Intro to Machine Learning

Recitation 1: Intro, KNN, K-Means
Administrative Stuff

- Name: Yossi Adi and Felix Kreuk
- Number of assignments: 6
 - Programming (python) and theoretical exercises
 - Checked with the “Submit” system.
- % assignments, % test
- Office hours: ??
- Piazza: ?
- Project ?
Machine Learning is Everywhere

INTERNET & CLOUD
Image Classification
Speech Recognition
Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDICINE & BIOLOGY
Cancer Cell Detection
Diabetic Grading
Drug Discovery

MEDIA & ENTERTAINMENT
Video Captioning
Video Search
Real Time Translation

SECURITY & DEFENCES
Face Detection
Video Surveillance
Satellite Imagery

AUTONOMOUS MACHINES
Pedestrian Detection
Lane Tracking
Recognize Traffic Sign
Machine Learning

Herbert Alexander Simon:

“Learning is any process by which a system improves performance from experience.”

“Machine Learning is concerned with computer programs that automatically improve their performance through experience. “
Why use Machine Learning?

● Develop systems that can automatically adapt themselves
 ○ Personalised systems (facebook feed, google search)
● Discover new knowledge from large databases (cluster users)
● Market basket analysis (e.g. diapers and beer)
● Mimic human abilities in mundane tasks
 ○ Recognising handwritten characters
 ○ Speech recognition
 ○ Image annotation
● Develop systems that are too difficult to construct manually (if & else)
Why Now?

- Flood of data
- Computational power
- Research Boost (academic and industry)
What is Learning?

Learning = Improving with experience at some task

Improve over task - T

With respect to performance measure - P

Based on experience - E
Example - image classification

{cat, dog, …, car}

*Adapted from Stanford cs231n course presentations.
Example - image classification

Adapted from Stanford cs231n course presentations.
Challenges: viewpoint

All pixels change when the camera moves!

*Adapted from Stanford cs231n course presentations.
Challenges: illumination

Adapted from Stanford cs231n course presentations.
Challenges: Deformation

*Adapted from Stanford cs231n course presentations.
Challenges: Occlusion

Adapted from Stanford cs231n course presentations.
Challenges: Background Clutter

*Adapted from Stanford cs231n course presentations.
Challenges: Intraclass variation

*Adapted from Stanford cs231n course presentations.
Learning Schemes

- Supervised Learning
 - Examples are labeled
- Unsupervised
 - No labels
- Semi-Supervised
 - Partially labeled
- Reinforcement Learning
 - Reward
Outputs

- Classification: one over K classes
 - Object classification, text classification, etc.
- Regression: predict real valued vector
 - Stock values, height prediction, etc.
- Structured: predict complex outputs with structure
 - Parsing trees, ASR, translation, etc.
Separators and Generalisation

Which one would you choose?
Separators and Generalisation
Separators and Generalisation

Linear case - two mistakes

Non Linear case - zero mistakes
Terminology

- Target function: \(t : X \rightarrow Y \)
 - In classification: \(Y = \{1, 2, \cdots, k\} \)
 - In regression: \(Y = \mathbb{R}^n \)
- Hypothesis: A proposed function \(h \), an approximation of \(f \).
- Hypothesis space: The space of all hypotheses that can, in principle, be output by the learning algorithm.
- Model: A function \(f \). The output of our learning algorithm.
- Loss: an evaluation metric: \(\ell : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^+ \)
Terminology: Empirical Risk Minimization

Goal: to minimize:

$$\mathbb{E}_{(x,y) \sim \rho} [\ell(y, \hat{y}(x))]$$

Rho is unknown, so we use a set of examples:

$$S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$$

We would like to minimize:

$$\frac{1}{m} \sum_{i=1}^{m} \ell(y_i, \hat{y}_w(x_i))$$
Terminology

- Training set
 - Used to train the classifier
- Validation set
 - Used to tune hyper-parameters
- Test set
 - Not seen during training, used to evaluate our classifier
- Epoch: one “pass” over the training set
Training Process

- Training loop:
 - Modify predictor function according to the training set
 - Evaluate the loss on the validation set
- Evaluate the loss on test set
- Output predictor function (which performs “well” on the test set according to the loss function)
Terminology: overfitting and underfitting

![Graph showing overfitting and underfitting](image)
K Nearest Neighbours
K Nearest Neighbours (KNN)

- Our first machine learning algorithm
- One of the simplest algorithms
- Algorithm:
 - Given a test example x
 - Define a metric d:
 - Non-negative
 - Identity
 - Symmetry
 - Triangle inequality
 - Find the k closest examples to x according to d
 - Predict the majority class
K Nearest Neighbours (KNN) - Properties

- Supervised
- Lazy
- Need to specify K
- Non-Linear
- Different metrics will output different boundaries
- New examples directly change the classifier
- Every dimension contributes equally
- Sensitive to outliers
K Nearest Neighbours (KNN) - Demo

- Demo
K Means
K Means

- The k-means algorithm is an iterative method for clustering a set of N points into K clusters.

- Algorithm:
 - Define a metric d
 - Initialise K centroids
 - Repeat until convergence:
 - Assign each point to the closest centroid according to d
 - Update each centroid to be the mean of the points in its group.
K Means - Properties

- Unsupervised
- Need to specify K
- Different centroids and metrics will output different boundaries
- Assumptions: spherical, same size and density
- Sensitive to outliers
K Means - Demo

- Demo
Questions?