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Using Post-Classifiers to Enhance Fusion of Low-
and High-Level Speaker Recognition

Yosef A. Solewicz and Moshe Koppel

Abstract—This paper proposes a method for automatic correc-
tion of bias in speaker recognition systems, especially fusion-based
systems. The method is based on a post-classifier which learns the
relative performance obtained by the constituent systems in key
trials, given the training and testing conditions in which they oc-
curred. These conditions generally reflect train/test mismatch in
factors such as channel, noise, speaker stress, etc. Results obtained
with several state-of-the-art systems showed up to 20% decrease in
EER compared to ordinary fusion in the NIST’05 Speaker Recog-
nition Evaluation.

Index Terms—Fusion, machine learning, post-classification,
speaker recognition.

I. INTRODUCTION

AUTOMATIC speaker recognition is the task of person
authentication by an automatic analysis of the person’s

voice. Speaker-specific characteristics are due to differences in
both physiological (low-level) and behavioral (high-level) as-
pects of the speech production system. While low-level features
reflect anatomical constraints, high-level features also track
behavioral trends on speakers. People tend to prefer certain
words and avoid others. The same occurs with conversational
and intonational patterns. Traditionally, speaker recognition
has been based on the former factor, essentially by means of
acoustic features extracted from the speech signal. Acoustic
speaker recognition is more robust and requires less data for
training and testing. In recent years though, the advent of
extended databases, powerful machine learning algorithms
and abundant computational power have brought about a new
reality. Fusion of several systems exploring behavioral trends
has been shown to significantly boost recognition performance
[1]–[3].

Ordinary fusion commonly uses some machine learning par-
adigm in order to find a set of fixed weights for base classi-
fiers’ outputs, which minimize some error criterion on a de-
velopment set. This approach is not optimal in the sense that
weights are fixed and optimized for a specific composition of
different “types” of trials in the development set and will not
necessarily perform well for a different balance of trials. More-
over, whatever the learning algorithm applied, ordinary fusion
does not fully exploit the synergy of classifier combination. It is
known that the several feature sets possess individual strengths,
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each one being more appropriate to a specific environment. In
this sense, a blind classifier combination, ignoring the kind of
data being classified is far from an optimal procedure.

Humans, on the other hand, can activate different levels
of speech perception according to specific circumstances, by
having certain processing layers compensate for others affected
by noise. Utterance length, background noise, channel, and
speaker emotional state are some of the parameters which might
dictate the form by which one will perform the recognition
process.

Recent work addresses this limitation by assigning different
fusion schemes for distinct classes of trials [4]–[6]. In these
schemes, the type and degree of distortion found in the speech
sample to be classified is implicitly or explicitly integrated into
the classification task. Thus, for example, although acoustic fea-
tures are generally far superior to all other feature types, there
are circumstances under which more weight should be given to
lexical features.

In this paper, we describe a system called Automated Bias
Identification and Elimination (ABIE), for optimally weighting
constituent systems in a fusion-based speaker recognition
system according to a variety of utterance characteristics. The
basic system, introduced in [7], explores utterance charac-
teristics within isolated systems in order to reduce train/test
mismatch effects. In this paper, we propose a generalization of
this framework to be applied in fusion of recognition systems.

Bias in fused systems is a complex process, resulting from the
interaction of distinct systems, each one with its own bias arti-
facts. More specifically, mismatch is caused when models are
learned from training utterances recorded under a particular set
of conditions, but these models are then applied to testing utter-
ances recorded under a different set of conditions. The distinct
recording environments might unevenly distort train/test feature
distributions, thus introducing bias in the computed scores and
finally causing light to severe degradations in system perfor-
mance.

Mismatch factors such as transmission channel, recording
media, and background noise have been the subject of intense
research. In recent years, several techniques for channel and
additive noise compensation have been proposed. These com-
pensation techniques are traditionally employed at the feature
level [8]–[12], aiming to compensate for the bias introduced in
speech features’ distributions, or at the score level [13], wherein
normalization is performed based on the behavior of scores ob-
tained by a reference population in similar operating conditions.

Recently, model-based compensation techniques have been
proposed. They are based on latent factor analysis in order to
compensate for channel and speaker variability in Gaussian
mixture model (GMM) classifiers [14]. A parallel approach was
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also considered for support vector machine (SVM) classifiers
[15]. These techniques exploit discrepancies between different
conversations by the same speaker (“intersession variability”)
in order to isolate extraneous effects, thus requiring multiple
sessions from distinct speakers for training.

Until recently, mismatch was seen exclusively as an acoustic
issue. Nevertheless, since higher order feature levels have been
increasingly explored for speaker verification, proper compen-
sation schemes should be developed for these novel feature sets.

The basic ABIE framework addresses mismatch indepen-
dently of specific systems or feature sets. It is a general score
compensation technique, which uses explicit feature-level
information, from both high-level and traditional low-level
speech features. The core of ABIE is a post-classifier that
learns the errors of any recognition system, based on side-in-
formation reflecting the environment in which the utterances
were recorded. The type of error (false alarm or false reject)
of each erroneous trial is associated with side-information
extracted from the training and testing utterances comprising
this trial. Once trained, ABIE should be able to predict whether
a recognition error is expected given the side-information of the
training and testing utterances of some trial. ABIE’s outcome
can then be used either to redefine a system design or to correct
its scores.

This approach offers several advantages. First of all, ABIE
can be easily overlaid on those methods previously described,
yielding further improvement in accuracy, with a very low
computational overload in operating mode, compared to cur-
rent compensation techniques. Although operating on the score
level, ABIE provides an explicit insight into bias sources due to
mismatched conditions in training and testing utterances. More-
over, the user openly selects the side-information attributes
to be used. By contrast, in intersession variability methods,
variability is normally viewed as a whole, and individual bias
sources are not explicitly explored. Furthermore, in those fea-
ture [12] or score normalization [13] techniques which do use
side-information, attributes are explored in isolation, and their
mutual influence on score bias is not fully explored as in ABIE.

This framework was evaluated on a variety of low- and high-
level speaker recognition systems, considerably improving in-
dividual performance [7].

In this paper, we generalize the ABIE framework capabili-
ties so as to support fusion of classifiers as well. Thus, as op-
posed to other compensation methods, ABIE allows to simul-
taneously model mismatch among several subsystems. This is
accomplished by considering the relative performance of indi-
vidual classifiers on certain trials, given their characteristics, in
order to compensate for inadequacies inherent to ordinary fu-
sion techniques. In fact, we show that this approach can be suc-
cessfully employed on single systems too.

The outline of this paper is as follows. In Section II, we offer
a brief overview of the basic ABIE system. In Section III, we
present its fusion version and describe the training procedure de-
veloped for this purpose. In Section IV, we report experiments
performed and analysis of results. “Virtual fusion,” the applica-
tion of this framework to single systems is shown in Section V.
Finally, Section VI is dedicated to a concluding discussion and
suggestions for future work.

Fig. 1. Schematic representation of ABIE.

II. BASIC ABIE OVERVIEW

The basic ABIE is a framework based on a post-classifier
that learns a given speaker recognition system’s flaws. It tries
to correlate erroneous trials of the recognition system with cor-
responding side-information that presumably reflects the causes
of the errors. Then, in operating mode, given side-information
about a particular training/testing trial, the post-classifier at-
tempts to correct the score obtained by the speaker recognition
system. The ABIE operation scheme is summarized in Fig. 1
and a brief description is given below (more details can be found
in [7]).

A. Training Procedure

1) Given some speaker recognition system, obtain several
target and impostor scores.

2) Extract side-information (as explained below) from each
of the trials in step 1).

3) Sort the scores of each distribution and label as “ ” a
percentage of the lowest target scores (false rejects) and
as “ ” a percentage of the highest impostor scores
(false accepts).

4) Train a classifier to discriminate between the and
examples, given the respective side-information vectors.

5) Apply the trained classifier to some set of speaker recogni-
tion trials (i.e., input the correspondent side-infor-
mation vectors) and obtain scores .

6) Perform score correction adding the classifier outputs
, scaled by a constant to the correspondent recog-

nition system’s scores .
7) Iterate steps 3)–6) above optimizing the triple

so as to minimize the corrected recognition error on trials
.

8) Retrain the classifier using the optimized and
employ it as a post-classification layer following the
speaker recognition system.

B. Side Information

The side information that is used for characterizing utter-
ance conditions for purposes of eliminating bias should be or-
thogonal to the speech features used by the speaker recognition
system. While the latter should maximize recognition perfor-
mance, side-information is supposed to reflect the environment
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in which an utterance was recorded and should encompass a va-
riety of factors that presumably could be a cause of bias in the
specific recognition system.

The side-information vector used in the present experiments
attempts to cover a rough estimate of channel, noise, and
prosody aspects found both in train and test utterances. We
initially extract several speech parameters (63 attributes as
described below) at a frame step of 20 ms for both the train
and test utterances. These parameters are then averaged in
time for each utterance. Finally, we obtain sums and absolute
differences of the averaged attributes that are then concatenated
into a single side-information vector per trial as follows.

• Absolute differences between train and test mean cepstral
parameters (19 components). This is an indication of
channel mismatch between both utterances [10].

• Sum of train and test standard deviation of the cepstral
parameters (19 components). This is an indication of
the amount of additive noise in the trial [10]. (For sim-
plicity, we denote hereafter cepstrum standard deviation
by “quality.”)

• Absolute differences between train and test standard devi-
ation of the cepstral parameters (19 components). This is
an indication of quality mismatch between both utterances
[10].

• Absolute differences of: mean pitch, pitch standard devi-
ation, “rate of speech” (zero-crossing of first cepstral co-
efficient), between train and test utterances (three com-
ponents). This would roughly reflect mismatch in higher-
levels: speaking style, speaker mood, etc.

• Sums of: mean pitch, pitch standard deviation, “rate of
speech,” between train and test utterances (three compo-
nents).

III. ABIE FOR FUSION

In this section, we extend the basic ABIE framework to op-
erate as a post-classifier in a fusion scheme rather than in a
single system. Thus, rather than learning to eliminate bias for
a given classifier, we propose now to apply a correction based
on the comparative performance of distinct classifiers on spe-
cific speaker recognition trials.

The motivation behind this approach is as follows. In gen-
eral, speaker recognition fusion relies primarily on the more ac-
curate low-level acoustic classifiers and to a lesser degree on
high-level linguistic classifiers. Since low-level classifiers dom-
inate the fused score in ordinary fusion, poor performance of
these classifiers in specific trials would lead to poor classifica-
tion regardless of the performance of the high-level classifiers.
In addition, the highly weighted low-level classifiers might over-
shadow trials in which high-level classifiers show particularly
good performance. Hence, it would be desirable to spot trials
that would either lead to poor low-level classifier performance
or obtain good high-level performance. These trials should have
their scores compensated; specifically, the scores should be in-
creased in case of positive trials or decreased in case of negative
trials.

We therefore propose two alternative training modes for the
post-classifier. In Mode I, we attempt to spot the trials poorly

classified by the low-level classifiers. This is accomplished
training the post-classifier to discriminate between trials poorly
classified by the low-level classifiers versus trials poorly
classified by the high-level classifiers. Similarly, in Mode II,
we attempt to spot the trials well classified by the high-level
classifiers. This is accomplished training the post-classifier to
discriminate between trials well classified by the high-level
classifiers versus trials well classified by the low-level classi-
fiera.

We initially denote by “well classified,” either target trials
having high scores or impostor trials having low scores. Cor-
respondingly, “poorly classified” trials are either target trials
having low scores or impostor trials with high scores. In a
second step, we must consider which type of trials (target,
impostor, or both) will be used to train the post-classifier in the
two modes mentioned above. Furthermore, we must determine
the optimum categorization concerning low- and high-level
classifiers, i.e., how to group all available classifiers into two
classes, either low- or high-level. Although low-level is typi-
cally associated with acoustic feature sets and high-level with
linguistic parameters, it is not necessarily the case that this
categorization is strictly suitable for the proposed framework.

Several preliminary experiments were performed in order to
address the above questions. These experiments seem to indi-
cate that the best option is to train the post-classifier exclu-
sively on target trials. This somewhat counter-intuitive conclu-
sion can be explained as follows. Side-information vectors as
defined above are intended to simply reflect the context in which
model and test utterances were obtained. Nevertheless, these
vectors inevitably also include an undesired speaker-specific
component. Since they address mismatch between model and
test time-averaged attributes, target trials, in which model and
test utterances pertain to the same speaker, are more effective in
neutralizing speaker-specific bias and emphasizing exclusively
contextual mismatch.

Furthermore, it was observed that some flexibility is war-
ranted in grouping the classifiers into low- or high-level classes
for training. In particular, a good configuration was to consider
the best acoustic classifier as the unique low-level classifier and
all the others as high level-classifiers. In this sense, we could
pose the current challenge as enhancing the performance of a
standard acoustic classifier by means of auxiliary classifiers.
(Although this sounds almost synonymous with fusion, we show
later in Section V that the two approaches can be conceptually
dissimilar.)

Other configurations, such as simply discarding the re-
maining low-level classifiers or grouping the classifiers
according to the conventional notion of low- and high-level
feature sets, also worked well. We note that for the moment we
define the post-classification stage as a two-class problem (low
versus high-level), but that in principle, it would be appropriate
to generalize the framework to encompass more than two such
classes.

A. Modified Training Procedure

Training the post-classifier in one of the two modes proposed
is similar to the methodology presented in Section II-A, for the
basic ABIE framework. The main difference is that now we
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contrast among either poorly classified (Mode I) or well-clas-
sified (Mode II) examples from distinct classifiers and not from
false positive and false negative examples pertaining to a single
system. Recall that we consider only speaker recognition target
trials in order to train the post-classifier. Therefore, we mean
by “poorly classified” or “well classified,” target trials whose
scores are, respectively, low or high. The number of such trials
used to train the post-classifier is quantified by percentages of
trials with either lowest or highest scores relative to the whole
target distribution.

Specifically, in Mode I, the post-classifier is trained to dis-
criminate between side-information vectors of poorly classi-
fied trials from low- versus high-level speaker recognition clas-
sifiers. The union of all side-information vectors from poorly
classified trials belonging to the low-level classifier partition is
labeled as “ ” and the union of vectors of poorly classified
trials belonging to the high-level classifier partition is labeled
as “ .” We therefore expect the post-classifier to output a high
score for (positive) trials which might be eventually misclassi-
fied by the low-level classifiers.

Similarly, in Mode II, we label the side-information vectors
of well-classified trials belonging to the high-level partition as
“ ” and as “ ” the well-classified vectors from the low-level
partition. Again, we expect high post-classifier outputs for (pos-
itive) trials that are appropriate to high-level classifiers.

The number of well-classified or poorly classified examples
used to train the post-classifier in either mode are determined
by and . (These percentages play a similar role as and

in Section II-A.) The percentage corresponds to the worst
(Mode I) or the best (Mode II) scores of each of the low-level
classifiers, and is analogous for the high-level classifiers.
Thus, in Mode I, the positive training examples used by the
post-classifier are formed by the union of the worst examples
of each of the low-level classifiers, while the negative examples
are formed by the union of the worst examples of each of the
high-level classifiers. Correspondingly, in Mode II, the positive
training examples used by the post-classifier are formed by the
union of the best examples of each of the high-level classi-
fiers, while the negative examples are formed by the union of
the best examples of each of the low-level classifiers. In each
mode, the set is optimized as detailed in the next sub-
section.

B. Parametric Optimization

It is straightforward to employ the basic ABIE training pro-
cedure (Section II-A) in order to train the modified post-classi-
fier. The set of parameters can be similarly optimized
through greedy search. Thus, for each , the corrected
scores are explicitly computed according to equations (1a) and
(1b) below, and some error measure is estimated between the
target and impostor resulting distributions. The optimum set

is the one which leads to minimum error. We call this
an explicit optimization (a discriminative approach), as opposed
to a parametric optimization (a generative approach). In the
parametric approach, instead of explicitly calculating the target
and impostor distributions of the corrected scores, we simply

estimate parametric representations for these distributions. The
complete parametric optimization is performed as follows.

We model the original recognition score distributions (S) and
post-classifier outputs (T), as normal random variables. (As we
will see below, in the present experiments, the post-classifier is
realized by an SVM. It can be observed that, in fact, the scores
produced by the SVM closely follow a Gaussian distribution.
In case other classifiers are used, some mapping could be per-
formed on the scores in order to shape a normal distribution
or, alternatively, they could be approximated by other types of
random variable.) In particular, let and represent the target
and impostor recognition scores respectively, with means and

, and variances and . Correspondingly, and repre-
sent the post-classifier outputs for target and impostor matches,
with means and , and variances and . Thus, the cor-
rected scores of target and impostor trials are given by

(1a)

(1b)

Recall that is a constant to be optimized and that and
depend on , which define the number of examples used
to train the post-classifier. According to our assumptions about
S and T, it is easy to see that and are also normal random
variables with mean and variance , respectively, given by

(2a)

(2b)

(3a)

(3b)

The operator stands for the covariance.
At this point, the corrected scores and , for a given

, are represented by two normal score distributions, with
means [(2a), (2b)], and variances [(3a), (3b)] being a function of

(4a)

(4b)

Finally, we can analytically find the value of that minimizes
some error criterion between the two distributions [(4a), (4b)].
In short, the complete training process involves the joint opti-
mization of the triple and is performed following the
pseudocode in Fig. 2.

IV. EXPERIMENTS

In order to validate the proposed technique, experiments were
conducted using the NIST’04 evaluation as a development set
and NIST’05 evaluation as a test set. These evaluations consist
of 10 000–20 000 trials, involving 500 speakers recorded in a
variety of landline/cellular lines [16]. There are no cross-gender
trials, and the evaluation balance is about ten impostor trials for
each target trial.

We used recognition scores made available by SRI Interna-
tional for seven different systems. The systems span several
speaker recognition layers. Roughly speaking, the systems can
be categorized either into acoustic (Systems 1 to 3) or stylistic
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Fig. 2. Pseudocode for training and operating the post-classifier.

(Systems 4 to 7) oriented. The acoustic systems are based on
derivations of cepstral features and components of the max-
imum-likelihood linear regression (MLLR) transforms. By con-
trast, the stylistic systems explore counts and duration of words
and other prosodic features extracted over automatically esti-
mated syllables (SNERF). All these systems use either GMM
or SVM classifiers for modeling their respective feature sets,
and their brief description can be found in [17]. We include an
extra system, which represents the fusion of the above systems
in which the respective weights are determined from training
data by a linear SVM [18]. Table I lists the systems, their per-
formance in NIST’05 in terms of equal error rate (EER) and in
addition the correlation coefficient between the cepstral-GMM
(target) scores and those obtained by the other systems. This cor-
relation value can be viewed as a quantitative measure of how
much a system can be considered as high-level. The lower the
correlation, the more the system behavior diverges from that of
the cepstral-GMM which was chosen as the low-level reference
system, as explained below. In addition, note that system per-
formances follow the correlation trend and decrease for higher
level systems.

In these experiments, our goal is to improve the performance
of ordinary fusion used in System 8. We train post-classifiers
which are also implemented by means of linear SVMs using
the side-information vectors extracted from NIST’04 trials. The
training procedure is carried out in both modes as described in
Section III. We optimize for this evaluation set, then
ultimately retrain the post-classifier using the optimized param-
eters and employ it to correct NIST’05 scores.

A. Classifier Partitions

Our framework requires that the recognition systems used in
fusion be split into two classes—roughly, low level and high

TABLE I
SYSTEMS PERFORMANCE

level—that will form the basis for the post-classifier. As noted
earlier, we performed a series of preliminary experiments in
order to determine the optimal ways of splitting the several
classifiers into either low- or high-level. It was observed that
keeping System 1 as the sole low-level representative and as-
signing all others as high-level proved to be the best configu-
ration, though only slightly better than also moving Systems 2
(and 3) to the low-level side.

The special role of the cepstral-GMM classifier relative to the
other low-level classifiers may be rooted in two factors. First, the
side-information vector used in these experiments is composed
of statistics of cepstral parameters and thus directly connected
to this feature set. On the other hand, this information is only
indirectly related to the other low-level classifiers, since their
feature sets are obtained through mathematical manipulations
of the original cepstral parameters. Alternatively, it is probable
that the best classifier split for this framework is simply to place
the dominant classifier in the fusion scheme (System 1) in one
partition and all others in the other partition.

Once we defined the low-level split consisting exclusively
of System 1, we performed experiments in order to define an
appropriate high-level partition composition. Specifically, we
gradually dropped some of the other systems from the high-level
partition, as shown in the next section.

B. “Oracle” Training

At this point, after we defined the low level-partition as
containing solely System 1, we aim at investigating the effects
of distinct classifier compositions in the high-level partition.
Before performing our actual experiments, we would like
to assess the theoretical upper boundaries of performance
obtained through the distinct configurations, neutralizing the
issue of optimization. We therefore optimized these
parameters using the testing (and not the development) set for
the distinct configurations. Then, for each configuration, the
correspondent optimized parameters were used to train the
post-classifier and correct the test-set scores. These “oracle”
results are presented in Fig. 3 in terms of EER for both training
modes and for the partitions evaluated. Some caution must be



2068 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 7, SEPTEMBER 2007

Fig. 3. “Oracle” performance for different high-level partitions.

TABLE II
OPTIMIZED TRAINING PARAMETERS

exercised in the interpretation of results, since standard errors
lie between 0.20% and 0.22% for each of these EER measure-
ments (applying the binomial formula and error propagation
for EER as in [19]). In all cases, System
1 is the unique low-level representative. The high-level group
might comprise all others systems (“2–7”) or the most low-level
candidates are gradually discarded (“3–7” and so on) until only
individual systems are left.

The results suggest that Mode I exploits more efficiently the
ensemble of high-level classifiers in order to improve the fused
scores. On the other hand, training in Mode II seems to attain
better performance when only single systems are available. In
general, as expected, single high-level systems that are less cor-
related to the cepstral-GMM system (see Table I), although in-
dividually performing less well as speaker recognizers, perform
better than low-level systems when used to train the post-clas-
sifier. In addition, the inclusion of other low-level systems to
the high-level partition, as commented above, does not improve
performance and they could eventually be discarded.

It is interesting to note that the set of optimized is
approximately constant for each of the configurations evaluated
above and in particular for the best configurations. Typical op-
timized values for these configurations are depicted in Table II.
Recall that there are ten times more impostor than target trials
and therefore the relation between and values cannot be di-
rectly interpreted in terms of number of examples. The fact this
set is stable for a variety of settings is particularly interesting for
two reasons. First, this is evidence that the framework is robust
to different systems and configurations. Second, this set could
be used in future experiments as priors for actual optimizations,
being helpful in avoiding convergence to local minima.

In order to assess the improvements obtained by the proposed
framework in comparison to its basic version, we evaluated the
performance of the basic ABIE system applied to the fused

Fig. 4. Detection curve for ordinary and ABIE fusion.

recognition scores. Note that the basic ABIE framework does
not make any special assumptions to the fact that we are dealing
with fused scores. On the other hand, ABIE adapted for fusion
considers the relative performance of the constituent systems in
order to correct the fused scores. The oracle performance for the
basic ABIE framework was 3.70%, which compares unfavor-
ably with the novel framework. Moreover, and more important,
it was observed that this optimum performance was obtained for
a relatively narrow range of parameters. On the other
hand, concerning the adapted framework, near optimum results
were observed for a large range of parameters. This
is an additional indication of robustness in actual training con-
ditions, which is analyzed in the next section.

C. Actual Training

In the previous section, we analyzed the best theoretical re-
sults our method can reach. This theoretically optimal result
would be obtained if we could find the optimum set of param-
eters for training the post-classifier given a specific
low/high-level classifier partition. In fact, in real applications,
we must find these parameters from a limited development set,
and there are no guarantees we shall converge to the optimum
set. We would currently like to investigate the abilities of the
proposed parametric optimization method to match the oracle
results.

We therefore reoptimize the post-classifiers, this time using
the training set (NIST’04) and apply the optimized post-clas-
sifiers on the test set (NIST’05). We call this “actual” as op-
posed to the oracle optimization. We perform actual optimiza-
tion via both the parametric and the original explicit method as
explained in Section III. In either case, we end up with a series
of triples each one leading to a corresponding recog-
nition error in the training set. We could expect that the triple at-
tached to the minimum error will lead to the minimum error in
the testing set as well. In practice, we noted that, occasionally,
the optimization process leads to local minima. Fortunately, in
general, spurious candidates can often be detected
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Fig. 5. Bias analysis for Mode I.

Fig. 6. Bias analysis for Mode II.

TABLE III
SUMMARY OF POST-CLASSIFICATION PERFORMANCE

through visual inspection of the trends of the leading triples ob-
tained for the training set.

As a rule, we noted that the parametric method surpasses
its explicit version, obtaining results not far from the oracle.
The best actual results were obtained for both training modes,
leaving only System 1 in the low-level partition and assigning all
other classifiers to the high-level partition (configuration “2–7”
in Fig. 3). The detection curve for this configuration in both
modes using parametric optimization, and for ordinary fusion
(baseline) is depicted in Fig. 4.

The performance obtained by these three systems is summa-
rized in Table III. Although the post-classifiers were optimized
for minimum EER, we also present the minimum (attained
for the operating point leading to minimum EER). The is
a cost function defined by NIST, which typically focuses on the
low False Alarm region performance [16]. In particular, Mode I,
which aims at correcting the low-level classifiers’ flaws attained
the lowest EER and, in general, slightly improved performance
on the Low Miss region. In contrast, Mode II, which emphasizes
the high-level classifiers’ hits attained better performance in the
low False Alarm region, as confirmed by the parameter.

We further tried to combine both modes for training the pos-
itive trials. We believe the two training modes might be some-

what complementary, since they show uneven performance in
different operating points. Specifically, we trained a single post-
classifier assigning “ ” to both well classified high-level and
poorly classified low-level trials and “ ” to well classified
low-level and poorly classified high-level trials. The post-clas-
sifier’s scores were then used to correct the fused scores. Un-
fortunately, this approach did not consistently perform as well
as the two modes independently. Possibly, a simple “agglomer-
ation” of the modes affects the linear separability of the com-
bined regions, demanding more complex decision boundaries.
In another attempt, simply weighting both scores did not simul-
taneously improve EER and .

D. Bias Analysis

Bias analysis is a by-product of the presented framework.
Once we have optimized and trained the post-classifier, an
analysis of the post-classifier’s weights can reveal which of
the side-information elements is causing biased scores (see
Section II-B). This is true for any classifier that allows some
kind of inference regarding its decision rules. In particular, this
is true for the SVM, which is used to implement the post-classi-
fiers in these experiments. Figs. 5 and 6 show, for each training
mode, the components of the side-information vector which
obtained high magnitude weights in the SVM training. These
attributes are presumably responsible for biased recognition
scores. Since the side-information components are normalized
to zero mean and unit standard deviation, the weights shown
reflect the relative relevance of the distinct attributes in overall
score bias.

The SVM output is formed by a weighted sum of the side-
information vector components. Thus, highly positive weights
lead to positive increments in the corrected scores [equations
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(1a) and (1b)], once the correspondent vector components are
high. On the other hand, highly negative weights lead to positive
increments in the corrected scores, in case the correspondent
vector components are also negative. The values depicted are the
respective attribute weights normalized by the sum of weights
attained by all side-information components.

It can be seen that the major bias sources are rooted in
acoustic issues, particularly in train/test quality and channel
mismatch in the lower-frequency portions of the spectrum. (For
the current bias analysis, we roughly split the 19 Mel bands
(Section II-B) into three regions: low, medium, and high.) In
both cases, the post-classifier will boost scores whose trials
suffer from high mismatch. (As noted above, although the
post-classifier is trained exclusively on target trials, in practice,
this correction can be similarly applied to impostor trials.)
The same trend occurs with the average trial quality in lower
frequency portions of the spectrum. Low-quality trials will also
have their scores boosted for compensation.

To some extent, high-level attributes are also responsible for
bias. Note that in Mode I the post-classifier is trained to boost
scores whose trials show high mismatch in either pitch or speech
rate. Since there are no cross-gender trials, pitch mismatch is
related to changes in speaker mood or speaking style between
train and test recordings. In addition, it can be observed that
speakers who speak slowly will also have their scores boosted,
since this seems to affect the low-level classifiers.

V. VIRTUAL FUSION

In this section, we show that it is also possible to apply the
proposed fusion post-classifier on scores of a single recognition
system. In the training stage, we proceed exactly as above and
use a variety of recognition systems for the ultimate purpose
of learning optimal score corrections. However, in operating
mode, we use only a single classifier (specifically, the low-level
acoustic classifier), the scores of which are corrected based on
the first stage. We call this “virtual fusion.” The point is that
extra classifiers are used offline only for training the post-classi-
fier, so that one can explore the power of complex classification
systems which might not be available at operation time. In oper-
ating mode, there is no need to obtain scores for these systems,
but rather only the recognition scores of the specific classifier
that are corrected by the post-classifier.

As before, we concentrate on the standard cepstral-GMM
classifier (System 1 above) and use the other system as “aux-
iliary” classifiers in order to train the post-classifier. Hence,
System 1 remains the sole representative of the low-level
classifiers, and the other systems are assigned to the high-level
partition. The optimization process remains the same as in
Section III-B, except for the use of the cepstral-GMM scores
and not the fused scores as the goal of optimization. In other
words, and in equations (1a) and (1b) represent the target
and impostor score distributions of System 1 and not of the
fused scores as before.

We investigated the impact of a variety of high-level classi-
fier partitions for training the post-classifier, similarly to that re-
lated in Section IV-B for the fused system. The results for both
training modes are depicted in Fig. 7. For comparison, the oracle

Fig. 7. “Oracle” performance for different high-level partitions.

EER obtained by the basic ABIE approach is 6.38%. (Note that
standard errors for EER measurements are estimated as above
and lie between 0.27% and 0.28%, which are greater than some
of the differences observed.)

Actual optimization was performed as well, and results were
close to the oracle optimization. In particular, the best configu-
rations: “5–7,” “6–7,” “6” and “7,” trained in Mode I obtained
actual EER in the range of 6.20% to 6.40%. The results suggest
that appropriate auxiliary systems are those poorly correlated
with the recognition system, whereas good performance seems
to be quite irrelevant. Training the post-classifier using these
systems slightly outperforms the basic ABIE method. Recall
that in the basic ABIE, only held-out examples of System 1 are
used to train the post-classifier, while in virtual fusion, examples
of other classifiers are also used. This suggests that using side-
information vectors from trials selected by higher-level systems
enhances the post-classifier training. More significant, however,
is the fact that optimum performance for the basic ABIE method
is obtained for a relatively narrow range of parame-
ters, as noted in Section IV-B. On the other hand, in virtual fu-
sion, near optimum results were observed for a large range of pa-
rameters. The optimum values are relatively steady:
10% 30% 0.25 , which confirms the stability of this method.

These values are similar to those obtained in Section IV-B for
the fused scores, except for the constant , which is weaker for
the single system correction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework based on post-classi-
fication of scores intended for use with fusion of speaker recog-
nition systems. In fact, we showed that this approach can be ap-
plied to single systems as well, provided we use a suitable “aux-
iliary” system in the training phase of the post-classifier (“vir-
tual fusion”). The presented approach looks at speaker recog-
nition fusion as a dual process, calibrating the fused score as a
function of low- versus high-level classifier performance. In fu-
ture work, we should look at ways to generalize this framework
to handle more than these two classes.

At present, the post classifier can be trained in one of two
training modes. In Mode I, it attempts to correct low-level classi-
fiers flaws, and in Mode II, it enhances the high-level classifiers
hits. We believe that merging both modes could further enhance
performance.
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The proposed framework was evaluated using NIST’04 and
’05 speaker recognition benchmarks. Up to 20% decrease in
EER was achieved compared to ordinary fusion of classifiers.
It would be useful to corroborate these results by means of ad-
ditional data-sets.
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