Exercise 1: Show that DES has the property that \(\text{DES}_k(x) = \text{DES}_k(x) \) for every key \(k \) and input \(x \) (this is called the complementary property of DES). Show how this can be used to carry out a chosen-plaintext attack (with only two queries to a DES computation oracle computing \(O(x) = \text{DES}_K(x) \) where \(K \) is the key being searched for) to find the key \(k \) by locally running DES encryption only \(2^{35} \) times (instead of \(2^{65} \) times).

Exercise 2: Say the key schedule of DES is modified as follows: the left half of the master key is used to derive all the sub-keys in rounds 1–8, while the right half of the master key is used to derive all the sub-keys in rounds 9–16. Show an attack on this modified scheme that recovers the entire key in time roughly \(2^{28} \).

Exercise 3: Consider using DES as a fixed-length collision-resistant hash function in the following way: Define \(h : \{0,1\}^{112} \to \{0,1\}^{64} \) as \(h(x_1\|x_2) \overset{\text{def}}{=} \text{DES}_{x_1}(\text{DES}_{x_2}(0^{64})) \) where \(|x_1| = |x_2| = 56 \).

1. Write down an explicit collision in \(h \).
2. Show how to find a pre-image of a given value \(y \) (that is, \(x_1, x_2 \) such that \(h(x_1\|x_2) = y \)) in roughly \(2^{56} \) time.
3. Show a more clever pre-image attack that runs in roughly \(2^{32} \) time and succeeds with high probability.

Exercise 4: Compute \([101^{4,800,000,023} \mod 35] \) (by hand).

Exercise 5: The extended Euclidean algorithm eGCD receives input \(a, b \) and outputs \(d = \gcd(a, b) \) along with \(X, Y \in \mathbb{Z} \) such that \(Xa + Yb = d \). The algorithm works as follows:

- If \(b \) divides \(a \), then return \((b, 0, 1) \)
- Else:
 1. Compute integers \(q, r \) with \(a = qb + r \) and \(0 < r < b \)
 2. Set \((d, X, Y) \leftarrow \text{eGCD}(b, r) \) // note that \(Xb + Yr = d \)
 3. Return \((d, Y, X - Yq) \)

Prove that the output is correct and that the algorithm runs in polynomial time.