Introduction to Machine Learning: A Gentle Start

Tirgul 1

Based on slides by Danny Karmon

November 2016
Administration

• 70% final exam
• 30% assignments
 • Theoretical and practical:
 • Python
 • Could appear in the final exam in some form (exact, similar, conclusions).

• tzeviya.biu@gmail.com
Machine Learning in Real Life is a Key role player in a wide range of applications and tasks
E.g.: Search Engines

“bush”

Given a keyword, propose links ranked by relevance
E.g.: Image Recognition

Recognize faces in pictures based on tagged images

Is this Martha?
E.g.: Recommender Systems

Recommend a new item based on past selections
Machine Learning Problems

- Is this cancer?
- What movie should I watch next?
- Who is this?
- What did you say?
- Is it going to rain tomorrow?
- Is this spam?
- etc.
What is Machine Learning?

• “[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed.”

 Arthur Samuel, 1959

• “A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.”

 Tom Mitchell, 1997
ML task type distinction: Supervised vs Unsupervised

• Supervised Learning:
 • The program is “trained” on a predefined set of “training examples”, which then facilitate its ability to reach accurate conclusion when given new data.

• Unsupervised Learning:
 • The program is given a bunch of data and must find patterns and relationships therein.
Supervised Learning
Supervised Learning: Example 1

- Housing price prediction

![Graph showing housing price prediction vs size in square feet.](image-url)
Supervised Learning

• Goal:
 • Develop a finely tuned predictor function
 • A.k.a “hypothesis”

• “Learning” consists of using sophisticated mathematical algorithms to optimize this function

• Given input data, it will accurately predict the desired value
Supervised Learning: Example 1

- Housing price prediction

- **Supervised Learning:**
 - "right answer" is given

- **Regression:**
 - Predicts a continuous valued output (the price)
Classification vs Regression

• **Regression machine learning systems:** Systems where the value being predicted falls somewhere on a continuous spectrum. These systems help us with questions of “How much?” or “How many?”.

• **Classification machine learning systems:** Systems where we seek a yes-or-no prediction, such as “Is this tumor cancerous?”, “Does this cookie meet our quality standards?”, and so on.
Supervised Learning: Example 2

- Quality of Cookie
 - Supervised Learning: “right answer” is given
 - Classification: Predicts a yes/no label

yummy cookie?

% Chocolate Chips in cookie

0.2 0.4 0.6 0.8

0 1
Supervised Learning: Example 2 cont.

• Quality of Cookie

![Graph showing the relationship between cookie radius (in centimeters) and the percentage of chocolate chips in a cookie.]
Pivot Example: Student Performance

- Goal: predict a student’s grade in a final exam.
Prediction $\hat{y} \in Y$
Possible Features

- Sex
- Age
- Family Size
- Mother’s Education
- Father’s Education
- Mother’s Job
- Father’s Job
- Home to school travel time

- Weekly study time
- Number of past class failures
- Wants to take higher education?
- Internet access at home?
- Goes out with friends?
- Health status
- Number of school absences
= <weekly study time, past failures, wants higher education> Performance

<table>
<thead>
<tr>
<th>Numeric</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1: < 2 hours</td>
<td>2: 2-5 hours</td>
<td>3: 5-10 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1: n<3</td>
<td>2: n>=3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1: yes</td>
<td>0: no</td>
</tr>
</tbody>
</table>

= < 1, 2, 0> 40

= < 4, 1, 1> 95
#1: Feature Extraction

• Learning algorithms input exist in numerical domains.
• Features → Numerical representation (e.g. vector).
 • Too many → harder to learn (noise, large dimension)
 • Too less → missing critical properties (can’t learn!)

• $x \in \mathbb{R}^d$
• **Goal:** representing distinguishing characteristics

• More: *Luck**Art*Magic. Less: *Science*
Student Performance

#1 Feature
Prediction \(\hat{y} \in Y \)
#2: Learning Algorithm

- **Goal:** finding appropriate weights for the features
 - What’s more\less important?

- Goal (redefined):
 - Find weight vector w
 - A.k.a the *hypothesis* $h(x)$
 - Optimization problem
 - Find w that maximizes the prediction accuracy.

- Inference:
 - $w \cdot x \in R = \text{score}$
 - Dot product definition:
 - $\vec{w} \cdot \vec{x} = \sum_{i=1}^{n} w_i x_i = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$
Weights * features

\[w \cdot x = w_1 \cdot \text{weekly study time} + w_2 \cdot \text{past failures} + w_3 \cdot \text{wants higher education} \]

W = \langle w_1, w_2, w_3 \rangle

coefficient vector: weighting the importance of each feature

○ Ignoring useless\ noisy features (very small weight)
○ Focusing on distinguishing features
Classification vs Regression

• **Regression machine learning systems**: Systems where the value being predicted falls somewhere on a continuous spectrum. These systems help us with questions of “How much?” or “How many?”.
 - \(w \cdot x = \text{score} \rightarrow \text{target output} \)

• **Classification machine learning systems**: Systems where we seek a yes-or-no prediction, such as “Is this tumor cancerous?”, “Does this cookie meet our quality standards?”, and so on.
 - \(w \cdot x = \text{score} \rightarrow \text{prediction class} \)
Course Focus

Prediction $\hat{y} \in Y$
#2: The process flow

- **Train** predictor according to given dataset:
 - \((x,y)\) where:
 - \(x\) is an instance (a vector)
 - \(y\) is its target value

- **Test** the predictor on new data:
 - Evaluate performance
Training Mode

• Training and modifying the predictor function according to a given data set (i.e. training set)

• **Goal**: well trained weight vector on target distribution (not specific on training set)
Training Mode: Epoch

• An Epoch:
 • A single pass on the entire training set

• Usually a single epoch is not enough for suitable training.
Training Mode: Batch vs. Iterative

Batch Learning

for each epoch:
 for $i = 1$ to $|\text{Training Set}|$:
 1. pick a pair $(x_i, y_i) \in (X,Y)$
 2. predict \hat{y}_i using hypothesis
 3. compare performance \hat{y}_i vs. y_i
 Update hypothesis accordingly
Return hypothesis

Iterative Learning

for each epoch:
 for $i = 1$ to $|\text{Training Set}|$:
 1. pick a pair $(x_i, y_i) \in (X,Y)$
 2. predict \hat{y}_i using hypothesis
 3. compare performance \hat{y}_i vs. y_i
 4. update w accordingly
Return averaged version of hypothesis

\[\text{Suffer the loss (cost function)} \]
\[\text{Correct weight vector} \]
Training Mode: Batch vs. Iterative

Batch Learning
- The hypothesis stays constant while computing the error associated with each sample in the input.
- More efficient in terms of # of computations.

Iterative Learning
- Constantly updating the hypothesis, its error calculation uses different weights for each input sample.
- More practical in case the big data sets.

Both converge to the same minimum (explained in future lessons)
Training Mode: Batch vs. Online

Batch Learning

for each epoch:
 for i = 1 to |Training Set|:
 1. pick a pair \((x_i, y_i)\) \(\in\) \((X, Y)\)
 2. predict \(\hat{y}_i\) using hypothesis
 3. compare performance \(\hat{y}_i\) vs. \(y_i\)
 Update hypothesis accordingly

Return hypothesis

Online Learning

for \(t = 1\) to \(T\):
 1. pick the pair \((x_i, y_i)\) \(\in\) \((X, Y)\)
 2. predict \(\hat{y}\) using the hypothesis
 3. compare performance \(\hat{y}_i\) vs. \(y_i\)
 4. update hypothesis

Always updating hypothesis
Performance evaluated according to current hypothesis
Test Mode

• Once the training process is done - our trained predictor model (i.e. hypothesis) is ready for action!

• Evaluate the performance

Performance Evaluation
Accuracy/Error rate

\[x \rightarrow \hat{y} \rightarrow y \]
Test Mode

for $i = 1$ to $|\text{Test Set}|$:
1. pick the pair $(x_i, y_i) \in (X, Y)$
2. predict \hat{y}_i using the hypothesis
3. compare performance \hat{y}_i vs. y_i
return average performance (error rate)
Unsupervised Learning
Unsupervised Learning

Supervised Learning

Unsupervised Learning
Unsupervised Learning

- **Task:** find relationships, patterns and correlations within data
- No training examples used in this process.
E.g.: Google News
Summary

• What is Machine Learning?
• Supervised Learning
 • Classification vs. Regression
 • Two Steps:
 • Feature Extraction
 • Learning – finding w
 • The process flow:
 • Train mode and test mode
 • Train mode: batch/iterative/online
• Unsupervised Learning
 • clustering