we study secure protocols for specific
problems of interest. Two of the chapters in this part consider efficient
constructions of basic building blocks that are widely used in constructions
of secure protocols; namely, zero-knowledge (via X protocols) and oblivious
transfer. The last two chapters study two specific examples of higher-level
protocols; specifically, the secure computation of the kth ranked element
(or median) of a distributed list, and secure search operations on databases.
The constructions in this part demonstrate how specific properties of a
function being computed can be utilized to achieve greater efficiency.

It goes without saying that the material presented in this book is far from an
exhaustive study of results in the field. There are many alternative construc-
tions achieving some of the results presented here, and many other problems
of interest for which efficient protocols have been constructed. In some places
throughout, we have added pointers to additional readings of relevance.

In order to not unnecessarily complicate the constructions and models,
we have focused on the two-party case and consider only static adversaries
and the stand-alone model. We do not claim that this is the best model
for constructing protocols; indeed it is arguably too weak in many cases.
However, we believe that it serves as a good setting for an initial study, as it
is significantly cleaner than other more complex settings.

Prerequisite knowledge. We assume that the reader is familiar with the
basics of theoretical cryptography. Thus, for example, we assume that readers
know what commitment schemes and zero-knowledge proofs are, and that
they are comfortable with notions like pseudorandomness and computational
indistinguishability. In contrast, all the relevant definitions of secure two-
party computation are presented here from scratch. Thus, this book can also
be used as a first introduction to secure computation.

Reading this book. Although there are advantages to reading this book
in sequential order, much of the book can be read “out of order”. It goes
without saying that the chapter on definitions is needed for all later chapters.
However, it is possible to read definitions as needed (e.g., read Section 2.2

Preface xi

and then Chapter 3, then Section 2.3 followed by Chapter 4, and so on).
Regarding the general constructions in Part II of the book, the constructions
in Chapters 4 and 5 rely in a direct way on Chapter 3, and thus it is highly
recommended to read Chapter 3 first. In contrast, Chapters 4 and 5 can be
read independently of each other.

The specific constructions in Part IIT can be read independently of the
general constructions in Part II. It is preferable to read Chapters 6 and 7
first (and in order) because later protocols use the tools introduced in these
chapters. In addition, some of the oblivious transfer protocols of Chapter 7 use
zero-knowledge proofs that are constructed in Chapter 6. Nevertheless, if one
is satisfied with referring to an arbitrary zero-knowledge proof or oblivious
transfer protocol, then the chapters in Part III can be read in any order.

Book aims and its use for teaching a course. This book can be used
as a textbook for an introductory course on secure computation with a focus
on techniques for achieving efficiency, as an entry point for researchers in
cryptography and other fields like privacy-preserving data mining who are
interested in efficient protocols for secure computation, and as a reference for
researchers already in the field. Regarding its use as a textbook, due to the
flexibility regarding the order of reading this book (as described above), it is
possible to design courses with different focuses. For example, a more theo-
retical course would spend considerable time on definitions and the general
constructions of Part IT of the book, whereas a more applied course would
focus more on the specific constructions in Part III. We remark also that
Chapters 6 and 7 can serve as a nice opening to a course; the material is not
as heavy as general secure computation and contains many interesting ideas
that can be attractive to students. When teaching a general introduction to
(computational) secure computation, it is certainly possible to base much of
the course on this book. However, in such a case we would also teach the
GMW construction. A full treatment of this appears in [35, Chapter 7].

Comments and errata. We will be more than happy to receive any
(positive or negative) feedback that you have on this book, as well as
any errors that you may find. Please email us your comments and errata
to lindell@cs.biu.ac.il. A list of known errata will be maintained at
http://www.cs.biu.ac.il/~1lindell/efficient-protocols.html.

Acknowledgements. First and foremost, we would like to thank Ivan
Damgard for generously providing us with the text that formed the basis
of Chapter 6 on X protocols. In addition, we would like to thank Oded Gol-
dreich, Jonathan Katz and Eran Omri for providing us with constructive
advice and comments on this book.

Carmit Hazay: First, I would like to thank my co-author Yehuda Lindell
who was also my Ph.D. advisor. Yehuda introduced me to the area of secure
computation and has greatly contributed to my academic career. He is a
continuing source of inspiration and assistance, and I am grateful to him for
an amagzing journey which led to this book.

xii Preface

During my Ph.D. I had the pleasure of working with many talented people
who enriched my knowledge and deepened my understanding regarding secure
computation. I would like to thank Ran Canetti, Rosario Gennaro, Jonathan
Katz, Hugo Krawczyk, Kobbi Nissim, Tal Rabin and Hila Zarosim for many
productive discussions and a memorable time.

Yehuda Lindell: First and foremost I would like to thank Oded Goldreich.
Beyond being my Ph.D. advisor, and as such of great influence on my aca-
demic career, Oded has continued to provide valuable support, advice and
encouragement. I owe much to Oded and am greatly indebted to him.

The ability to write this book is due to the knowledge that I have gained
over many years of research in the field of secure computation. In this time, I
have worked with many different co-authors and have benefited from count-
less fruitful discussions with many members of our research community. I
would like to thank Yonatan Aumann, Boaz Barak, Ran Canetti, Rosario
Gennaro, Shafi Goldwasser, Shai Halevi, Carmit Hazay, Yuval Ishai, Yael
Kalai, Jonathan Katz, Eyal Kushilevitz, Hugo Krawczyk, Tal Malkin, Moni
Naor, Benny Pinkas, Tal Rabin, Alon Rosen and Adam Smith for years of
joint work and cooperation in a friendly and enjoyable environment. Finally,
I would like to give a special thanks to Benny Pinkas for all I have learned
from him regarding topics of efficiency in secure protocols.

My work on this project was supported in part by a generous starting
grant from the European Research Council.

May 2010 Carmit Hazay and Yehuda Lindell

Contents

Part I Introduction and Definitions

1 Introduction........... i 3
1.1 Secure Multiparty Computation — Background 3
1.2 The GMW Protocol for Secure Computation............... 11
1.3 A Roadmap to the Book 13

1.3.1 Part I — Introduction and Definitions 13
1.3.2 Part IT — General Constructions 15
1.3.3 Part III — Specific Constructions 17

2 Definitions. 19
2.1 Preliminaries.ooutnt i e 19
2.2 Security in the Presence of Semi-honest Adversaries......... 20
2.3 Security in the Presence of Malicious Adversaries 23

2.3.1 The Definition i, 24
2.3.2 Extension to Reactive Functionalities 25
2.3.3 Malicious Versus Semi-honest Adversaries 26
2.4 Security in the Presence of Covert Adversaries 30
2.4.1 Motivation 30
2.4.2 The Actual Definition.......... 33
2.4.3 Cheating and Aborting......... 35
2.4.4 Relations Between Security Models 36
2.5 Restricted Versus General Functionalities.................. 38
2.5.1 Deterministic Functionalities....................... 39
2.5.2 Single-Output Functionalities 39
2.5.3 Non-reactive Functionalities 41
2.6 Non-simulation-Based Definitions......................... 42
2.6.1 Privacy Only i 42
2.6.2 One-Sided Simulatability 45
2.7 Sequential Composition — Simulation-Based Definitions. 46

xiii

xiv Contents

Part II General Constructions

3 Semi-honest Adversaries 53
3.1 An Overview of the Protocol 53

3.2 T00ls .o 57
3.2.1 “Special” Private-Key Encryption 57

3.2.2 Oblivious Transfer.......... 61

3.3 The Garbled-Circuit Construction 63

3.4 Yao’s Two-Party Protocol 66

3.5 Efficiency of the Protocol 78

4 Malicious Adversariesoiiiiiiiiii. 81
4.1 An Overview of the Protocol 81
4.1.1 High-Level Protocol Description.................... 82

4.1.2 Checks for Correctness and Consistency 84

4.2 The Protocol 89

4.3 Proof of Security 93
4.3.1 Security Against a Malicious P; 93

4.3.2 Security Against a Malicious Py 99

4.4 Efficient Implementation of the Different Primitives......... 105

4.5 Efficiency of the Protocol 106

4.6 Suggestions for Further Reading 107

5 Covert Adversaries i 109
5.1 Oblivious Transfer 109
5.1.1 The Basic Protocol 111

5.1.2 EXtensionsiiiii 119

5.2 Secure Two-Party Computation 121
5.2.1 Overview of the Protocol 122

5.2.2 The Protocol for Two-Party Computation 124

5.2.3 Non-halting Detection Accuracy.................... 141

5.3 Efficiency of the Protocol 143

Part IITI Specific Constructions

6 Sigma Protocols and Efficient Zero-Knowledge............ 147
6.1 An Example 147

6.2 Definitions and Properties L 149

6.3 Proofs of Knowledge i i 153

6.4 Proving Compound Statements........................... 158

6.5 Zero-Knowledge from Y-Protocols 160
6.5.1 The Basic Zero-Knowledge Construction 161

6.5.2 Zero-Knowledge Proofs of Knowledge 164

6.5.3 The ZKPOK Ideal Functionality 167

6.6 Efficient Commitment Schemes from X-Protocols........... 173

Contents XV

6.7 SUIMMATY . . ottt e e 175

7 Oblivious Transfer and Applications 177
7.1 Notational Conventions for Protocols 178

7.2 Oblivious Transfer — Privacy Only 178
7.2.1 A Protocol Based on the DDH Assumption 178

7.2.2 A Protocol from Homomorphic Encryption 182

7.3 Oblivious Transfer — One-Sided Simulation 185

7.4 Oblivious Transfer — Full Simulation 188
7.4.1 1l-out-of-2 Oblivious Transfer....................... 188

7.4.2 Batch Oblivious Transfer 196

7.5 Another Oblivious Transfer — Full Simulation 201

7.6 Secure Pseudorandom Function Evaluation 202
7.6.1 Pseudorandom Function — Privacy Only 203

7.6.2 Pseudorandom Function — Full Simulation 209

7.6.3 Covert and One-Sided Simulation 211

7.6.4 Batch Pseudorandom Function Evaluation........... 212

8 The kth-Ranked Element 213
8.1 Background....... 213
8.1.1 A Protocol for Finding the Median 214

8.1.2 Reducing the kth-Ranked Element to the Median 216

8.2 Computing the Median — Semi-honest............... 218

8.3 Computing the Median — Malicious 221
8.3.1 The Reactive Greater-Than Functionality 221

8.3.2 The Protocol 223

9 Search Problems........... 227
9.1 Background....... 227

9.2 Secure Database Search 229
9.2.1 Securely Realizing Basic Database Search 230

9.2.2 Securely Realizing Full Database Search............. 236

9.2.3 Covert and One-Sided Simulation 237

9.3 Secure Document Search 238

9.4 Implementing Functionality Feprp with Smartcards......... 242
9.4.1 Standard Smartcard Functionality and Security 243

9.4.2 TImplementing Feprp with Smartcards 246

9.5 Secure Text Search (Pattern Matching)................. ... 248
9.5.1 Indexed Implementation for Naor-Reingold 249

9.5.2 The Protocol for Secure Text Search 252
References e 255

Part 1
Introduction and Definitions

In the first two chapters of this book we provide a general introduction
to the field of secure computation, as well as rigorous definitions for secure
two-party computation in multiple models. Specifically, we consider security
in the presence of semi-honest and malicious adversaries, as well as introduce
the notion of covert adversaries and security that is not based on the full
simulation ideal/real-model paradigm.

Chapter 1
Introduction

The focus of this book is on constructing efficient secure protocols for the two-
party setting. In this introduction, we begin with a general high-level survey of
secure multiparty computation. This places the topic of this book in its larger
context. Following this, we describe the basic results and techniques related
to efficiency in secure computation. Finally, we conclude with a roadmap to
the book.

1.1 Secure Multiparty Computation — Background

Distributed computing considers the scenario where a number of distinct, yet
connected, computing devices (or parties) wish to carry out a joint compu-
tation of some function. For example, these devices may be servers that hold
a distributed database system, and the function to be computed may be a
database update of some kind. The aim of secure multiparty computation is
to enable parties to carry out such distributed computing tasks in a secure
manner. Whereas distributed computing classically deals with questions of
computing under the threat of machine crashes and other inadvertent faults,
secure multiparty computation is concerned with the possibility of deliber-
ately malicious behavior by some adversarial entity. That is, it is assumed
that a protocol execution may come under “attack” by an external entity, or
even by a subset of the participating parties. The aim of this attack may be to
learn private information or cause the result of the computation to be incor-
rect. Thus, two important requirements on any secure computation protocol
are privacy and correctness. The privacy requirement states that nothing
should be learned beyond what is absolutely necessary; more exactly, par-
ties should learn their output and nothing else. The correctness requirement
states that each party should receive its correct output. Therefore, the ad-
versary must not be able to cause the result of the computation to deviate
from the function that the parties had set out to compute.

4 1 Introduction

The setting of secure multiparty computation encompasses tasks as simple
as coin-tossing and broadcast, and as complex as electronic voting, electronic
auctions, electronic cash schemes, contract signing, anonymous transactions,
and private information retrieval schemes. Consider for a moment the tasks of
voting and auctions. The privacy requirement for an election protocol ensures
that no coalition of parties learns anything about the individual votes of
other parties, and the correctness requirement ensures that no coalition of
parties can influence the outcome of the election beyond just voting for their
preferred candidate. Likewise, in an auction protocol, the privacy requirement
ensures that only the winning bid is revealed (this may be desired), and the
correctness requirement ensures that the highest bidder is indeed the party
to win (and so the auctioneer, or any other party, cannot bias the outcome).

Due to its generality, the setting of secure multiparty computation can
model almost every, if not every, cryptographic problem (including the classic
tasks of encryption and authentication). Therefore, questions of feasibility
and infeasibility for secure multiparty computation are fundamental to the
theory and practice of cryptography.

Security in multiparty computation. As we have mentioned above, the
model that we consider is one where an adversarial entity controls some sub-
set of the parties and wishes to attack the protocol execution. The parties
under the control of the adversary are called corrupted, and follow the adver-
sary’s instructions. Secure protocols should withstand any adversarial attack
(where the exact power of the adversary will be discussed later). In order
to formally claim and prove that a protocol is secure, a precise definition of
security for multiparty computation is required. A number of different def-
initions have been proposed and these definitions aim to ensure a number
of important security properties that are general enough to capture most (if
not all) multiparty computation tasks. We now describe the most central of
these properties:

e Privacy: No party should learn anything more than its prescribed output.
In particular, the only information that should be learned about other
parties’ inputs is what can be derived from the output itself. For example,
in an auction where the only bid revealed is that of the highest bidder,
it is clearly possible to conclude that all other bids were lower than the
winning bid. However, this should be the only information revealed about
the losing bids.

e (orrectness: Each party is guaranteed that the output that it receives is
correct. To continue with the example of an auction, this implies that the
party with the highest bid is guaranteed to win, and no party including
the auctioneer can influence this.

e [Independence of Inputs: Corrupted parties must choose their inputs inde-
pendently of the honest parties’ inputs. This property is crucial in a sealed
auction, where bids are kept secret and parties must fix their bids inde-
pendently of others. We note that independence of inputs is not implied

1.1 Secure Multiparty Computation — Background 5

by privacy. For example, it may be possible to generate a higher bid with-
out knowing the value of the original one. Such an attack can actually be
carried out on some encryption schemes (i.e., given an encryption of $100,
it is possible to generate a valid encryption of $101, without knowing the
original encrypted value).

e Guaranteed Output Delivery: Corrupted parties should not be able to pre-
vent honest parties from receiving their output. In other words, the ad-
versary should not be able to disrupt the computation by carrying out a
“denial of service” attack.

e Fairness: Corrupted parties should receive their outputs if and only if the
honest parties also receive their outputs. The scenario where a corrupted
party obtains output and an honest party does not should not be allowed
to occur. This property can be crucial, for example, in the case of contract
signing. Specifically, it would be very problematic if the corrupted party
received the signed contract and the honest party did not.

We stress that the above list does not constitute a definition of security, but
rather a set of requirements that should hold for any secure protocol. Indeed,
one possible approach to defining security is to just generate a list of separate
requirements (as above) and then say that a protocol is secure if all of these
requirements are fulfilled. However, this approach is not satisfactory for the
following reasons. First, it may be possible that an important requirement was
missed. This is especially true because different applications have different
requirements, and we would like a definition that is general enough to capture
all applications. Second, the definition should be simple enough so that it
is trivial to see that all possible adversarial attacks are prevented by the
proposed definition.

The standard definition today (cf. [11] following [37, 5, 59]) therefore for-
malizes security in the following general way. As a mental experiment, con-
sider an “ideal world” in which an external trusted (and incorruptible) party
is willing to help the parties carry out their computation. In such a world,
the parties can simply send their inputs over perfectly private channels to
the trusted party, which then computes the desired function and passes each
party its prescribed output. Since the only action carried out by a party is
that of sending its input to the trusted party, the only freedom given to the
adversary is in choosing the corrupted parties’ inputs. Notice that all of the
above-described security properties (and more) hold in this ideal computa-
tion. For example, privacy holds because the only message ever received by
a party is its output (and so it cannot learn any more than this). Likewise,
correctness holds since the trusted party cannot be corrupted and so will
always compute the function correctly.

Of course, in the “real world”, there is no external party that can be trusted
by all parties. Rather, the parties run some protocol amongst themselves
without any help. Despite this, a secure protocol should emulate the so-
called “ideal world”. That is, a real protocol that is run by the parties (in
a world where no trusted party exists) is said to be secure if no adversary

6 1 Introduction

can do more harm in a real execution than in an execution that takes place
in the ideal world. This can be formulated by saying that for any adversary
carrying out a successful attack in the real world, there exists an adversary
that successfully carries out the same attack in the ideal world. However,
successful adversarial attacks cannot be carried out in the ideal world. We
therefore conclude that all adversarial attacks on protocol executions in the
real world must also fail.

More formally, the security of a protocol is established by comparing the
outputs of the adversary and honest parties in a real protocol execution to
their outputs in an ideal computation. That is, for any adversary attacking
a real protocol execution, there exists an adversary attacking an ideal ex-
ecution (with a trusted party) such that the input/output distributions of
the adversary and the participating parties in the real and ideal executions
are essentially the same. Thus a real protocol execution “emulates” the ideal
world. This formulation of security is called the ideal/real simulation paradigm.
In order to motivate the usefulness of this definition, we describe why all the
properties described above are implied. Privacy follows from the fact that
the adversary’s output is the same in the real and ideal executions. Since the
adversary learns nothing beyond the corrupted party’s outputs in an ideal
execution, the same must be true for a real execution. Correctness follows
from the fact that the honest parties’ outputs are the same in the real and
ideal executions, and from the fact that in an ideal execution, the honest par-
ties all receive correct outputs as computed by the trusted party. Regarding
independence of inputs, notice that in an ideal execution, all inputs are sent
to the trusted party before any output is received. Therefore, the corrupted
parties know nothing of the honest parties’ inputs at the time that they send
their inputs. In other words, the corrupted parties’ inputs are chosen indepen-
dently of the honest parties’ inputs, as required. Finally, guaranteed output
delivery and fairness hold in the ideal world because the trusted party always
returns all outputs. The fact that it also holds in the real world again follows
from the fact that the honest parties’ outputs are the same in the real and
ideal executions.

We remark that the above informal definition is actually “overly ideal” and
needs to be relaxed in settings where the adversary controls half or more of the
participating parties (that is, in the case where there is no honest majority).
When this number of parties is corrupted, it is known that it is impossible to
obtain general protocols for secure multiparty computation that guarantee
output delivery and fairness. In particular, it is impossible for two parties to
toss an unbiased coin when one may be corrupt [17]. Therefore, the definition
is relaxed and the adversary is allowed to abort the computation (i.e., cause
it to halt before termination), meaning that “guaranteed output delivery” is
not fulfilled. Furthermore, the adversary can cause this abort to take place
after it has already obtained its output, but before all the honest parties
receive their outputs. Thus “fairness” is not achieved. Loosely speaking, the
relaxed definition is obtained by modifying the ideal execution and giving

1.1 Secure Multiparty Computation — Background 7

the adversary the additional capability of instructing the trusted party to
not send outputs to some of the honest parties. Otherwise, the definition
remains identical and thus all the other properties are still preserved.

Recently it has been shown that in the case of no honest majority, some
non-trivial functions can be securely computed with complete fairness [39].
Despite this, we will forgo any attempt at achieving fairness because (a)
general constructions cannot achieve fairness due to [17], and (b) we focus on
efficient protocols and all currently known techniques for achieving fairness
for non-trivial functions are inherently inefficient.

We note that there are works that aim to provide intermediate notions
of fairness [77, 29, 6, 37, 40]. However, we limit our reference to the cases
that either (complete) fairness and output delivery are guaranteed, or neither
fairness (of any type) nor output delivery are guaranteed.

Adversarial power. The above informal definition of security omits one
very important issue: the power of the adversary that attacks a protocol
execution. As we have mentioned, the adversary controls a subset of the
participating parties in the protocol. However, we have not described the
corruption strategy (i.e., when or how parties come under the “control” of
the adversary), the allowed adversarial behavior (i.e., does the adversary just
passively gather information or can it instruct the corrupted parties to act
maliciously), and what complexity the adversary is assumed to have (i.e., is it
polynomial time or computationally unbounded). We now describe the main
types of adversaries that have been considered:

1. Corruption strategy: The corruption strategy deals with the question

of when and how parties are corrupted. There are two main models:

a. Static corruption model: In this model, the adversary is given a fixed set
of parties whom it controls. Honest parties remain honest throughout
and corrupted parties remain corrupted.

b. Adaptive corruption model: Rather than having a fixed set of corrupted
parties, adaptive adversaries are given the capability of corrupting par-
ties during the computation. The choice of whom to corrupt, and when,
can be arbitrarily decided by the adversary and may depend on what is
has seen throughout the execution (for this reason it is called adaptive).
This strategy models the threat of an external “hacker” breaking into a
machine during an execution. We note that in this model, once a party
is corrupted, it remains corrupted from that point on.

An additional model, called the proactive model [67, 13], considers the
possibility that parties are corrupted for a certain period of time only.
Thus, honest parties may become corrupted throughout the computation
(as in the adaptive adversarial model), but corrupted parties may also
become honest.

2. Allowed adversarial behavior: Another parameter that must be de-
fined relates to the actions that corrupted parties are allowed to take.
Once again, there are two main types of adversaries:

1 Introduction

a. Semi-honest adversaries: In the semi-honest adversarial model, even cor-
rupted parties correctly follow the protocol specification. However, the
adversary obtains the internal state of all the corrupted parties (includ-
ing the transcript of all the messages received), and attempts to use
this to learn information that should remain private. This is a rather
weak adversarial model. However, it does model inadvertent leakage of
information by honest parties and thus is useful in some cases (e.g.,
where the parties essentially trust each other but want to ensure that
nothing beyond the output is leaked). This model may also be of use
in settings where the use of the “correct” software running the cor-
rect protocol can be enforced. Semi-honest adversaries are also called
“honest-but-curious” and “passive”.

b. Malicious adversaries: In this adversarial model, the corrupted parties
can arbitrarily deviate from the protocol specification, according to the
adversary’s instructions. In general, providing security in the presence
of malicious adversaries is preferred, as it ensures that no adversarial
attack can succeed. However, protocols that achieve this level of security
are typically much less efficient. Malicious adversaries are also called
“active”.

These are the classic adversarial models. However, in some cases, an inter-
mediate adversary model may be required. This is due to the fact that the
semi-honest adversary modeling is often too weak, whereas our protocols
that achieve security in the presence of malicious adversary may be far too
inefficient. An intermediate adversary model is that of covert adversaries.
Loosely speaking, such an adversary may behave maliciously. However, it
is guaranteed that if it does so, then it will be caught cheating by the
honest parties with some given probability.

. Complexity: Finally, we consider the assumed computational complexity
of the adversary. As above, there are two categories here:

a. Polynomial time: The adversary is allowed to run in (probabilistic) poly-
nomial time (and sometimes, expected polynomial time). The specific
computational model used differs, depending on whether the adversary
is uniform (in which case, it is a probabilistic polynomial-time Turing
machine) or non-uniform (in which case, it is modeled by a polynomial-
size family of circuits).

b. Computationally unbounded: In this model, the adversary has no com-
putational limits whatsoever.

The above distinction regarding the complexity of the adversary yields two
very different models for secure computation: the information-theoretic
model [9, 15] and the computational model [77, 35]. In the information-
theoretic setting, the adversary is not bound to any complexity class (and
in particular, is not assumed to run in polynomial time). Therefore, results
in this model hold unconditionally and do not rely on any complexity or

1.1 Secure Multiparty Computation — Background 9

cryptographic assumptions. The only assumption used is that parties are
connected via ideally private channels (i.e., it is assumed that the adver-
sary cannot eavesdrop on or interfere with the communication between
honest parties).

In contrast, in the computational setting the adversary is assumed to be
polynomial time. Results in this model typically assume cryptographic as-
sumptions like the existence of trapdoor permutations. We note that it is
not necessary here to assume that the parties have access to ideally private
channels, because such channels can be implemented using public-key en-
cryption. However, it is assumed that the communication channels between
parties are authenticated; that is, if two honest parties communicate, then
the adversary can eavesdrop but cannot modify any message that is sent.
Such authentication can be achieved using digital signatures [38] and a
public-key infrastructure.

It is only possible to achieve information-theoretic security in the case of
an honest majority [9]. Thus, it is not relevant to the case of two-party
computation, which is the focus of this book. We will therefore consider
the computational setting only.

We remark that all possible combinations of the above types of adversaries
have been considered in the literature.

Stand-alone computation versus composition. All of the above re-
lates to the stand-alone model, where only a single protocol execution takes
place (or many take place but only one is “under attack”). A far more re-
alistic model is that of concurrent general composition where many secure
(and possibly insecure) protocols are executed together [12]. This is a strictly
harder problem to solve [14] and has been the focus of much work in the past
decade. See [54] for a study of this topic.

Feasibility of secure multiparty computation. The above-described
definition of security seems to be very restrictive in that no adversarial suc-
cess is tolerated, irrespective of its strategy. Thus, one may wonder whether
it is even possible to obtain secure protocols under this definition, and if
yes, for which distributed computing tasks. Perhaps surprisingly, powerful
feasibility results have been established, demonstrating that in fact, any dis-
tributed computing task can be securely computed. We now briefly state the
most central of these results for the case of malicious adversaries and static
corruptions in the stand-alone model. Let m denote the number of partici-
pating parties and let ¢ denote a bound on the number of parties that may
be corrupted:

1. For t < m/3 (i.e., when less than a third of the parties can be cor-
rupted), secure multiparty protocols with guaranteed output delivery can
be achieved for any function in a point-to-point network, without any
setup assumptions. This can be achieved both in the computational set-

10 1 Introduction

ting [35] (assuming the existence of trapdoor permutations) and in the
information-theoretic (private channel) setting [9, 15].

2. For t < m/2 (i.e., in the case of a guaranteed honest majority), secure
multiparty protocols with fairness and guaranteed output delivery can
be achieved for any function assuming that the parties have access to a
broadcast channel. This can be achieved in the computational setting [35]
(under the same assumptions as above), and in the information-theoretic
setting [73, 4].

3. For t > m/2 (i.e., when the number of corrupted parties is not limited), se-
cure multiparty protocols (without fairness or guaranteed output delivery)
can be achieved for any function assuming that the parties have access to
a broadcast channel and in addition assuming the existence of enhanced
trapdoor permutations [77, 35, 32]. These feasibility results hold only in
the computational setting; analogous results for the information-theoretic
setting cannot be obtained when ¢ > m/2 [9].

In summary, secure multiparty protocols exist for any distributed computing
task. In the computational model, this holds for all possible numbers of cor-
rupted parties, with the qualification that when no honest majority exists,
then fairness and guaranteed output delivery are not obtained. We note that
the above results all hold with respect to malicious, static adversaries in the
stand-alone model.

This book — two-parties, static adversaries and the stand-alone
model. As we have mentioned, adaptive corruption captures a real-world
threat and as such protocols that are secure in the presence of such adver-
saries provide a strong security guarantee. In addition, the stand-alone model
of computation is not the realistic model in which protocols are executed
today. Nevertheless, the problem of constructing highly efficient two-party
protocols that are secure in the presence of static adversaries in the stand-
alone model serves as an important stepping stone for constructing protocols
in more complex settings. As we will see, it is already difficult to construct
efficient protocols for static adversaries in the stand-alone model, and we
strongly believe that a broad understanding of the problems that arise in
more restricted settings is needed before progressing to more complex set-
tings. Our experience also shows us that the techniques developed for solving
the problems of secure computation in the stand-alone model with static
adversaries are often useful also in the more complex setting of concurrent
composition (with static or adaptive adversaries). For these reasons, we have
chosen to focus solely on the stand-alone model and static adversaries in this
book.

1.2 The GMW Protocol for Secure Computation 11

1.2 The GMW Protocol for Secure Computation

As we have mentioned above, it has been shown that any probabilistic
polynomial-time two-party functionality can be securely computed in the
presence of malicious adversaries (without fairness or guaranteed output de-
livery), assuming the existence of enhanced trapdoor permutations [35, 32].
This powerful feasibility result — known as the GMW construction — is ob-
tained in two stages. First, it is shown how to securely compute any function-
ality in the presence of semi-honest adversaries. Then, a protocol compiler
is presented that takes any protocol that is secure in the presence of semi-
honest adversaries and outputs a protocol that is secure in the presence of
malicious adversaries.

Security for semi-honest adversaries. A secure protocol is constructed
based on a Boolean circuit that computes the functionality in question. The
basic idea behind the construction is for the parties to iteratively compute
the gates in the circuit in an “oblivious manner”. This is achieved by having
the parties first share their input bits; that is, for every input wire to the
circuit, the parties hold random bits o and 3 so that a & S equals the actual
input bit associated with that wire. Then, for every (AND/OR/NOT) gate,
the parties run a mini-protocol to compute random shares of the output of
the gate, based on their given random shares of the inputs to the gate. At
the end of the protocol, the parties hold random shares of the output wires
which they can send to each other in order to reconstruct the actual output.
The security of the protocol is derived from the fact that each party sees only
random values (shares) throughout the protocol. Therefore, it learns nothing
beyond the output, as required.

Compilation to security for malicious adversaries. The basic idea that
stands behind the GMW construction is to have the parties run a suitable
protocol that is secure in the presence of semi-honest adversaries, while forc-
1ng the potentially malicious participants to behave in a semi-honest manner.
The GMW compiler therefore takes for input a protocol that is secure against
semi-honest adversaries; from here on we refer to this as the “basic proto-
col”. Recall that this protocol is secure in the case where each party follows
the protocol specification exactly, using its input and uniformly chosen ran-
dom tape. We must therefore force a malicious adversary to behave in this
way. First and foremost, this involves forcing the parties to follow the pre-
scribed protocol. However, this only makes sense relative to a given input
and random tape. Furthermore, a malicious party must be forced into using
a uniformly chosen random tape. This is because the security of the basic
protocol may depend on the fact that the party has no freedom in setting its
own randomness.'

L A good example of this is the semi-honest 1-out-of-2 oblivious transfer protocol of [25].
The oblivious transfer functionality is defined by ((zo,z1),0) — (A, 2+). In the protocol

12 1 Introduction

In light of the above discussion, the GMW protocol compiler begins by
having each party commit to its input. Next, the parties run a coin-tossing
protocol in order to fix their random tapes (clearly, this protocol must be se-
cure against malicious adversaries). A regular coin-tossing protocol in which
both parties receive the same uniformly distributed string is not sufficient
here. This is because the parties’ random tapes must remain secret. This is
solved by augmenting the coin-tossing protocol so that one party receives a
uniformly distributed string (to be used as its random tape) and the other
party receives a commitment to that string. Now, following these two steps,
each party holds its own uniformly distributed random tape and a commit-
ment to the other party’s input and random tape. Therefore, each party can
be “forced” into working consistently with the committed input and random
tape.

We now describe how this behavior is enforced. A protocol specification is
a deterministic function of a party’s view consisting of its input, random tape
and messages received so far. As we have seen, each party holds a commitment
to the input and random tape of the other party. Furthermore, the messages
sent so far are public. Therefore, the assertion that a new message is computed
according to the protocol is of the AP type (and the party sending the
message knows an adequate NP-witness to it). Thus, the parties can use zero-
knowledge proofs to show that their steps are indeed according to the protocol
specification. As the proofs used are zero-knowledge, they reveal nothing.
Furthermore, due to the soundness of the proofs, even a malicious adversary
cannot deviate from the protocol specification without being detected. We
thus obtain a reduction of the security in the malicious case to the given
security of the basic protocol against semi-honest adversaries.

Efficiency and the GMW construction. The complexity of the GMW
protocol for semi-honest adversaries is related to the size of the circuit needed
to compute the functionality. Specifically, the parties need to run an oblivious
transfer (involving asymmetric computations) for every circuit of the gate.
Although this results in a significant computational overhead, it is reasonable
for functionalities with circuits that are not too large. We remark that Yao’s
protocol for secure two-party computation is typically more efficient than the
GMW construction. This is due to the fact that only symmetric operations
are needed for computing every gate of the circuit, and oblivious transfers
are only used for the input bits. This means that Yao’s protocol scales better

of [25], the receiver gives the sender two images of an enhanced trapdoor permutation,
where the receiver knows only one of the preimages. The protocol works so that the receiver
obtains z; if it knows the ith preimage (and otherwise it learns nothing of the value of
z;). Thus, were the receiver to know both preimages, it would learn both z¢ and zi, in
contradiction to the security of the protocol. Now, if the receiver can “alter” its random
tape, then it can influence the choice of the images of the permutation so that it knows
both preimages. Thus, the fact that the receiver uses a truly random tape is crucial to the
security.

1.3 A Roadmap to the Book 13

to large circuits than GMW. In Chapter 3 we present Yao’s protocol for
semi-honest adversaries in detail.

As we have mentioned, the cost of achieving security in the presence of
semi-honest adversaries is not insignificant. However, it is orders of magni-
tude less than the cost of achieving security in the presence of malicious
adversaries. This is due to the fact that general zero-knowledge protocols for
NP require a Karp reduction from a complex computational statement to a
language like 3-colorability or Hamiltonicity. Thus, even when the underlying
protocol for semi-honest adversaries is highly efficient, the compiled protocol
for malicious adversaries is typically not. We conclude that the GMW con-
struction, and in particular the compilation of GMW from security in the
presence of semi-honest adversaries to security in the presence of malicious
adversaries, is to be viewed as a fundamental feasibility result, and not as a
methodology for obtaining protocols in practice.?

Despite what we have stated above, the GMW compilation paradigm has
had considerable influence over the construction of efficient protocols. Indeed,
one way to efficiently achieve security in the presence of malicious adversaries
is to design a protocol that is secure in the presence of semi-honest adver-
saries (or a different notion that is weaker than security in the presence of
malicious adversaries) in a particular way so that one can efficiently prove
“correct behavior” in zero-knowledge. One example of a protocol that uses
this paradigm can be found in Section 7.4.

In conclusion, the GMW construction proves that any efficient function-
ality can be securely computed, even in the presence of a powerful malicious
adversary. The next step, given this feasibility result, is to construct more
efficient protocols for this task with the final aim of obtaining protocols that
can be used in practice. This research goal is the focus of this book.

1.3 A Roadmap to the Book

This book is divided into three distinct parts. We now describe in detail the
contents of each part and the chapters therein.

1.3.1 Part I — Introduction and Definitions

In this chapter, we have provided a brief overview of the basic notions, con-
cepts and results of secure computation. The aim of this overview is to place

2 We stress that this should in no way be interpreted as a criticism of GMW; the GMW
construction is a beautiful proof of the feasibility of achieving secure computation and is
one of most fundamental results of theoretical cryptography.

14 1 Introduction

the material covered in this book in its general context. In Chapter 2 we
present a number of different definitions of secure two-party computation.
We begin by presenting the classic definitions of security in the presence of
semi-honest and malicious adversaries. As we have discussed above, on the
one hand, the security guarantee provided when considering semi-honest ad-
versaries is often insufficient. On the other hand, although protocols that are
secure in the presence of malicious adversaries provide a very strong security
guarantee, they are often highly inefficient. This motivates the search for al-
ternative definitions that provide satisfactory security guarantees, and that
are more amenable to constructing highly efficient protocols. We consider
three such relaxations:

1. Covert adversaries (Section 2.4): Physical security in the real world is
achieved via deterrence. It is well known that an expert thief can break
into almost anybody’s house and can steal most cars. If this is the case,
then why aren’t there more expert thieves and why are most of our houses
and cars safe? The answer to this is simply deterrence: most people do not
want to go to jail and so choose professions that are within the law. (Of
course, there are also many people who do not steal because it is immoral,
but this is not relevant to our discussion here.) The notion of security in
the presence of covert adversaries utilizes the concept of deterrence in se-
cure computation. Specifically, a protocol that achieves security under this
notion does not provide a foolproof guarantee that an adversary cannot
cheat. Rather, it guarantees that if an adversary does attempt to cheat,
then the honest parties will detect this with some given probability (say
0.5 or 0.9). Now, if such a protocol is run in a context where cheating can
be penalized, then this level of security can suffice. For example, if a secure
protocol is used by a consortium of cellphone companies who wish to carry
out a statistical analysis of the usage behaviors of cellphone users, then a
cheating company (who tries to steal customer data from its competitors)
will be penalized by removing them from the consortium.

We remark that security in the presence of malicious adversaries is the
analogue of an armed security guard outside your house 24 hours a day. It
is much safer to protect your house in this way. However, the costs involved
are often not worth the gain.

2. Non-simulation based definitions (Section 2.6): The definitions of security
for semi-honest, malicious and covert adversaries all follow the ideal /real-
model simulation-based paradigm. We consider two relaxations that do
not follow this paradigm.

a. Privacy only (Section 2.6.1): As we have discussed, the simulation-
based method of defining security (via the ideal/real-model paradigm)
guarantees privacy, correctness, independence of inputs and more. How-
ever, in some cases, it may suffice to guarantee privacy without the other
properties. For example, if a user wishes to search a database so that
her search queries are kept private, then privacy alone may suffice.

1.3 A Roadmap to the Book 15

b. One-sided simulation (Section 2.6.2): In many cases, it is very difficult
to formalize a definition of security that guarantees privacy only. This
is due to the fact that when a party receives output it learns something
and we must try to state that it should learn nothing more. However,
the output depends on the parties’ inputs and if these are not explicit
then it is unclear what the output should be. In contrast, it is very easy
to define privacy when nothing should be learned; in such a case, privacy
can be formalized via indistinguishability in the same way as encryption.
The notion of one-sided simulation helps to define security for protocol
problems in which only one party is supposed to receive output. In such
a case, we require simulation (via the ideal/real-model paradigm) for
the party that receives input, and privacy only (via indistinguishability)
for the party that does not receive output. Observe that correctness
and independence of inputs are not guaranteed when the party who
does not receive output is corrupted. However, as in the example for
privacy only above, this is sometimes sufficient. The advantage of “one-
sided simulation” over “privacy only” is that a general definition can
be given for any functionality in which only one party receives output.

We stress that the “right definition” depends very much on the application
being considered. In some cases, it is crucial that security in the presence of
malicious adversaries be achieved; take for example computation over highly
confidential data that can cause significant damage if revealed. However, in
many other cases, weaker notions of security can suffice, especially if the
alternative is to not use a secure protocol at all (e.g., as may be the case
if the best protocols known for a task that provide security for malicious
adversaries are not efficient enough for use).

In addition to presenting the above definitions of security, Chapter 2 con-
tains the following additional material. In Section 2.3.3 we discuss the sur-
prising fact that due to a quirk in the definitions, security in the presence of
malicious adversaries does not always imply security in the presence of semi-
honest adversaries. In Section 2.5 we show that in many cases it suffices to
consider restricted types of functionalities, enabling a simpler presentation.
Finally, in Section 2.7 we state modular sequential composition theorems that
are very useful when proving the security of protocols.

1.3.2 Part II — General Constructions

A general construction is a protocol that can be used for securely computing
any functionality. These constructions are typically based on a circuit for
computing the functionality, and as such do not utilize any special properties
of the functionality being computed. Thus, they cannot be used for complex
computations applied to very large inputs. Despite this, it is important to

16 1 Introduction

study these constructions for the following reasons. First, many useful tech-
niques and methodologies can be learned from them. Second, in many cases,
a larger protocol uses a smaller subprotocol that is obtained via a general
construction (an example of this is given in Chapter 8). Finally, as the effi-
ciency of general constructions improves, we are able to use them for more
and more real problems [22, 71].

Semi-honest adversaries. In Chapter 3 we present Yao’s protocol for
achieving secure two-party computation in the presence of semi-honest ad-
versaries [77]. This protocol works by having one party prepare an encrypted
or garbled version of the circuit that can be decrypted to yield only one value,
the output of the computation. When the circuit being computed is not too
large, this protocol is very efficient. Specifically, the parties need O(1) asym-
metric computations per input bit, and O(1) symmetric computations per
gate of the circuit. In practice, symmetric computations are far more efficient
than asymmetric computations. Thus, a circuit with hundreds of thousands
of gates can be easily computed.

Malicious adversaries. In Chapter 4 we present a protocol that achieves
security in the presence of malicious adversaries [55]. This protocol is based
on Yao’s protocol for the semi-honest case, and includes significant machinery
for preventing the parties from cheating. The basic technique for achieving
this is called cut-and-choose. Specifically, one of the main problems that
arises when running Yao’s protocol with malicious adversaries is that the
party who constructs the garbled circuit can construct it incorrectly (since
it is encrypted, this cannot be detected). In order to prevent such behavior,
we have the party construct many copies of the circuit and then ask it to
open half of them. In this way, we can be sure that most of the remaining
unopened circuits are correct. It turns out that this intuitive idea is very
hard to implement correctly, and many new problems arise when computing
with many circuits. As a result, the construction is much less efficient than
in the semi-honest case. However, it can still be run on circuits with tens of
thousands of gates, as will be discussed below.

Covert adversaries. In Chapter 5 we present a protocol that is based
on the same idea as that in Chapter 4 but provides security only in the
presence of covert adversaries. The main idea is that in the context of covert
adversaries it suffices to use cut-and-choose on many fewer circuits, and it
suffices to compute only one circuit at the end. This results in a protocol
that is much more efficient than that required to achieve security in the
presence of malicious adversaries. Roughly speaking, when the adversary is
guaranteed to be caught with probability € if it attempts to cheat, the cost
of the protocol is about O(1/¢) times the cost of Yao’s semi-honest protocol.
Thus, for e = 1/2 it is possible to compute circuits that contain hundreds of
thousands of gates, as in the semi-honest case.

1.3 A Roadmap to the Book 17

Implementations of general protocols. Recent interest in the field of
efficient protocols has led to implementations that are useful for understand-
ing the real efficiency behavior of the above protocols. One work which is
of relevance here is an implementation of a protocol for securely computing
the AES function [71]. That is, one party holds a secret 128-bit symmetric
key k for the AES function and the other party holds a 128-bit input =z.
The computation is such that the first party learns nothing about z, while
the second party learns AES)(z) and nothing else. Such a functionality has
many applications, as we will see in Chapter 9. In [71], the exact protocols of
Chapters 3, 4 and 5 were implemented for a circuit computing AES which has
approximately 33,000 gates. The protocols were implemented using a number
of different optimizations. The best optimizations yielded running times of
seven seconds for the semi-honest protocol, 95 seconds for the covert protocol
and 1,148 seconds for the malicious protocol. Although these running times
are not fast enough for real-time applications, they demonstrate that it is
feasible to carry out such computations on circuits that are large (tens of
thousands of gates). We expect that further efficiency improvements will not
be long coming, and believe that these times will be significantly reduced in
the not too distant future (especially for the malicious case).

1.3.3 Part III — Specific Constructions

As we have mentioned, the drawback of considering general constructions is
that it is not possible to utilize special properties of the functionality being
computed. In the final part of the book, we present protocols for specific
problems of interest. This part is also divided into two subparts. First, in
Chapters 6 and 7 we present some basic tools that are very useful for designing
efficient protocols. Then, in Chapters 8 and 9 we study two specific problems
as a demonstration of how higher-level protocols can be constructed.

Sigma protocols and efficient zero-knowledge. In Chapter 6 we show
how highly efficient zero-knowledge protocols can be constructed. As we
have discussed, security in the presence of malicious adversaries is typically
achieved by forcing the parties to behave honestly. The immediate way to do
this is to force the parties to prove in zero-knowledge that they are following
the protocol specification. Needless to say, a straightforward implementation
of this idea is very inefficient. For this reason, many try to stay clear of explicit
zero-knowledge proofs for enforcing honest behavior. However, in many cases
it is possible to construct a protocol for which the zero-knowledge proof that
is needed is highly efficient. Many of these efficient zero-knowledge protocols
are constructed from a simpler primitive called a X-protocol. In Chapter 6
we study X-protocols in depth and, among other things, present highly effi-
cient generic transformations from X-protocols to zero-knowledge proofs of
membership and zero-knowledge proofs of knowledge. These transformations

18 1 Introduction

are very useful because it is far easier to construct a protocol and prove
that it is a X-protocol than to construct a protocol and prove that it is a
zero-knowledge proof of knowledge.

Oblivious transfer and applications. In Chapter 7 we construct obliv-
ious transfer protocols that are secure under the definitions of privacy only,
one-sided simulation, and full simulation-based security in the presence of
malicious adversaries. The protocols that are presented progress in a natural
way from privacy only through one-sided simulation to full security. The fi-
nal protocols obtained have only a constant number of exponentiations and
as such are very efficient. In addition, we present optimizations for the case
where many oblivious transfers need to be run, which is the case in many
secure protocols using oblivious transfer. We then conclude with protocols for
pseudorandom function evaluation, which is a primitive that also has many
applications.

The kth-ranked element and search problems. In Chapters 8 and 9
we show how to securely compute the kth-ranked element of two lists (with a
special case being the median) and how to search databases and documents
in a secure manner. Admittedly, the choice of these two problems is arbitrary
and is based on our personal preferences. Nevertheless, we believe that they
are interesting examples of how specific properties of the functionality in
question can be used to solve the problem with high efficiency.

	BookEfficient2PC-with_hyperlinks.pdf
	Part I Introduction and Definitions
	1 Introduction
	1.1 Secure Multiparty Computation – Background
	1.2 The GMW Protocol for Secure Computation
	1.3 A Roadmap to the Book
	1.3.1 Part I – Introduction and Definitions
	1.3.2 Part II – General Constructions
	1.3.3 Part III – Specific Constructions

	2 Definitions
	2.1 Preliminaries
	2.2 Security in the Presence of Semi-honest Adversaries
	2.3 Security in the Presence of Malicious Adversaries
	2.3.1 The Definition
	2.3.2 Extension to Reactive Functionalities
	2.3.3 Malicious Versus Semi-honest Adversaries

	2.4 Security in the Presence of Covert Adversaries
	2.4.1 Motivation
	2.4.2 The Actual Definition
	2.4.3 Cheating and Aborting
	2.4.4 Relations Between Security Models

	2.5 Restricted Versus General Functionalities
	2.5.1 Deterministic Functionalities
	2.5.2 Single-Output Functionalities
	2.5.3 Non-reactive Functionalities

	2.6 Non-simulation-Based Definitions
	2.6.1 Privacy Only
	2.6.2 One-Sided Simulatability

	2.7 Sequential Composition – Simulation-Based Definitions

	Part II General Constructions
	3 Semi-honest Adversaries
	3.1 An Overview of the Protocol
	3.2 Tools
	3.2.1 ``Special'' Private-Key Encryption
	3.2.2 Oblivious Transfer

	3.3 The Garbled-Circuit Construction
	3.4 Yao's Two-Party Protocol
	3.5 Efficiency of the Protocol

	4 Malicious Adversaries
	4.1 An Overview of the Protocol
	4.1.1 High-Level Protocol Description
	4.1.2 Checks for Correctness and Consistency

	4.2 The Protocol
	4.3 Proof of Security
	4.3.1 Security Against a Malicious P1
	4.3.2 Security Against a Malicious P2

	4.4 Efficient Implementation of the Different Primitives
	4.5 Efficiency of the Protocol
	4.6 Suggestions for Further Reading

	5 Covert Adversaries
	5.1 Oblivious Transfer
	5.1.1 The Basic Protocol
	5.1.2 Extensions

	5.2 Secure Two-Party Computation
	5.2.1 Overview of the Protocol
	5.2.2 The Protocol for Two-Party Computation
	5.2.3 Non-halting Detection Accuracy

	5.3 Efficiency of the Protocol

	Part III Specific Constructions
	6 Sigma Protocols and Efficient Zero-Knowledge
	6.1 An Example
	6.2 Definitions and Properties
	6.3 Proofs of Knowledge
	6.4 Proving Compound Statements
	6.5 Zero-Knowledge from -Protocols
	6.5.1 The Basic Zero-Knowledge Construction
	6.5.2 Zero-Knowledge Proofs of Knowledge
	6.5.3 The ZKPOK Ideal Functionality

	6.6 Efficient Commitment Schemes from -Protocols
	6.7 Summary

	7 Oblivious Transfer and Applications
	7.1 Notational Conventions for Protocols
	7.2 Oblivious Transfer – Privacy Only
	7.2.1 A Protocol Based on the DDH Assumption
	7.2.2 A Protocol from Homomorphic Encryption

	7.3 Oblivious Transfer – One-Sided Simulation
	7.4 Oblivious Transfer – Full Simulation
	7.4.1 1-out-of-2 Oblivious Transfer
	7.4.2 Batch Oblivious Transfer

	7.5 Another Oblivious Transfer – Full Simulation
	7.6 Secure Pseudorandom Function Evaluation
	7.6.1 Pseudorandom Function – Privacy Only
	7.6.2 Pseudorandom Function – Full Simulation
	7.6.3 Covert and One-Sided Simulation
	7.6.4 Batch Pseudorandom Function Evaluation

	8 The kth-Ranked Element
	8.1 Background
	8.1.1 A Protocol for Finding the Median
	8.1.2 Reducing the kth-Ranked Element to the Median

	8.2 Computing the Median – Semi-honest
	8.3 Computing the Median – Malicious
	8.3.1 The Reactive Greater-Than Functionality
	8.3.2 The Protocol

	9 Search Problems
	9.1 Background
	9.2 Secure Database Search
	9.2.1 Securely Realizing Basic Database Search
	9.2.2 Securely Realizing Full Database Search
	9.2.3 Covert and One-Sided Simulation

	9.3 Secure Document Search
	9.4 Implementing Functionality FCPRP with Smartcards
	9.4.1 Standard Smartcard Functionality and Security
	9.4.2 Implementing FCPRP with Smartcards

	9.5 Secure Text Search (Pattern Matching)
	9.5.1 Indexed Implementation for Naor-Reingold
	9.5.2 The Protocol for Secure Text Search

	References
	Index

